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Abstract: It is well-known that the P-acids including phosphonic acids resist undergoing direct
esterification. However, it was found that a series of alkylphoshonic acids could be involved in
monoesterification with C2–C4 alcohols under microwave (MW) irradiation in the presence of
[bmim][BF4] as an additive. The selectivity amounted to 80–98%, while the isolated yields fell
in the range of 61–79%. The method developed is a green method for P-acid esterification. DFT
calculations at the M062X/6–311+G (d,p) level of theory (performed considering the solvent effect of
the corresponding alcohol) explored the three-step mechanism, and justified a higher enthalpy of
activation (160.6–194.1 kJ·mol−1) that may be overcome only by MW irradiation. The major role of
the [bmim][BF4] additive is to increase the absorption of MW energy. The specific chemical role of
the [BF4] anion of the ionic liquid in an alternative mechanism was also raised by the computations.

Keywords: alkylphosphonic acid; monoesterification; selectivity; microwave; ionic liquid; mechanism;
energetics; theoretical calculations

1. Introduction

Dialkyl phosphonates and their derivatives may be important intermediates or starting
materials in different reactions [1], they have importance in the pharmaceutical industry [2]
and in biochemistry [3]. Phosphonates find application also in environmental chemistry [4]
and as flame retardants [5]. The typical preparation of phosphonates (III) involves the
reaction of aryl- or alkylphosphonic dichlorides (I) with alcohols or phenols, or the Arbuzov
reaction of trialkyl phosphites (IV) with alkyl- or aryl halides (Scheme 1) [1,2].
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1. Introduction 
Dialkyl phosphonates and their derivatives may be important intermediates or start-

ing materials in different reactions [1], they have importance in the pharmaceutical indus-
try [2] and in biochemistry [3]. Phosphonates find application also in environmental 
chemistry [4] and as flame retardants [5]. The typical preparation of phosphonates (III) 
involves the reaction of aryl- or alkylphosphonic dichlorides (I) with alcohols or phenols, 
or the Arbuzov reaction of trialkyl phosphites (IV) with alkyl- or aryl halides (Scheme 1) 
[1,2]. 
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Scheme 1. Conventional synthesis of dialkyl phosphonates. 
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According to a newer approach, the syntheses were based on the direct esterification
of the P(O)OH moiety of the P-acids. Among a series of phosphinic acids, phenyl-H-
phosphinic acid (V) was also subjected to direct esterification under microwave (MW)
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conditions using [bmim][PF6] ionic liquid (IL) as the catalyst [6]. In the absence of an IL,
the esterification was not so efficient [7]. The alkyl phenyl-H-phosphinates (VI) so obtained
were oxidized by m-chloro-perbenzoic acid to the corresponding phosphonic ester-acids
(VII) (Scheme 2) [7]. The MW-assisted direct esterification of ester-acids VII furnished
the dialkyl phenylphosphonates (VIII) in lower yields of 25–62% [7]. A more appropriate
protocol was, when phenylphosphonic acid (IX) was converted to the mono ester VII
under MW irradiation and IL catalysis, and the ester-acid (VII) so obtained was converted
to the diester (VIII) by alkylation (Scheme 2) [8].
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The ionic liquids comprising a cation and an anion are regarded “green” solvents
due to their inflammability, negligible vapor pressure (low volatility), and solvation
power [9–11]. Ionic liquids are especially good solvents for metal complexes [12]. Al-
though the primary function of ionic liquids is to serve as solvents, they find more and
more applications as catalysts/additives [13].

In this article, we describe the MW-assisted monoesterification of alkylphosphonic
acids. Beyond the preparative work, we also aimed at the investigation of the theoretical
background of the target reaction.

2. Results and Discussion
2.1. Preparative Experiments on the Microwave-Assited Monoesterification of
Alkylphosphonic Acids

The model reaction studied experimentally and theoretically is shown in Scheme 3. The
monoesterification of the alkylphosphonic acids (1A–D) was performed using 15 equivalents
of the alcohol and 10% of [bmim][BF4] under MW conditions. [Bmim][BF4] was selected on
the basis of our earlier studies [8]. Formation of some of the diester (3A–D) was inevitable.
The pure monoesters 2A–D/a–d could be obtained by converting them to the corresponding
sodium salts by treatment with 10% aqueous NaOH, removing the diester (3A–D/a–d)
by extraction with dichloromethane, and liberating the free acid by acidification with
hydrochloric acid.
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The results obtained with methylphosphonic acid (1A) are summarized in Table 1.
Due to the volatility and taking into account the pressure limit of the MW reactor, the
esterification with EtOH had to be carried out at 160 ◦C. The almost complete conversion
was attained after an irradiation of 5 h. The ratio of the mono and the diester (2Aa and
3Aa) was 94–2 (Table 1/Entry 1). The reactivity of PrOH and iPrOH was significantly
different, after a reaction at 180 ◦C for 3 h, the conversion was 97% and 77%, respectively,
while the proportion of the mono and diesters (2Ab/2Ac and 3Ab/3Ac) was 78–19 and
74–3, respectively (Table 1/Entries 2 and 3). Using iPrOH, the conversion was complete
after 5 h (Table 1/Entry 4). Employing BuOH, the appropriate reaction conditions were
either 180 ◦C/3 h or 200 ◦C/1.25 h. In these cases, the ratio of 2Ad and 3Ad was ca. 81:19
(Table 1/Entries 5 and 6). On the effect of prolonged heating, the ratio of the diester 3Ad
increased to 55% (Table 1/Entry 7). It is noteworthy that a control experiment carried out
in the lack of [bmim][BF4] took place in a conversion of 19% (Table 1/Entry 6, footnote
“b”). Hence, the role of IL is unambiguous. In another comparative experiment performed
on conventional heating without IL, the conversion was 10% (Table 1/Entry 6, footnote
“c”). This proves that both MW and IL are needed for efficient esterification.

