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Abstract

Background: A sharp rise in the malaria mortality rate has been observed recently in western
Kenya. Malaria is transmitted by mosquito vectors. Malaria control strategies can be more
successful if the distribution and abundance of mosquito vectors is predicted. However, how
mosquito vectors are distributed in space remain poor understood, and this question is rarely
studied using spatial methods. This study aims to provide a better understanding of the distribution
and abundance of mosquito vectors. To achieve this objective, spatial and non-spatial methods
were employed. The data on the distribution of adult mosquitoes, and mosquito breeding habitats
in a study area in western Kenya, and environmental variables were analyzed.

Results: The models developed using spatial methods outperformed the models developed using
non-spatial methods. Houses close to locations where mosquito breeding habitats were repeatedly
observed had more abundant adult female mosquitoes. Distance to high-order streams was
identified as an effective predictor for the distribution of adult mosquitoes.

Conclusion: The spatial method is more effective in modeling the distribution of adult mosquitoes
than the non-spatial method. The results of this study can be used to facilitate decision-making
related to mosquito surveillance and malaria prevention.

Introduction

The highland areas in Africa rarely experienced malaria
before 1988 [1]. However, a series of explosive seasonal
malaria outbreaks has occurred in these areas in the last
two decades [2]. These outbreaks caused thousands of
deaths of which over 70% were children under the age of
five, and the highlands in western Kenya have seen the
highest mortality rates [3]. Malaria control is urgently
needed for the region.

Malaria is a vector-borne disease, which is transmitted by
mosquito vectors. Understanding the spatial distribution
of mosquitoes will contribute to the design of malaria-
vector control strategies. Many studies have been carried
out to improve the understanding of the spatial distribu-
tion of mosquito vectors. For example, elevation, temper-
ature, and shape of landscape have been recognized to be
related with the development of mosquito vectors [4-6].
The abundance of mosquitoes in human houses has been
found to be affected by rainfall [7]. Humidity also has a
significant effect on mosquitoes [8,9]. Host availability
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has long been recognized to have an influence on the dis-
tribution of mosquitoes [10]. The survival of mosquito
larvae has also been related to the openness and presence
of predatory animals in their habitats [11]. It is also
believed that certain human activities, such as the defor-
estation and cultivation of natural swamps, may have cre-
ated conditions favorable to mosquitoes in highland areas
[12].

However, there are three concerns regarding the present
mosquito studies. First, the question of whether the spa-
tial stability of mosquito breeding habitats affects the dis-
tribution of adult mosquitoes remains unexplored.
Second, adult mosquito abundance is traditionally con-
sidered to be a function of the availability of human hosts
and mosquito breeding habitats [13]. This approach is
subject to the omission of some other important factors
affecting the distribution of adult mosquitoes, such as
moisture level. Third, the non-spatial method is often
used to model the distribution of insects. However, data
on adult mosquitoes often have a spatial element, which
may impose limitations on the non-spatial modeling
methods, such as ordinary regression [14].

The objectives of this study are two-fold: (1) to explain the
relationship between adult mosquitoes and mosquito
breeding habitats, and (2) to model the spatial distribu-
tion and abundance of adult mosquitoes. To achieve these
objectives, this study employed spatial and non-spatial
methods to analyze data on adult mosquitoes, mosquito
breeding habitats, and environmental variables collected
in a study area in western Kenya.

Methods

Study area

The study area, a 4 x 4 km area centered at 0°10' N,
34°45'E, is located in Iguhu Village, Kakamega District of
western Kenya, one of the most densely populated dis-
tricts in Kenya. Frequent malaria outbreaks have been
reported in the highlands of the District [15]. The terrain
of the study area is typical of the highlands and consists of
a mosaic of hills and small basins, with elevations ranging
from 1420 to 1540 m. The Yala River runs through the
area from east to west. The study area has one long rainy
season, one short rainy season and a main dry season. The
long rainy season usually occurs from April to June, the
short rainy season in October to November, and the main
dry season from December to March [16]. The study area
contains about 2,500 households and includes a popula-
tion of over 10,000 people.

Adult mosquito data

To determine the distribution and abundance of mosqui-
toes in human houses, we randomly selected 200 houses
in the study area (8% of all the houses in the study area)
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(Figure 1). A Global Positioning System (GPS) was used
to record the coordinates of the selected houses. In May
2003 (long rainy season), the mosquitoes in selected
houses were collected using indoor pyrethrum spray col-
lection method, which is a standard adult mosquito sur-
vey method. Follow-up laboratory identification was
performed on the collected adult mosquitoes to identify
their species [17]. Mosquito abundance was measured as
the density of female adult Anopheles gambiae s.1. at each
house (i.e., total number of female adult An. gambiae s.1.
per house). Only female mosquitoes were included in the
study because they are responsible for malaria transmis-
sion.

Mosquito breeding habitat data and data preprocessing
All aquatic habitats in the study area were thoroughly sur-
veyed in February (dry season) and May (long rainy sea-
son) from 2003 to 2005. Therefore, the study area was
surveyed six times in these three years. The aquatic habitat
survey in May 2003 took place a week before the afore-
mentioned adult mosquito survey. Samples from all
aquatic habitats (excluding running water and water in
containers inside houses) were collected by using a stand-
ard dipper (size = 350 ml). Each aquatic habitat was
dipped up to 20 times to collect water samples. If a habitat
was too small to make 20 dips, it was usually dipped as
many times as possible. The presence of An. gambiae s.1.
larvae in the water samples was then examined. Coordi-
nates taken at the center of all water bodies were recorded
using a GPS. Aquatic habitats with the presence of An.
gambiae s.1. larvae were considered as mosquito breeding
habitats.