Table 1. Direct esterification of methylphosphonic acid (1A) in the presence of [bmim][BF4] under MW conditions.
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Entry R Temperature
(◦C)

Time
(h)

Conversion a

(%)
Monoester a

(2A) (%)
Diester a

(3A) (%)
Yield
(%)

1 Et (a) 160 5 96 94 2 78
2 Pr (b) 180 3 97 78 19 62
3 iPr (c) 180 3 77 74 3 –
4 iPr (c) 180 5 100 98 2 75
5 Bu (d) 180 3 100 81 19 66
6 Bu (d) 200 b,c 1.25 99 81 18 65
7 Bu (d) 200 2 100 45 55 –

a Conversion and product composition was determined on the basis of relative 31P NMR intensities; b The control experiment carried
out in the absence of [bmim][BF4] took place in a conversion of 19% affording only the monoester 2Ad (19%); c The comparative thermal
experiment performed in the lack of the IL proceeded to a conversion of 10%.

The results of the direct esterification of ethylphosphonic acid 1B can be found in
Table 2. Using EtOH at 160 ◦C, completion required > 6 h. After an irradiation of 6 h,
the conversion was 95%, and the ratio of the mono and the diester (2Ba and 3Ba) was
87:8 (Table 2/Entry 1). The esterification with PrOH and iPrOH at 180 ◦C was almost
complete after 3.5 h and 7 h, respectively, leading to ester mixtures (2Bb–3Bb and 2Bc–3Bc)
79:16 and 91:7, respectively (Table 2/Entries 2 and 3). Using BuOH the completion took >4 h
at 180 ◦C. After an irradiation of 3.5 h, the ratio of the mono and the diester (2Bd and 3Bd)
was 89:7 (Table 2/Entry 4). Performing the esterification at a somewhat higher temperature
of 200 ◦C, the ratio of 2Bd and 3Bd was 79:20 (Table 2/Entry 5).

The results obtained during the esterification of propylphosphonic acid (1C) are listed
in Table 3. One can see that the data on the reaction times, conversions, and monoester—
diester ratios are rather similar to those obtained for the esterification of ethylphosphonic
acid (1B). This means that the reactivity of the ethyl- and propylphosphonic acid is rather
similar in the monoesterification under discussion.
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Table 2. Direct esterification of ethylphosphonic acid (1B) in the presence of [bmim][BF4] on MW irradiation.
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4 Bu (d) 180 5 98 83 15 67
5 Bu (d) 200 2 97 83 14 65

a Conversion and product composition was determined on the basis of relative 31P NMR intensities.

As can be seen from Table 4, butylphosphonic acid (1D) was the less reactive in
the series. The esterification with EtOH at 165 ◦C was not even complete after 7 h
(Table 4/Entry 1). Applying PrOH and iPrOH at 200 ◦C, the reaction time was 4 h, and, as
extrapolated, 10 h, respectively (Table 4/Entries 3 and 4). With BuOH, the esterification
required 200 ◦C/3 h.

Table 4. Direct esterification of butylphosphonic acid (1D) in the presence of [bmim][BF4] on MW irradiation.
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Entry R Temperature
(◦C)

Time
(h)

Conversion a

(%)
Monoester a

(2D) (%)
Diester a

(3D) (%)
Yield
(%)

1 Et (a) 165 7 70 67 3 51
2 Pr (b) 200 4 99 82 17 66
3 iPr (c) 200 7 b 77 71 6 60
4 Bu (d) 200 3 100 87 13 70
a Conversion and product composition was determined on the basis of relative 31P NMR intensities; b Extrapolated reaction time: 10 h.

The ester-acid species 2A–D/a–d were isolated from the best mixtures by treatment with
NaOH/H2O, extraction with dichloromethane, and liberating the ester-acid (2A–D/a–d)
with hydrochloric acid. A final extraction with dichloromethane furnished the pure mo-
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noesters that were identified by 31P NMR chemical shifts and HRMS (See Experimental,
Table 7). From among the 16 ester-acids, 9 were described earlier, and were identified by
us by 31P NMR shifts [14–17]. The remaining 7 ester-acids (2Bb, 2Bd, 2Cb, 2Da, 2Db, 2Dc,
and 2Dd) were also characterized by us by 1H and 13C NMR spectral data (see Supple-
mentary Materials). The minor components, dialkyl alkylphosphonates 3A–D/a–d were
identified by 31P NMR and HRMS (See Experimental, Table 8).

The synthetic method developed for the selective monoesterification of phosphonic
acids (1) is green, as it avoids the application of P-chlorides.