Using the information collected using the GPS, six point
maps showing the location of mosquito breeding habitats
were created. Each of these point maps was converted into
araster map with 20 m resolution (this resolution is deter-
mined based on the observed surface area of mosquito
breeding habitats). On each map, pixels showing the pres-
ence and absence of mosquito breeding habitats are
coded as 1 and 0, respectively. To examine the spatial sta-
bility of habitats, these six maps were then overlaid and
added together. This resulted in one raster map, hereafter
referred as integrated habitat map. The value of pixels on
integrated habitat map represents the number of times
that mosquito breeding habitat was observed in locations
represented by these pixels during the field surveys. The
pixel values of the integrated habitat map range from 0 to
6. If the value of a pixel is larger than 1, this indicates that
mosquito breeding habitats are observed repeatedly in the
location represented by this pixel.

To obtain information on habitat stability, two maps were
used. One is the map showing larval breeding habitats in
May 2003, hereafter called May 2003 habitat map, and
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Locations of the sampled houses, high-order streams and low-order streams. Each dot represents a sampled house.
The size of the dot represents abundance of adult female An. gambiae mosquitoes (the number of adult mosquitoes captured in

each house).

another is the integrated habitat map. Based on these two
maps, six types of habitat locations were identified: (1)
locations where habitats were observed in May 2003
(pixel values of May 2003 habitat map = 1), (2) locations
where habitats were observed at least once during six sur-
veys (pixel value of the integrated map > 0), (3) locations
where habitats were observed only once during six surveys
(pixel value of the integrated map = 1), (4) locations

where habitats that were observed at least twice during six
surveys (pixel value of the integrated map > 1), hereafter
called locations with repeatedly observed habitats, (5)
locations where habitats were observed at least three times
during six surveys (pixel value of the integrated map > 2),
and (6) locations where habitats were observed in May
2003 and at least once during other time periods (pixel
values of May 2003 habitat map = 1, and pixel value of the

Table I: Environmental variables that describe hydrological and land surface conditions of the study area.

Variable Calculation

Wetness Index

Distance to High Order Stream
ordered four or five.

Distance to Low Order Stream
other streams.

Elevation

Slope

Derived from Digital Elevation Model
Calculated as the rate of change in altitude

Calculated based on the local upslope contributing area and slope
Stream orders are calculated based on the reaches of a stream. A high order stream is reached by streams

A low order streams is reached by streams ordered one, two, three and four. It also may not be reached by
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integrated map > 2). These six types of locations are not
exclusive from each other. Table 1 shows six types of loca-
tions and the number of pixels they occupy. Distances
from human houses to each of these six types of locations
were calculated. Therefore, six distance variables were cre-
ated.

Environmental data

Five variables were used to describe the environmental
conditions for the adult mosquitoes (Table 1). Among
these five variables, wetness index, distance to high-order
streams, and distance to low-order streams were used to
represent hydrological condition. Hydrological condition
of an area is known to have an influence on mosquito
breeding habitat, and consequently it may affect the dis-
tribution of adult mosquitoes [18].

Wetness index (Ln(A/TanB)), which combines local ups-
lope contributing area and slope, is commonly used to
quantify topographic control on hydrological processes,
where A is the draining area of the location and B is the
slope [19]. For this variable, the larger the value, the
higher the soil moisture level. This index is widely used in
hydrological studies to represent static equilibrium soil
moisture conditions in relation to water flow patterns in
an area.

Stream order were used to represent the volume of water
in a stream network. Stream order classifies the reaches of
a stream according to its relative position in the stream
network [20]. The higher the stream order, the greater the
volume of water that flows down the stream. At the first
order, which is the lowest, streams have the smallest water
volume and receive water only from overland flow. These
streams normally flow during rainy seasons [20]. When
two streams of orderj (1, 2...n) join, a stream of order j+1
is formed. High-order streams usually are found at low
elevations and have a large water volume. In this study,
the highest ordered streams, the fifth- and sixth-order
streams, coincide with the Yala River, which is located in
the valley of the study area. Streams ordered from five to
six were then considered high-order streams, and the oth-
ers are considered low-order streams. Distance from
human houses to high-order streams and distance to low-
order streams were used in the study.

In addition to the variables that represent the hydrological
condition, slope and elevation were used to represent
land surface condition. Although adult mosquitoes tend
to fly close to the ground to avoid the wind, they can travel
further with the facilitation of wind [21]. The wind may
interact with the slope to affect the adult mosquito's dis-
persal. Therefore, slope angle and elevation were included
in the analysis.
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These variables were derived from a Digital Elevation
Model (DEM) data set. This DEM were calculated from a
20-m-interval contour map, digitized from a 1970 aerial
photography survey map with a 1:50,000 scale. A resolu-
tion of 30 m were defined for this DEM, as this resolution
is recommended for the DEM-derived from a contour
map with a 1:50,000 scale [22]. All the DEM derived vari-
ables were prepared as raster data with a resolution of 30
m. All these variables were prepared using UTM coordi-
nates. The Geographic Information System (GIS) software
ArcGIS, and ArcGIS extensions named Wetness Index 2.0
and Stream Orders were used for the derivation of the var-
iables.

Spatial lag model

To deal with the spatial dependence in the data, spatial lag
models were used. The spatial lag model was modified
from the ordinary regression model. The spatial lag model
has a spatial component, which takes into account the
spatial dependence in the dependent variable [23,24], as
shown in Equation 1:

y=poy+Xp+e (1)

In this formula, y is the vector of dependent variable, p is
the spatial autoregressive parameter determining the
importance of spatial lag, wis the structure of the assumed
spatial dependency of the dependent variable, Sis the vec-
tor of parameters, X is a matrix with observations on inde-
pendent variables, and ¢ is the vector of errors.

In this equation, pwy is a spatial lag term, which is essen-
tially a weighted average of the neighboring values of the
dependent variable. If the spatial autoregressive parame-
ter (p) is significant, the spatial dependency does exist for
the dependent variable. In this case, the spatial lag model
can yield a more accurate description of the relationship
between the dependent variable and the independent var-
iables.

In spatial lag model, the spatial dependence between sam-
ples is typically expressed in a spatial weight matrix Wi, j,
which consists of binary or generalized spatial weights
assigned to the pairs of units i and j [25]. Two typical spa-
tial weight matrices were used in this study: (1) a distance
matrix (the weights are the inverse distance between sam-
ples), and (2) a binary contiguity matrix (the sample that
is located within a threshold distance of another sample is
assigned a value of 1, while the sample that is located
beyond the threshold distance of another house is
assigned a value of 0).

For the binary continuity matrix, a critical distance that
defines the relevance of the nearby samples needs to be
selected. Spatial weights can be defined based upon the
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distance of potential interaction or contiguity [14]. To
identify this distance, the relevance of the nearby samples
was examined by using Moran's I as a function of spatial
distance. Moran's I indicates the degree of similarity
between the values of the variable, and its value ranges
approximately from +1 to -1 [26]. A positive Moran's |
indicates spatial similarity among the samples, while a
negative Moran's I indicates dissimilarity among the sam-
ples.

In this study, Moran's I were calculated using spatial dis-
tances ranging from 10 to 500 m with an increment of 20
m. A significance envelope of Moran's I were calculated
using the Monte Carlo test. The increasing differences
between the Moran's I and simulated envelope indicate an
increasing level of spatial dependency in the samples. The
distance, at which the samples have highest level of spatial
dependence (i.e., Moran's I reaches the maximum value)
were selected as the critical distance for the binary matrix.

Data analysis

To investigate the relationship between adult mosquitoes
and mosquito breeding habitats, three types of regression
analyses were performed: ordinary regression, spatial lag
model with the distance matrix, and spatial lag model
with the binary matrix. The mosquito abundance data
were log-transformed (In (x+1)) to reach a normal distri-
bution assumed by regression analysis. For each of the six
types of habitat locations, its relationship with adult mos-
quitoes was investigated using each of the three types of
regression analysis. The mosquito abundance was used as
the dependent variable, and distance variables were used
as the independent variable. In total, 18 regression mod-
els were created to describe the relationship between adult
mosquitoes and each type of mosquito breeding habitats.

To develop a model that predicts the distribution of adult
mosquitoes, the aforementioned three regression analyses
were applied. For each regression analysis, mosquito
abundance was used as the dependent variable. Six varia-
bles that represent the availability of mosquito breeding
habitats and five environmental variables (Table 1) were
used as independent variables. The independent variables
were tested for heteroskedasticity and multicollinearity to
satisfy the basic assumptions of regression analysis. If two
variables are correlated, the one that explains less variabil-
ity in the dependent variable is removed. Three models
were created to predict the distribution of adult mosqui-
toes. The model development was accomplished in
GeoDa [27].

Adjusted R square, Akaike Information Criterion (AIC),
and Moran's I of regression errors were used for the model
evaluation Three regression parameters, adjusted R
square, Akaike Information Criterion (AIC) and Moran's I
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of regression errors, were used to aid the selection of the
model that is best fitted to the data from the 21 models.
The adjusted R square quantifies the amount of variation
of the independent variable that is explained by the
model, and it is often used in estimating the fit of the
model to the data. The model with the largest R square is
usually considered as the best model. The only problem
with R square is that this parameter is not sensitive to
overfitting, a problem caused by the involvement of too
many variables in the model. When there are more varia-
bles added to the model, R square usually gets larger,
which indicates that the model explains more variance.
AIC serves as a useful supplement to R square. It not only
estimates how well a model fits and but also penalizes the
loss of degrees of freedom. This penalty discourages over-
fitting. The AIC test is considered the most reliable criteria
for model fitting. The model with the smallest AIC value
is considered to be the model that is best fitted to the data.
The Moran's I test of the regression errors is a standard test
to determine whether the developed regression model sat-
isfies the independence assumption of the model residu-
als. The spatially dependent residuals indicate that the
model does not satisfy a fundamental assumption of
regression and it may be inefficient or wrong.

Results

Six types of habitat locations

A total of 6,612 water bodies was observed during the six
field surveys. Among the all these water bodies, 32.15% of
sites (2,126 sites) were identified as An. gambiae breeding
sites. The numbers of pixels associated with each of six
types of locations are provided in Table 2. On the inte-
grated habitat map, the values of 1,321 pixels are larger
than zero. In other words, breeding habitats were discov-
ered at least once during six field surveys in the locations
represented by these 1,321 pixels. Also on the integrated
habitat map, the values of 632 pixels are equal to one, the
values of 698 pixels are larger than one, and the values of
75 pixels are larger than two. Out of the 1,321 pixels, 372
of them contain breeding habitats that were observed in
May 2003. Out of the 698 pixels, 143 pixels contain hab-
itats that were observed in May 2003. The average dis-
tances between these six types of locations and the high-
order streams are shown in Table 2. The locations where
habitats were repeatedly observed have the shortest aver-
age distance to the high-order streams among the six types
of locations. The standard deviation in their distances to
the high-order streams is also the smallest among the six
types of locations.