2.2. Theoretical Calculations on the Direct Esterification of Alkylphosphonic Acids

We have analyzed the energetics of the direct esterification of phosphonic acids (1,
R = Me, Et, Bu) with alcohols (MeOH, BuOH) using DFT computations at the M062X/
6–311+G (d,p) level of theory considering the solvent effect of the corresponding alcohol
(Scheme 4, Table 5). Based on our previous model [18], we proposed a reaction complex
containing three alcohol reagents and two phosphonic acids, where one alcohol molecule
acts as the reagent in the monoesterification of one of the phosphonic acid units. The
other P- and ROH species in the reaction complex are responsible for the proton transfer
chain that promotes the formation of the new P-O bond and the departure of an H2O
molecule. The formation of the reaction complex (4) is highly exothermic marked by a ∆H
of (−123)–(−146.6) kJ·mol−1, but the significant decrease in entropy (∆S) by the assessment
of five molecules results in an increased Gibbs free energy value (∆G = 46.0–66.0 kJ·mol−1).
The first transition state (TS1) belongs to the addition of the reacting alcohol onto the P atom
of the P=O function resulting in intermediate 5. This reaction is moderately endothermic
with an activation enthalpy requirement of 70.7–94.5 kJ·mol−1. The second step is the
removal of a hydroxy group from species 5 that is realized via dehydration taking a proton
from a nearby OH unit. Notably, the second phosphonic acid unit remains intact and acts
only as a proton transfer additive. Interestingly, although the intermediate following TS1
has a higher enthalpy, a similar or slightly lower Gibbs free energy value may suggest a
slight stabilization after the transition. The enthalpy of activation requirement for TS2
belonging to the dehydration is, as compared to the starting level [19], 160.6–194.1 kJ·mol−1.
The Gibbs free energy values are also over 150 kJ·mol−1. The higher barrier may be
overcome at a higher temperature of 180–200 ◦C utilizing MW assistance [20,21]. Finally, the
product complex (6) breaks up, and the liberation of the product (2) is slightly exothermic
as compared to the enthalpy level of the starting reactants (meaning an enthalpy gain of
8.4–15.8 kJ·mol−1).

The question is raised, what the role of the IL may be? Well, it is assumed that similar
to earlier cases, the role of [bmim][BF4] is to increase the MW absorbing ability of the
medium [22,23].

It is worth noting that according to the energetics, the esterification of phenylphos-
phonic acid that was studied earlier [8] goes with similar enthalpy, energy, and entropy
changes (see the last row of Table 5) as the alkylphosphonic acids (1), meaning that the
reactivity of the phosphonic acids in monoesterification is not influenced much by the
nature of the substituent.

The enthalpy diagram for the monoesterification of ethylphosphonic acid (1B) with
butanol is shown in Figure 1. The gross enthalpy of activation is 160.6 kJ·mol−1.

Next, the [bmim][BF4]-promoted esterification was studied for a few alkylphosphonic
acid–alcohol combinations (Scheme 5, Table 6). Similar to the additive-free way, the
reaction goes through a multicomponent complex (7) containing the phosphonic acid, the
BF4

− anion, and two alcohol molecules. The formation of this complex (7) is exothermic
regarding enthalpy [the gain is (−56.8)–(−63.4) kJ·mol−1], but considering the Gibbs free
energy values, again an increase may be observed. The esterification, in this case, is a single-
step process involving a rate-determining transition state (TS3) with a somewhat lower ∆H
value (162.4–171.0 kJ·mol−1) as compared to the other pathway shown in Scheme 4. This
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leads to a product complex (8) that results in the formation of the monoesterified product
(2) after decomplexation.

The enthalpy diagram for the [bmim][BF4]-promoted monoesterification of ethylphos-
phonic acid (1B) with butanol is shown in Figure 2. The enthalpy of activation is 171.0 kJ·mol−1

that is comparable with that of the gross value (160.6 kJ·mol−1) of the other mechanism
(Figure 1).
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Table 5. Energetics for the monoesterification of alkylphosphonic acids (1) obtained by DFT computations at the
M062X/6–311+G (d,p) level of theory considering the solvent effect of the corresponding alcohol.

1 4 TS1 5 TS2 6 2

R1 = Me,
R2 = Me

∆H (kJ·mol−1) 0.0 −123.0 −52.3 −47.2 49.1 −116.8 −10.6
∆G (kJ·mol−1) 0.0 66.0 154.3 151.6 245.2 63.2 −5.5

∆S (J (mol·K)−1) 0.0 68.6 54.9 61.1 63.3 76.0 49.7

R1 = Me,
R2 = Bu

∆H (kJ·mol−1) 0.0 −146.6 −52.1 −48.6 47.5 −120.3 −15.8
∆G (kJ·mol−1) 0.0 49.8 156.5 156.4 250.5 68.4 −5.1

∆S (J (mol·K)−1) 0.0 70.9 61.2 63.8 65.6 76.9 50.4

R1 = Et,
R2 = Bu

∆H (kJ·mol−1) 0.0 −141. 7 −47.9 −42.1 18.9 −122.3 −13.2
∆G (kJ·mol−1) 0.0 62.3 169.4 168.4 223.8 74.1 −9.1

∆S (J (mol·K)−1) 0.0 67.1 56.6 62.1 66.6 73.4 56.6

R1 = Bu,
R2 = Bu

∆H (kJ·mol−1) 0.0 −138.5 −42.4 −39.1 36.7 −117.1 −8.4
∆G (kJ·mol−1) 0.0 48.2 163.8 158.3 230.7 63.3 −5.7

∆S (J (mol·K)−1) 0.0 85.3 70.0 76.9 79.6 90.4 58.6

R1 = Ph,
R2 = Me

∆H (kJ·mol−1) 0.0 −144.1 −64.5 −58.4 47.7 −120.6 −12.8
∆G (kJ·mol−1) 0.0 46.0 141.8 138.4 256.6 58.4 −10.2

∆S (J (mol·K)−1) 0.0 75.2 62.3 69.9 50.2 84.0 52.4
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Table 6. Energetics for the [bmim][BF4]-promoted esterification of alkylphosphonic acids (1) with alcohols obtained by DFT
computations at the M062X/6–311+G (d,p) level of theory considering the solvent effect of the corresponding alcohol.

1 7 TS3 8 2

R1 = Me,
R2 = Me

∆H (kJ·mol−1) 0.0 −63.4 105.8 −65.7 −10.6
∆G (kJ·mol−1) 0.0 69.2 248.7 58.9 −5.5

∆S (J (mol·K)−1) 0.0 59.3 51.0 65.9 49.7

R1 = Me,
R2 = Bu

∆H (kJ·mol−1) 0.0 −58.5 103.9 −66.6 −15.8
∆G (kJ·mol−1) 0.0 80.2 253.5 63.2 −5.1

∆S (J (mol·K)−1) 0.0 60.2 50.4 70.2 56.6

R1 = Et,
R2 = Bu

∆H (kJ·mol−1) 0.0 −56.8 114.2 −45.8 −13.2
∆G (kJ·mol−1) 0.0 85.6 268.9 84.0 −9.1

∆S (J (mol·K)−1) 0.0 76.2 67.3 82.9 50.4
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Analyzing the datasets computed for the direct esterification and BF4-promoted
version, one might conclude that according to the calculations, at least at this level, there is
no significant discrimination among the P-substituents or among the alcohols. However,
when comparing the two mechanistic pathways, one can see that while the direct way
(A) is a two-step process, the ionic-liquid-promoted version (B) involves just one step.
Another difference is that the formation of the primary reaction complexes (4 in “A” and
7 in “B”) needs the association of five and four molecules, respectively. So, route B seems
to be simpler. However, the decisive factor may be that the enthalpy of activation values
are comparable for the two kinds of mechanisms (A and B): for the selected examples
represented in Figures 1 and 2, the enthalpy of activation value is 160.6 kJ·mol−1 and
171.0 kJ·mol−1, respectively. These high values may be overcome by MWs. The final
message is that in the cases studied, both mechanisms (A and B) may be operative. The role
of ionic liquid may be merely to increase MW absorption (as in earlier cases [20,21]), but
it is also possible that the BF4 anion of the ionic liquid participates chemically, and hence
promotes the esterification.

In summary, an MW-assisted, IL-promoted method was elaborated for the selective
monoesterification of alkylphosphonic acids with simple alcohols. This is a green method,
as avoids the use of P-chlorides. The mechanism explored by high-level theoretical calcula-
tions suggested the formation of a ring associate comprising two phosphonic acid molecules
and three alcohol units, the nucleophilic attack of the alcohol on the P atom of the P=O
moiety, and dehydration exhibiting a gross enthalpy of activation of 160.6–194.1 kJ·mol−1.
The high barrier could be overcome by the beneficial effect of MWs. A [bmim][BF4] ad-
ditive ensured the efficient absorption of MWs. An alternative mechanism involving the
participation of the BF4 anion of the ionic liquid was also substantiated, but the activation
energy requirement of this option was also high (162.4–171.0 kJ·mol−1).

3. Experimental
3.1. General

The 31P, 13C, and 1H-NMR spectra were taken on a Bruker DRX-500 spectrometer
operating at 202.4, 125.7, and 500 MHz, respectively. The couplings are given in Hz. LC-
MS measurements were performed with an Agilent 1200 liquid chromatography system
coupled with a 6130 quadrupole mass spectrometer equipped with an ESI ion source
(Agilent Technologies, Palo Alto, CA, USA).
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3.2. Use of the 31P NMR Spectra in Quantitative Analysis

The composition of the reaction mixture was determined by the integration of the areas
under the corresponding peaks of the starting material and product in the 31P NMR spectra.

3.3. General Procedure for the Direct Esterification of Akylphosphonic Acids in the Presence of
Ionic Liquids

A mixture of 1.44 mmol of alkylphosphonic acid (methylphosphonic acid: 0.14 g,
ethylphosphonic acid: 0.16 g, propylphosphonic acid: 0.18 g, butylphosphonic acid: 0.20 g),
21.72 mmol of alcohol (1.28 mL of ethanol, 1.62 mL of propanol, 1.68 mL of i-propanol,
2.0 mL of butanol) and 0.144 mmol (27 µL) [bmim][BF4] was stirred under MW conditions
(max 100 W). After evaporation and flash column chromatography (silica gel, DCM–MeOH
97:3), the reaction mixture was analyzed by 31P NMR spectroscopy. The crude products of
the best experiments were purified by extraction. The residue obtained after evaporation
was taken up in 5 mL of CH2Cl2, and the solution was stirred with a mixture of 0.60 mL
of 10% NaOH/H2O. The phases were separated, the water phase was acidified with
0.14 mL of 37% hydrochloric acid, and stirred with 5 mL of CH2Cl2. The organic phase
was dried (Na2SO4) and its concentration afforded the corresponding ester-acids (2A–D)
as colorless oils.

Identification data of ester acids 2A–D/a–d and diesters 3A–D/a–d are listed in
Tables 7 and 8, respectively.

Table 7. Identification of the ester-acids (2A–D/a–d).

Compound δP[found] δP[lit]
HRMS

[M + Na]+
found Formula [M + Na]+

calculated
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a Identified as [M + H]+; b No solvent was provided. 
  

(2Aa) 32.8 (CDCl3) 32.5 [14]
(CDCl3) 147.0190 C3H9O3PNa 147.0187
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Table 7. Identification of the ester-acids (2A–D/a–d). 