Spatial dependence in adult mosquito abundance

An. gambiae s.l. and An. funestus are the two primary mos-
quito species in the area. The collected mosquitoes were
mainly An. gambiae s.1., only 6% of them were An. funestus.
The data on An. funestus were not included. In May 2003,
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Table 2: Table showing the numbers of pixels that were occupy by six types of habitats locations, and the average and standard
deviation for the distances between these six types of locations and the high-order streams.

Habitat locations

Pixel number Average distance (m) Standard deviation

locations where habitats were observed in May 2003 372 578 569
locations where habitats were observed at least once during six surveys 1321 621 513
locations where habitats were observed only once during six surveys 632 735 688
locations with repeatedly observed habitats 698 520 446
locations where habitats were observed at least three times during six surveys 75 877 846
locations where habitats were observed in May 2003 and at least once during 143 531 543

other time periods

the numbers of An. gambiae s.l. captured in each house
ranged from 0 to 161, with an average of 27. A correlo-
gram for the Moran's I on the abundance of adult mosqui-
toes is presented in Figure 2. The correlogram were also
compared with the Moran's I significance envelope, calcu-
lated using a Monte Carlo test. The dashed lines show the
upper and lower bounds of the Moran's I envelope at 95%
confidence intervals. The part of the black line that is
above the dashed lines indicates the existence of spatial
dependency of mosquito abundance (Figure 2).

As shown in Figure 2, the values of Moran's I for the abun-
dance of adult mosquitoes are all positive. These results
indicates that, at all distances, the numbers of mosquitoes
in nearby houses are similar. The observed Moran's I
increases with increasing distances, and the line of
Moran's I intersects the simulated upper envelope at 100
m. This indicates that the distribution pattern of the adult
mosquitoes is random at separation distances below 100
m. This line continues its increasing trend until the dis-
tance reaches 140 m, at which the highest Moran's I value
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Figure 2

Moran’s | of the mosquito abundance data. The black
line is the calculated Moran's |. The grey lines delimit the 95%
confidence envelope from the Monte Carlo simulation. Note
that if the black line is above the grey lines, it indicates a spa-
tial dependence in adult mosquito abundance.

(0.76) is obtained. After a distance of 140 m, the Moran's
I value has a decreasing trend when the distance increases.
This indicates that the spatial dependence in the abun-
dance of adult mosquitoes is the most significant at the
separation distance of 140 m.

Relationship between adult mosquitoes and mosquito
breeding habitats

Based on regression analysis, distance to locations with
repeatedly observed habitats is the only distance variable
that has a significant relationship with the abundance of
adult mosquitoes. This variable is significant in any of the
three regression analyses. The model parameters of these
three regression analyses (i.e., adjusted R square, AIC,
Moran's 1 of the residuals, regression coefficients, and
probabilities) are shown in Table 3.

Based on these three regression analyses, distance to loca-
tions with repeatedly observed habitats is negatively
related to the abundance of adult mosquitoes. This indi-
cates that the houses close to locations where habitats
were repeatedly observed have more abundant adult mos-
quitoes. Among the three models, the ordinary regression
model has the smallest adjusted R square, the largest AIC,
and the largest Moran's I for the residuals. The spatial lag
model with the binary matrix has the largest adjusted R
square, the smallest AIC, and the smallest Moran's I for
the residuals. The Moran's I for the residuals of the ordi-
nary regression models is above 0.5, indicating the pres-
ence of significant spatial dependence in the residuals.
The Moran's I for the spatial lag models with the binary
and distance matrix are all smaller than 0.2. This implies
that the residuals of the spatial lag models are independ-
ent of each other, which satisfies the fundamental
assumption on the independence of the model errors.

Models predicting distribution of adult mosquitoes

Three regression analyses on the relationship between
adult mosquitoes and predictive variables indicate that
distance to high-order streams is negatively related to the
abundance of adult mosquitoes. This indicates that the
houses with a great proximity to high-order streams have
more abundant mosquitoes. Two of the three regression
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Table 3: Adjusted R2, AIC, Moran's | of regression residuals of the regression models that explain the relationship between adult
mosquitoes and mosquito breeding habitats with repetitive occurrence.

Spatial Lag Distance

Spatial Lag Binary

Ordinary Regression

R2 = 0.45
AIC =271
Morans' 1 = 0.21

R2 = 0.64
AIC =178
Morans' | = 0.04

R2=0.17
AIC =333
Morans' | = 0.62

Variable Coefficient P Variable Coefficient P Variable Coefficient P
Dist to habi -9.50E-04 0.00 Dist to habi -8.00E-04 0.00 Dist to habi -1.90E-04 0.00
Constant 0.82 0.00 Constant 0.63 0.00 Constant 8.37 0.00
Lag 0.66 0.00 Lag 0.69 0.00 X X X

The coefficient and probability of significant variables are also listed.