Compound  δP[found] δP[lit] 
HRMS 

[M + Na]+found Formula [M + Na]+calculated 

 
(2Aa) 32.8 (CDCl3) 32.5 [14] (CDCl3) 147.0190 C3H9O3PNa 147.0187 

 
(2Ab) 32.6 (CDCl3) 32.8 [14] (CDCl3) 161.0341 C4H11O3PNa 161.0344 

 
(2Ac) 32.5 (CDCl3) 33.8 [14] (CDCl3) 161.0343 C4H11O3PNa 161.0344 

 
(2Ad) 32.6 (CDCl3) 33.9 [14] (CDCl3) 175.0504 C5H13O3PNa 175.0500 

 
(2Ba) 36.3 (CDCl3) 37.5 [15] (CDCl3) 161.0341 C4H11O3PNa 161.0344 

 
(2Bb) 36.1 (CDCl3) – 175.0500 C5H13O3PNa 175.0500 

 
(2Bc) 35.4 (CDCl3) 

33.6 [16] 
(CD3OD) 

175.0505 C5H13O3PNa 175.0500 

 
(2Bd) 35.1 (CDCl3) – 163.0835 a C6H16O3P 163.0837 

 
(2Ca) 35.0 (CDCl3) 

34.1 [16] 
(CD3OD) 

175.0501 C5H13O3PNa 175.0500 

 
(2Cb) 34.9 (CDCl3) – 189.0655 C6H15O3PNar 189.0657 

 
(2Cc) 34.4 (CDCl3) 34.2 b [17]  189.0658 C6H15O3PNa 189.0657 

 
(2Cd) 35.2 (CDCl3) 

33.8 [16] 
(CD3OD) 

203.0815 C7H17O3PNa 203.0813 

 
(2Da) 35.2 (CDCl3) – 189.0662 C6H15O3PNa 189.0657 

 
(2Db) 35.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dc) 34.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dd) 35.6 (CDCl3) – 217.0971 C8H19O3PNa 217.0970 

a Identified as [M + H]+; b No solvent was provided. 
  

(2Ab) 32.6 (CDCl3) 32.8 [14]
(CDCl3) 161.0341 C4H11O3PNa 161.0344
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Table 7. Identification of the ester-acids (2A–D/a–d). 

Compound  δP[found] δP[lit] 
HRMS 

[M + Na]+found Formula [M + Na]+calculated 

 
(2Aa) 32.8 (CDCl3) 32.5 [14] (CDCl3) 147.0190 C3H9O3PNa 147.0187 

 
(2Ab) 32.6 (CDCl3) 32.8 [14] (CDCl3) 161.0341 C4H11O3PNa 161.0344 
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(2Ad) 32.6 (CDCl3) 33.9 [14] (CDCl3) 175.0504 C5H13O3PNa 175.0500 

 
(2Ba) 36.3 (CDCl3) 37.5 [15] (CDCl3) 161.0341 C4H11O3PNa 161.0344 

 
(2Bb) 36.1 (CDCl3) – 175.0500 C5H13O3PNa 175.0500 

 
(2Bc) 35.4 (CDCl3) 
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(CD3OD) 

175.0505 C5H13O3PNa 175.0500 
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(2Cd) 35.2 (CDCl3) 

33.8 [16] 
(CD3OD) 

203.0815 C7H17O3PNa 203.0813 

 
(2Da) 35.2 (CDCl3) – 189.0662 C6H15O3PNa 189.0657 

 
(2Db) 35.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dc) 34.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dd) 35.6 (CDCl3) – 217.0971 C8H19O3PNa 217.0970 

a Identified as [M + H]+; b No solvent was provided. 
  

(2Ac) 32.5 (CDCl3) 33.8 [14]
(CDCl3) 161.0343 C4H11O3PNa 161.0344
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Table 7. Identification of the ester-acids (2A–D/a–d). 

Compound  δP[found] δP[lit] 
HRMS 

[M + Na]+found Formula [M + Na]+calculated 

 
(2Aa) 32.8 (CDCl3) 32.5 [14] (CDCl3) 147.0190 C3H9O3PNa 147.0187 

 
(2Ab) 32.6 (CDCl3) 32.8 [14] (CDCl3) 161.0341 C4H11O3PNa 161.0344 

 
(2Ac) 32.5 (CDCl3) 33.8 [14] (CDCl3) 161.0343 C4H11O3PNa 161.0344 

 
(2Ad) 32.6 (CDCl3) 33.9 [14] (CDCl3) 175.0504 C5H13O3PNa 175.0500 

 
(2Ba) 36.3 (CDCl3) 37.5 [15] (CDCl3) 161.0341 C4H11O3PNa 161.0344 

 
(2Bb) 36.1 (CDCl3) – 175.0500 C5H13O3PNa 175.0500 

 
(2Bc) 35.4 (CDCl3) 

33.6 [16] 
(CD3OD) 

175.0505 C5H13O3PNa 175.0500 

 
(2Bd) 35.1 (CDCl3) – 163.0835 a C6H16O3P 163.0837 

 
(2Ca) 35.0 (CDCl3) 

34.1 [16] 
(CD3OD) 

175.0501 C5H13O3PNa 175.0500 

 
(2Cb) 34.9 (CDCl3) – 189.0655 C6H15O3PNar 189.0657 

 
(2Cc) 34.4 (CDCl3) 34.2 b [17]  189.0658 C6H15O3PNa 189.0657 

 
(2Cd) 35.2 (CDCl3) 

33.8 [16] 
(CD3OD) 

203.0815 C7H17O3PNa 203.0813 

 
(2Da) 35.2 (CDCl3) – 189.0662 C6H15O3PNa 189.0657 

 
(2Db) 35.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dc) 34.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dd) 35.6 (CDCl3) – 217.0971 C8H19O3PNa 217.0970 

a Identified as [M + H]+; b No solvent was provided. 
  

(2Ad) 32.6 (CDCl3) 33.9 [14]
(CDCl3) 175.0504 C5H13O3PNa 175.0500
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Table 7. Identification of the ester-acids (2A–D/a–d). 

Compound  δP[found] δP[lit] 
HRMS 

[M + Na]+found Formula [M + Na]+calculated 

 
(2Aa) 32.8 (CDCl3) 32.5 [14] (CDCl3) 147.0190 C3H9O3PNa 147.0187 

 
(2Ab) 32.6 (CDCl3) 32.8 [14] (CDCl3) 161.0341 C4H11O3PNa 161.0344 
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(2Bb) 36.1 (CDCl3) – 175.0500 C5H13O3PNa 175.0500 

 
(2Bc) 35.4 (CDCl3) 

33.6 [16] 
(CD3OD) 

175.0505 C5H13O3PNa 175.0500 

 
(2Bd) 35.1 (CDCl3) – 163.0835 a C6H16O3P 163.0837 

 
(2Ca) 35.0 (CDCl3) 

34.1 [16] 
(CD3OD) 

175.0501 C5H13O3PNa 175.0500 

 
(2Cb) 34.9 (CDCl3) – 189.0655 C6H15O3PNar 189.0657 

 
(2Cc) 34.4 (CDCl3) 34.2 b [17]  189.0658 C6H15O3PNa 189.0657 

 
(2Cd) 35.2 (CDCl3) 

33.8 [16] 
(CD3OD) 

203.0815 C7H17O3PNa 203.0813 

 
(2Da) 35.2 (CDCl3) – 189.0662 C6H15O3PNa 189.0657 

 
(2Db) 35.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dc) 34.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dd) 35.6 (CDCl3) – 217.0971 C8H19O3PNa 217.0970 

a Identified as [M + H]+; b No solvent was provided. 
  

(2Ba) 36.3 (CDCl3) 37.5 [15]
(CDCl3) 161.0341 C4H11O3PNa 161.0344
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Table 7. Identification of the ester-acids (2A–D/a–d). 

Compound  δP[found] δP[lit] 
HRMS 

[M + Na]+found Formula [M + Na]+calculated 

 
(2Aa) 32.8 (CDCl3) 32.5 [14] (CDCl3) 147.0190 C3H9O3PNa 147.0187 

 
(2Ab) 32.6 (CDCl3) 32.8 [14] (CDCl3) 161.0341 C4H11O3PNa 161.0344 

 
(2Ac) 32.5 (CDCl3) 33.8 [14] (CDCl3) 161.0343 C4H11O3PNa 161.0344 

 
(2Ad) 32.6 (CDCl3) 33.9 [14] (CDCl3) 175.0504 C5H13O3PNa 175.0500 

 
(2Ba) 36.3 (CDCl3) 37.5 [15] (CDCl3) 161.0341 C4H11O3PNa 161.0344 

 
(2Bb) 36.1 (CDCl3) – 175.0500 C5H13O3PNa 175.0500 

 
(2Bc) 35.4 (CDCl3) 

33.6 [16] 
(CD3OD) 

175.0505 C5H13O3PNa 175.0500 

 
(2Bd) 35.1 (CDCl3) – 163.0835 a C6H16O3P 163.0837 

 
(2Ca) 35.0 (CDCl3) 

34.1 [16] 
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(2Cb) 34.9 (CDCl3) – 189.0655 C6H15O3PNar 189.0657 

 
(2Cc) 34.4 (CDCl3) 34.2 b [17]  189.0658 C6H15O3PNa 189.0657 

 
(2Cd) 35.2 (CDCl3) 

33.8 [16] 
(CD3OD) 

203.0815 C7H17O3PNa 203.0813 

 
(2Da) 35.2 (CDCl3) – 189.0662 C6H15O3PNa 189.0657 

 
(2Db) 35.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dc) 34.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dd) 35.6 (CDCl3) – 217.0971 C8H19O3PNa 217.0970 

a Identified as [M + H]+; b No solvent was provided. 
  

(2Bb) 36.1 (CDCl3) – 175.0500 C5H13O3PNa 175.0500
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Table 7. Identification of the ester-acids (2A–D/a–d). 

Compound  δP[found] δP[lit] 
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(2Ad) 32.6 (CDCl3) 33.9 [14] (CDCl3) 175.0504 C5H13O3PNa 175.0500 

 
(2Ba) 36.3 (CDCl3) 37.5 [15] (CDCl3) 161.0341 C4H11O3PNa 161.0344 

 
(2Bb) 36.1 (CDCl3) – 175.0500 C5H13O3PNa 175.0500 
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(2Cb) 34.9 (CDCl3) – 189.0655 C6H15O3PNar 189.0657 

 
(2Cc) 34.4 (CDCl3) 34.2 b [17]  189.0658 C6H15O3PNa 189.0657 

 
(2Cd) 35.2 (CDCl3) 

33.8 [16] 
(CD3OD) 

203.0815 C7H17O3PNa 203.0813 

 
(2Da) 35.2 (CDCl3) – 189.0662 C6H15O3PNa 189.0657 

 
(2Db) 35.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dc) 34.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dd) 35.6 (CDCl3) – 217.0971 C8H19O3PNa 217.0970 

a Identified as [M + H]+; b No solvent was provided. 
  

(2Bc) 35.4 (CDCl3) 33.6 [16]
(CD3OD) 175.0505 C5H13O3PNa 175.0500
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a Identified as [M + H]+; b No solvent was provided. 
  

(2Bd) 35.1 (CDCl3) – 163.0835 a C6H16O3P 163.0837
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Table 7. Cont.