X stands for None. Lag stands for the spatial lag term. Dist to habi stands for distance to mosquito breeding habitats with repetitive occurrence.
The variables that have a significance level higher than 0.1 is considered insignificant.

analysis agree that wetness index is negatively related to
the abundance of adult mosquitoes. This indicates that
the houses with higher levels of soil moisture and higher
elevations have fewer mosquitoes. The lag components
are significant in the lag model with the binary matrix and
the lag model with the distance matrix. Adjusted R square,
AIC, Moran's I of the residuals, regression coefficients,
and probabilities of regression analyses are shown in
Table 4.

As shown in Table 4, among the three models explaining
the distribution of adult mosquitoes, the ordinary regres-
sion model has the smallest adjusted R square, the largest
AIC, and the largest Moran's I for the residuals. The spatial
lag model with the binary matrix has the largest adjusted
R square, the smallest AIC, and the largest Moran's I for
the residuals.

The Moran's I for the residuals of the ordinary regression
model is above 0.5, indicating the presence of significant

spatial dependence in the residuals. The Moran's I for the
four spatial lag models with either the binary or distance
matrix are all smaller than 0.2 (Table 4). This implies that
the residuals of the spatial lag models are independent of
each other, which satisfies the fundamental assumption
on the independence of the model errors.

The spatial lag model with the binary matrix has a
adjusted R square that is larger than that of the ones with
the distance matrix. This indicates that the model with the
binary matrix contributes more to the explanation of the
variance in the adult mosquito abundance than the spa-
tial lag model with the distance matrix. This implies that
the spatial dependence in the adult mosquito samples
may be better demonstrated by the binary matrix.

Discussion

Spatial dependence in female adult mosquito observations
In this study, the models with the binary matrix always
outperformed the models with the distance matrix. This

Table 4: Adjusted R square, AIC, Moran's | of regression residuals of the regression models that predict the distribution of adult

mosquitoes.

Spatial Lag Distance

Spatial Lag Binary

Ordinary Regression

R2 = 0.66
AIC = 167
Morans' 1 =0.17

R2 =0.74
AlIC=111
Morans' 1 = 0.06

R2 =0.62
AIC =180
Morans' 1 = 0.66

Variable Coefficient P Variable Coefficient P Variable Coefficient P
Wetness -1.70E-02 0.09 X X X Wetness -2.00E-02 0.01
Dist to High -3.40E-04 0.00 Dist to High -2.60E-04 0.00 Dist to High -3.70E-04 0.00
X X X X X X Elevation -4.70E-03 0.03

Constant 29.03 0.00 Constant 0.83 0.00 Constant 8.37 0.00
Lag 0.6l 0.00 Lag 0.45 0.00 X X X

The coefficient and probability of significant variables are also listed.

X stands for None. Lag stands for the spatial lag term. The variables that have a significance level higher than 0.1 is considered insignificant.
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indicates that the binary matrix may be more effective in
depicting the spatial dependence in female adult mos-
quito abundance. If the binary matrix accurately depicts
the spatial dependence in adult mosquito abundance, the
mosquito observation at one location is influenced by all
other observations within 140 m in a similar way. If all of
the 2500 houses are evenly distributed, the distance
between houses is 80 m. Therefore, each house is influ-
enced by at least four houses around it. This implies that
if the number of female mosquitoes is high in one house,
four or more nearby houses may also have high numbers
of female mosquitoes.

Relationship between adult mosquitoes and mosquito
breeding habitats

This study suggests that locations where habitats were
repeatedly observed have a significant relationship with
the distribution of adult mosquitoes. This indicates that
habitats in these locations have a stronger relationship
with adult mosquitoes than other habitats. As mentioned
previously, the locations with repeatedly observed habi-
tats have a greater proximity to high-order streams com-
pared with other habitat locations (Table 2). One possible
explanation is that high-order streams often locate in val-
ley floors, which collect all run-off water in various
depressions. The accumulation of run-off waters help
maintains habitats in valley floors. The habitats in valley
floors may be more stable than habitats in other areas.

This study suggests that the locations where habitats were
only observed once during six surveys had no clear rela-
tionship with the adult mosquitoes. Since the adult mos-
quitoes were only surveyed once, it is difficult to exclude
the possibility that these habitats may contribute to the
adult mosquito population before or after the mosquito
data were collected. Another possibility is that these hab-
itats may not be productive. In other words, larvae failed
to develop into pupa in these sites. Thus, these habitats
had limited contribution to the adult mosquito popula-
tion. There are a variety of reasons that a site may be
unproductive. For example, it has been observed that
some mosquito habitats may dry up easily in a few days if
there is no rain [7]. Larvae at some habitats may also be
washed away during heavy rainfalls [28]. Lack of nutrients
at a habitat may also prevent the development of larvae
[29]. Furthermore, this study suggests that the mosquito
breeding habitats observed one week prior to the adult
mosquito sampling time also have no significant relation-
ship with the observed adult mosquitoes. Since the survey
on adult mosquitoes was taken place only one week after
the larval habitat survey, it is possible that some larvae in
these sites did not have enough time to develop into the
adults, and did not contribute to the adult mosquito pop-
ulations when the adults were surveyed. It is also possible

http://www.ij-healthgeographics.com/content/7/1/50

that some freshly emerged adult mosquitoes were still in
the mating process.

The analysis indicates that the habitats that were observed
at least three times have no significant correlation with
adult mosquito distribution. The number of these habi-
tats that were observed at least three times are probably
too few to allow an reliable estimation of the statistical
relationship between habitats and adult mosquitoes
(these habitats consist of approximately 10% of all
observed habitats).

Relationship between adult mosquitoes and
environmental variables

The results indicate that the houses with a great proximity
to the high-order streams, which have five to six stream
reaches, have more abundant mosquitoes. As mentioned
previously, the high-order streams often locate in valley
floors, where the habitats are provided with abundant
rainy waters. It is worth noting that the distance to high-
order streams is a better predictor of the distribution of
adult mosquitoes compared with the distance to habitats
with repetitive occurrences. This is probably due to the
fact that the larvae were only surveyed six times in three
years. Some habitats were absent during these surveys.
The distance to high-order streams is more accurate in rep-
resenting the habitat availability, as it describes the envi-
ronmental conditions for habitats.

It is worth noting that the statistical relationship between
low-order streams and the distribution of adult mosqui-
toes are found to be insignificant based on the analysis.
This indicates that the streams that have three or less
reaches may not have a strong influence on the distribu-
tion of adult mosquitoes. One possible explanation is that
the low-order streams are usually temporal and may dis-
appear after a short period of time [20]. Consequently, the
habitats close to low-order streams might be influenced
by the disappearance of the streams and exist only for a
short period of time.

The comparison of the spatial and non-spatial models
reveals notable differences in the relationship between
adult mosquitoes and environmental variables. For exam-
ple, the wetness index and the elevation are significant in
the ordinary regression model, but insignificant in the
spatial lag model with the binary matrix. These differences
may reflect the bias in the results of the ordinary regres-
sion, since it is known that spatial dependence in the data
can cause biases for the regression results. It has been
pointed out that the possible biases include: (1) the fail-
ure to include important independent variables that are
related to the dependent variable and (2) the retention of
independent variables in the model as significant when
they are not [27]. It seems that in this study the failure to
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account for spatial dependence in the dependent variable
may have leaded to the adoption of the irrelevant varia-
bles, such as wetness index and elevation. In addition, the
coefficient of the wetness in these two models is negative,
indicating that the number of mosquitoes increases with
the decreasing soil moisture level. The negative coefficient
for the wetness index is counterintuitive, as it is generally
believed that the mosquitoes prefer high levels of mois-
ture [30].

It has been suggested that the spatial dependence in the
dependent variable is caused by the omitted variables that
are spatially dependent [31]. However, few methods have
been proposed to test whether the omitted variables truly
cause the spatial dependence in the dependent variables.
The difficulty lies in the fact that the omitted variables are
omitted because of their inaccessibility. This study asserts
that this variable may shed light on revealing the possible
source of spatial dependence in the dependent variable. If
a variable is significant in the non-spatial model, but
insignificant in the spatial model, this variable may be
related to a variable that causes the spatial dependence in
the independent variable. For example, in this study, the
soil moisture may be linked to one of reasons that caused
the similarity in the adult mosquito observations. Figure
3 displays the Moran's I correlogram for wetness index
(black line) and elevation (grey line), calculated using dis-
tances ranging from 30 to 480 m with a 30 m increment.
The figure shows that the spatial dependence of the wet-
ness index is clearly reduced after 100 m. For wetness
index, the Moran's I at 150 m is 0.3. This may explain why
the level of spatial dependence in adult mosquito abun-
dance is the highest at 140 m (Figure 3). This figure also
shows that the Moran's I of elevation is above 0.8 even
when the distance reaches 480 m. Although this study
suggests that the wetness index and elevation do not have
a significant statistical relationship with adult mosquito
abundance, the houses with a similar level of soil mois-
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Moran’s | of Wetness Index and Elevation. The
Moran's | is calculated using the distances ranging from 30 to
480 m.

http://www.ij-healthgeographics.com/content/7/1/50

ture and elevation may have conditions that are related to
the number of adult mosquitoes. These conditions lead to
spatial dependence in the adult mosquitoes. Because of
these conditions, the numbers of mosquitoes in houses
with similar soil moisture and elevation may be similar.

The adult mosquito and larval habitat data used in study
were spatially extensive, and they were collected under the
most typical climatic scenarios (rainy and dry seasons).
However, the data used in this study also have several lim-
itations. First, the larval habitats were only surveyed six
times in three years, and density data were not used in the
analysis. The availability, persistence and dimensions of
mosquito larval habitats depend to a large extent on the
frequency, duration and intensity of precipitation [28].
The larval density may also influence the distribution of
the adult mosquitoes. However, the continues and con-
sistent sampling of larval habitats is often resource pro-
hibitive. Reliable data on larval density are also difficult to
obtain, since the surface area of habitats varies considera-
bly, and larvae are not evenly distributed in each habitat.
Thus, only presence and absence data were used to repre-
sent the distribution of larval habitats.

Second, the adult mosquitoes were only surveyed once.
The temporally extensive sampling of adult mosquitoes is
preferred for mosquito studies, since the population of
An. gambiae s.1. correlates closely with the seasonal rainfall
patterns, and builds up rapidly and peak shortly after the
onset of the rainy season [32]. This study only collected
data on the adult mosquitoes in a rainy season, since the
malaria outbreaks in the highland areas often follow rainy
seasons [33]. Although this study indicates that it is possi-
ble to accurately estimate the distribution of female adult
mosquitoes using environmental variables, further analy-
sis is needed to determine whether the model developed
in this study can be used to predict the distribution of
adult mosquitoes outside rainy seasons.