Compound δP[found] δP[lit]
HRMS

[M + Na]+
found Formula [M + Na]+

calculated
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Table 7. Identification of the ester-acids (2A–D/a–d). 
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HRMS 

[M + Na]+found Formula [M + Na]+calculated 

 
(2Aa) 32.8 (CDCl3) 32.5 [14] (CDCl3) 147.0190 C3H9O3PNa 147.0187 

 
(2Ab) 32.6 (CDCl3) 32.8 [14] (CDCl3) 161.0341 C4H11O3PNa 161.0344 

 
(2Ac) 32.5 (CDCl3) 33.8 [14] (CDCl3) 161.0343 C4H11O3PNa 161.0344 

 
(2Ad) 32.6 (CDCl3) 33.9 [14] (CDCl3) 175.0504 C5H13O3PNa 175.0500 

 
(2Ba) 36.3 (CDCl3) 37.5 [15] (CDCl3) 161.0341 C4H11O3PNa 161.0344 

 
(2Bb) 36.1 (CDCl3) – 175.0500 C5H13O3PNa 175.0500 

 
(2Bc) 35.4 (CDCl3) 
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175.0501 C5H13O3PNa 175.0500 

 
(2Cb) 34.9 (CDCl3) – 189.0655 C6H15O3PNar 189.0657 

 
(2Cc) 34.4 (CDCl3) 34.2 b [17]  189.0658 C6H15O3PNa 189.0657 

 
(2Cd) 35.2 (CDCl3) 

33.8 [16] 
(CD3OD) 

203.0815 C7H17O3PNa 203.0813 
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(2Db) 35.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dc) 34.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dd) 35.6 (CDCl3) – 217.0971 C8H19O3PNa 217.0970 

a Identified as [M + H]+; b No solvent was provided. 
  

(2Ca) 35.0 (CDCl3) 34.1 [16]
(CD3OD) 175.0501 C5H13O3PNa 175.0500
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Table 7. Identification of the ester-acids (2A–D/a–d). 

Compound  δP[found] δP[lit] 
HRMS 

[M + Na]+found Formula [M + Na]+calculated 

 
(2Aa) 32.8 (CDCl3) 32.5 [14] (CDCl3) 147.0190 C3H9O3PNa 147.0187 

 
(2Ab) 32.6 (CDCl3) 32.8 [14] (CDCl3) 161.0341 C4H11O3PNa 161.0344 

 
(2Ac) 32.5 (CDCl3) 33.8 [14] (CDCl3) 161.0343 C4H11O3PNa 161.0344 

 
(2Ad) 32.6 (CDCl3) 33.9 [14] (CDCl3) 175.0504 C5H13O3PNa 175.0500 

 
(2Ba) 36.3 (CDCl3) 37.5 [15] (CDCl3) 161.0341 C4H11O3PNa 161.0344 

 
(2Bb) 36.1 (CDCl3) – 175.0500 C5H13O3PNa 175.0500 

 
(2Bc) 35.4 (CDCl3) 

33.6 [16] 
(CD3OD) 

175.0505 C5H13O3PNa 175.0500 

 
(2Bd) 35.1 (CDCl3) – 163.0835 a C6H16O3P 163.0837 

 
(2Ca) 35.0 (CDCl3) 

34.1 [16] 
(CD3OD) 

175.0501 C5H13O3PNa 175.0500 

 
(2Cb) 34.9 (CDCl3) – 189.0655 C6H15O3PNar 189.0657 

 
(2Cc) 34.4 (CDCl3) 34.2 b [17]  189.0658 C6H15O3PNa 189.0657 

 
(2Cd) 35.2 (CDCl3) 

33.8 [16] 
(CD3OD) 

203.0815 C7H17O3PNa 203.0813 

 
(2Da) 35.2 (CDCl3) – 189.0662 C6H15O3PNa 189.0657 

 
(2Db) 35.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dc) 34.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dd) 35.6 (CDCl3) – 217.0971 C8H19O3PNa 217.0970 

a Identified as [M + H]+; b No solvent was provided. 
  

(2Cb) 34.9 (CDCl3) – 189.0655 C6H15O3PNar 189.0657
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(2Ca) 35.0 (CDCl3) 

34.1 [16] 
(CD3OD) 

175.0501 C5H13O3PNa 175.0500 

 
(2Cb) 34.9 (CDCl3) – 189.0655 C6H15O3PNar 189.0657 

 
(2Cc) 34.4 (CDCl3) 34.2 b [17]  189.0658 C6H15O3PNa 189.0657 

 
(2Cd) 35.2 (CDCl3) 

33.8 [16] 
(CD3OD) 

203.0815 C7H17O3PNa 203.0813 

 
(2Da) 35.2 (CDCl3) – 189.0662 C6H15O3PNa 189.0657 

 
(2Db) 35.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dc) 34.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dd) 35.6 (CDCl3) – 217.0971 C8H19O3PNa 217.0970 

a Identified as [M + H]+; b No solvent was provided. 
  

(2Cc) 34.4 (CDCl3) 34.2 b [17] 189.0658 C6H15O3PNa 189.0657
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(2Ad) 32.6 (CDCl3) 33.9 [14] (CDCl3) 175.0504 C5H13O3PNa 175.0500 

 
(2Ba) 36.3 (CDCl3) 37.5 [15] (CDCl3) 161.0341 C4H11O3PNa 161.0344 

 
(2Bb) 36.1 (CDCl3) – 175.0500 C5H13O3PNa 175.0500 

 
(2Bc) 35.4 (CDCl3) 

33.6 [16] 
(CD3OD) 

175.0505 C5H13O3PNa 175.0500 

 
(2Bd) 35.1 (CDCl3) – 163.0835 a C6H16O3P 163.0837 

 
(2Ca) 35.0 (CDCl3) 

34.1 [16] 
(CD3OD) 

175.0501 C5H13O3PNa 175.0500 

 
(2Cb) 34.9 (CDCl3) – 189.0655 C6H15O3PNar 189.0657 

 
(2Cc) 34.4 (CDCl3) 34.2 b [17]  189.0658 C6H15O3PNa 189.0657 

 
(2Cd) 35.2 (CDCl3) 

33.8 [16] 
(CD3OD) 

203.0815 C7H17O3PNa 203.0813 

 
(2Da) 35.2 (CDCl3) – 189.0662 C6H15O3PNa 189.0657 

 
(2Db) 35.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dc) 34.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dd) 35.6 (CDCl3) – 217.0971 C8H19O3PNa 217.0970 

a Identified as [M + H]+; b No solvent was provided. 
  