Third, only environmental variables were used in this
study. It is discovered that the distribution of adult mos-
quitos is likely to be affected by other variables, such as
house roof type and bed net use [34]. Based on the field
observations, the roofs of 80% of houses are made of iron-
sheet roofing materials, and 10% of households use mos-
quito bed nets. The houses with iron-sheet roof or with
bed nets are randomly distributed in the study. These two
factors are less likely to have an influence on the distribu-
tion of adult mosquitoes. Thus, house roof type and bed
net use were not considered in the analysis. However, cau-
tion must be practiced when the results of this study are
applied in other areas where the house roof type and bed
nets use is spatially heterogeneous.
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In summary, this study identifies and quantifies the rela-
tionship between adult mosquitoes and mosquito breed-
ing sites. It is found that the locations where habitats were
repeated observed are significantly related to the distribu-
tion of female adult mosquitoes. The models predicting
the distribution of female adult mosquitoes and their
abundance were constructed. This study suggests that the
houses in a great proximity to the streams with five or six
reaches have more abundant adult mosquitoes than any
other houses. Some studies also reported that mosquito
breeding habitats tend to appear at the valley bottoms,
where streams are usually located [35,36]. This study is
the first attempt to introduce the stream orders in the
mosquito studies. Distance to high-order streams can be
easily generated from a DEM. The detailed field survey is
not necessary for the acquisition of this variable. The
study reveals that the ignorance of spatial dependence in
the modeling can cause misrepresentation of the relation-
ship between adult mosquitoes and explanatory variables.
The findings of study are important for public health deci-
sion-making related to adult mosquito surveillance and
malaria control.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

LL conceived the study, analyzed the data and drafted the
manuscript. LB contributed to the conception of the study
and provided expertise on environmental modeling. GY is
the principle investigator of the project that collected the
field data. All authors approved the final manuscript.

Acknowledgements
This research was supported in part by NIH grant RO| Al050243. We thank
four anonymous reviewers for their extremely valuable inputs.

References

I.  Hay S, Cox J, Rogers D, Randolph S, Stern D, Shanks G, Myers M,
Snow R: Climate change and the resurgence of malaria in the
East African highlands. Nature 2002, 415:905-909.

2. Malakooti M, Biomndo K, Shanks G: Reemergence of Epidemic
Malaria in the Highlands of Western Kenya. Emerg Infect Dis
1998, 4(4):671-676.

3. Akhwale W, Lum }, Kaneko A: Anemia and malaria at different
altitudes in the western highlands of Kenya. Acta Tropica 2004,
91:167-175.

4. Minakawa N, Omukunda E, Zhou G, Githeko A, Yan G: Malaria vec-
tor productivity in relation to the highland environment in
Kenya. Am | Trop Med Hyg 2006, 75(3):448-453.

5. Macdonald G: The epidemiology and control of malaria Oxford Univer-
sity Press London, United Kingdom; 1957.

6. Balls J, B@dker R, Thomas C, Kisinza W, Msangeni H, Lindsay S:
Effect of topography on the risk of malaria infection in the
Usambara Mountains, Tanzania. Transactions of the Royal Society
of Tropical Medicine and Hygiene 2004, 98:400-8.

7. Koenraadt C, Paaijmans K, Githeko A, Knols B, Takken W: Egg
hatching, larval movement and larval survival of the malaria
vector Anopheles gambiae in desiccating habitats. Malaria
Journal 2003, 2:20.

8. Minakawa N, Sonye G, Mogi M, Githeko A, Yan G: The Effects of
Climatic Factors on the Distribution and Abundance of

20.

21.

22.

23.
24.

25.
26.

27.

28.

29.

30.

31.

http://www.ij-healthgeographics.com/content/7/1/50

Malaria Vectors in Kenya. Journal of Medical Entomology 2002,
39(6):833-841.

Cohen J, Ernst K, Lindblade K, Vulule J, John C, Wilson M: Topogra-
phy-derived wetness indices are associated with household-
level malaria risk in two communities in the western Kenyan
highlands. Malaria Journal 2008, 7:40.

Killeen G, Seyoum A, Knols B: Rationalizing historical successes
of malaria control in Africa in terms of mosquito resource
availability management. Am | Trop Med Hyg 2004, 71(2
Suppl):87-93.

Tuno N, Okeka W, Minakawa N, Takagi M, Yan G: Survivorship of
Anopheles gambiae sensu stricto (Diptera: Culicidae) Lar-
vae in Western Kenya Highland Forest. Journal of Medical Ento-
mology 2005, 42:270-278.

Munga S, Minakawa N, Zhou G, Githeko A, Yan G: Survivorship of
Immature Stages of Anopheles gambiae sl (Diptera: Culici-
dae) in Natural Habitats in Western Kenya Highlands. Journal
of Medical Entomology 2007, 44:758-764.

Russell P: Keys to the Anopheline Mosquitoes of the World: With Notes on
Their Identification, Distribution, Biology, and Relation to Malaria 1943,
2:59-64.

Anselin L, Getis A: Spatial Statistical Analysis and Geographic
Information Systems. The Annals of Regional Science 1992,
26:19-33.

Githeko A, Ndegwa W: Predicting malaria epidemics in the
Kenyan highlands using climate data: A tool for decision
makers. Global Change and Human Health 2001, 2:54-63.

Minakawa N, Seda P, Yan G: Influence of host and larval habitat
distribution on the abundance of African malaria vectors in
western Kenya. Am | Trop Med Hyg 2002, 67(1):32-38.

Scott J, Brogdon W, Collins F: Identification of single specimens
of the Anopheles gambiae complex by the polymerase chain
reaction. Am | Trop Med Hyg 1993, 49(4):520-529.

Menach A, McKenzie F, Flahault A, Smith D: The unexpected
importance of mosquito oviposition behaviour for malaria:
non-productive larval habitats can be sources for malaria
transmission. Malaria Journal 2005, 4:23.

Beven K, Kirkby M: A Physically Based Variable Contributing
Area Model of Basin Hydrology. Hydrological Sciences Bulletin
1979, 24:43-69.

Strahler A: Handbook of Applied Hydrology, chap. Quantitative geomor-
phology of drainage basins and channel networks New York: McGraw-
Hill; 9164:202-215.

Hoffmann E, Miller J: Reassessment of the Role and Utility of
Wind in Suppression of Mosquito (Diptera: Culicidae) Host
Finding: Stimulus Dilution Supported Over Flight Limita-
tion. Journal of Medical Entomology 2003, 40:607-614.

Defense Mapping Agency: Defense mapping agency production specifica-
tions for 1:50,000 scale topographic maps of foreign areas. Washington,
D.C. 1980.

Anselin L: SpaceStat V. 1.90, Software for Spatial Data Analy-
sis. 1999 [http://www.spacestat.com].

Rufinoa M, Sllera V, Maynoua F, Zaukeb G: Assessing the perform-
ance of linear geostatistical tools applied to artificial fisheries
data. Fisheries Research 2006, 82:263-279.

Cliff A, Ord J: Spatial Processes: Models & Applications London: Pion;
1981.

Lichstein ], Simons T, Shriner S, Franzreb K: Spatial autocorrela-
tion and autoregressive models in ecology. Ecological Mono-
graphs 2002, 72:445-463.

Anselin L, Hudak S: Spatial econometrics in practice: A review
of software options. Regional Science and Urban Economics 1992,
22:509-536.

Paaijmans K, Wandago M, Githeko A, Takken W: Unexpected High
Losses of Anopheles gambiae Larvae Due to Rainfall. PLoS
ONE 2007, 2:1146.

Gimning J, Ombok M, Kamau L, Havlett W: Characteristics of Lar-
val Anopheline (Diptera: Culicidae) Habitats in Western
Kenya. Journal of Medical Entomology 2001, 38:282-288.

Shaman J, Stieglitz M, Stark C, Blancq S, Cane M: Using a dynamic
hydrology model to predict mosquito abundances in flood
and swamp water. Emerging Infectious Diseases 2002, 8:6-13.
Dubin R: Estimation of Regression Coefficients in the Pres-
ence of Spatially Autocorrelated Error Terms. The Review of
Economics and Statistics 1988, 70:466-474.

Page 10 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11859368
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11859368
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9866748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9866748
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15234666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15234666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16968920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16968920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16968920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12919636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12919636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12919636
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12495180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12495180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12495180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18312633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18312633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18312633
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15331823
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15331823
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15331823
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15962774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15962774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15962774
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17915505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17915505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17915505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12363061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12363061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12363061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8214283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8214283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8214283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15892886
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15892886
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15892886
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14596273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14596273
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14596273
http://www.spacestat.com
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17987125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17987125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11296836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11296836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11296836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11749741
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11749741
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11749741

International Journal of Health Geographics 2008, 7:50

32.

33.

34.

35.

36.

Mbogo C, Mwangangi J, Nzovu J, Gu W, Yan G, Gunter |, Swalm C,
Keating J, Regens }, Shililu J: Spatial and temporal heterogeneity
of Anopheles mosquitoes and Plasmodium falciparum trans-
mission along the Kenyan Coast. Am | Trop Med Hyg 2003,
68(6):734-742.

Shanks G, Hay S, Stern D, Biomndo K, Snow R: Meteorologic influ-
ences on Plasmodium falciparum malaria in the highland tea
estates of Kericho, western Kenya. Emerg Infect Dis 2002,
8(12):1404-1408.

Shililu J, Ghebremeskel T, Seulu F, Mengistu S, Fekadu H, Zerom M,
Ghebregziabiher A, Sintasath D, Bretas G, Mbogo C: Larval habitat
diversity and ecology of anopheline larvae in Eritrea. Journal
of Medical Entomology 2003, 40:921-9.

Zhou G, Minakawa N, Githeko A, Yan G: Association between
Climate Variability and Malaria Epidemics in the East Africa
Highlands. Proceedings of the National Academy of Sciences of the
United States of America 2004, 101(8):2375-2380.

Minakawa N, Munga S, Atieli F, Mushinzimana E, Zhou G, Githeko A,
Yan G: Spatial distribution of anopheline larval habitats in
Western Kenyan highlands: effects of land cover types and
topography. Am | Trop Med Hyg 2005, 73(1):157-165.

http://www.ij-healthgeographics.com/content/7/1/50

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral

http://www.biomedcentral.com/info/publishing_adv.asp

Page 11 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12887036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12887036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12887036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12498655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12498655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12498655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14765671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14765671
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14983017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14983017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14983017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16014851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16014851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16014851
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Introduction
	Methods
	Study area
	Adult mosquito data
	Mosquito breeding habitat data and data preprocessing
	Environmental data
	Spatial lag model
	Data analysis

	Results
	Six types of habitat locations
	Spatial dependence in adult mosquito abundance
	Relationship between adult mosquitoes and mosquito breeding habitats
	Models predicting distribution of adult mosquitoes

	Discussion
	Spatial dependence in female adult mosquito observations
	Relationship between adult mosquitoes and mosquito breeding habitats
	Relationship between adult mosquitoes and environmental variables

	Competing interests
	Authors' contributions
	Acknowledgements
	References