(2Cd) 35.2 (CDCl3) 33.8 [16]
(CD3OD) 203.0815 C7H17O3PNa 203.0813
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Table 7. Identification of the ester-acids (2A–D/a–d). 

Compound  δP[found] δP[lit] 
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[M + Na]+found Formula [M + Na]+calculated 

 
(2Aa) 32.8 (CDCl3) 32.5 [14] (CDCl3) 147.0190 C3H9O3PNa 147.0187 
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(2Da) 35.2 (CDCl3) – 189.0662 C6H15O3PNa 189.0657 

 
(2Db) 35.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dc) 34.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dd) 35.6 (CDCl3) – 217.0971 C8H19O3PNa 217.0970 

a Identified as [M + H]+; b No solvent was provided. 
  

(2Da) 35.2 (CDCl3) – 189.0662 C6H15O3PNa 189.0657
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(2Ca) 35.0 (CDCl3) 
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(CD3OD) 

175.0501 C5H13O3PNa 175.0500 
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(2Db) 35.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dc) 34.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dd) 35.6 (CDCl3) – 217.0971 C8H19O3PNa 217.0970 

a Identified as [M + H]+; b No solvent was provided. 
  

(2Db) 35.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813
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33.6 [16] 
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(2Ca) 35.0 (CDCl3) 
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(2Db) 35.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dc) 34.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dd) 35.6 (CDCl3) – 217.0971 C8H19O3PNa 217.0970 

a Identified as [M + H]+; b No solvent was provided. 
  

(2Dc) 34.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813
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Table 7. Identification of the ester-acids (2A–D/a–d). 
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(2Bc) 35.4 (CDCl3) 

33.6 [16] 
(CD3OD) 

175.0505 C5H13O3PNa 175.0500 

 
(2Bd) 35.1 (CDCl3) – 163.0835 a C6H16O3P 163.0837 

 
(2Ca) 35.0 (CDCl3) 

34.1 [16] 
(CD3OD) 

175.0501 C5H13O3PNa 175.0500 

 
(2Cb) 34.9 (CDCl3) – 189.0655 C6H15O3PNar 189.0657 

 
(2Cc) 34.4 (CDCl3) 34.2 b [17]  189.0658 C6H15O3PNa 189.0657 

 
(2Cd) 35.2 (CDCl3) 

33.8 [16] 
(CD3OD) 

203.0815 C7H17O3PNa 203.0813 

 
(2Da) 35.2 (CDCl3) – 189.0662 C6H15O3PNa 189.0657 

 
(2Db) 35.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dc) 34.4 (CDCl3) – 203.0815 C7H17O3PNa 203.0813 

 
(2Dd) 35.6 (CDCl3) – 217.0971 C8H19O3PNa 217.0970 

a Identified as [M + H]+; b No solvent was provided. 
  

(2Dd) 35.6 (CDCl3) – 217.0971 C8H19O3PNa 217.0970

a Identified as [M + H]+; b No solvent was provided.

Table 8. Identification of the diesters (3A–d/a–d).

Compound δP[found] δP[lit]
HRMS

[M + Na]+
found Formula [M + Na]+

calculated
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Table 8. Identification of the diesters (3A–d/a–d). 

Compound  δP[found] δP[lit] 
HRMS 

[M + Na]+found Formula 
[M + Na]+calcu-

lated 

 
(3Aa) 30.1 (DMSO) 31.1 a [24] 175.0499 C5H13O3PNa  175.0500 

 
(3Ab) 30.2 (DMSO) 30.8 a [24] 203.0811 C7H17O3PNa  203.0813 

 
(3Ac) 28.2 (DMSO) 30.9 a [24] 181 b C7H18O3P  181 

 
(3Ad) 30.2 (DMSO) 30.1 a [24] 231.1132 C9H21O3PNa  231.1126 

 
(3Ba) 33.1 (DMSO) 34.3 a [24] 189.0655 C6H15O3PNa  189.0657 

 
(3Bb) 33.1 (DMSO) 33.0 a [24] 217.0966 C8H19O3PNa  217.0970 

 
(3Bc) 31.2 (DMSO) 32.9 a [24] 195 b C8H20O3P  195 

 
(3Bd) 33.1 (DMSO) 31.5 a [24] 245.1279 C10H23O3PNa  245.1283 

 
(3Ca) 31.7 (DMSO) 31.8 a [24] 203.0815 C7H17O3PNa  203.0813 

 
(3Cb) 31.1 (DMSO) 31.1 a [24] 231.1126 C9H21O3PNa  231.1126 

 
(3Cc) 29.8 (DMSO) 30.9 a [24] 209 b C9H22O3P  209 

 
(3Cd) 31.7 (DMSO) 30.7 a [24] 259.1440 C11H25O3PNa  259.1439 

 
(3Da) 32.1 (DMSO) 33.5 [25] (CDCl3) 217.0963 C8H19O3PNa  217.0970 

 
(3Db) 32.0 (DMSO) – 245.1282 C10H23O3PNa  245.1283 

 
(3Dc) 30.1 (DMSO) – 245.1283 C10H23O3PNa  245.1283 

 
(3Dd) 32.1 (DMSO) 33.1 [26] (CDCl3) 273.1598 C12H27O3PNa  273.1596 

a No solvent was provided; b Identified as [M + H]+. 
  

(3Aa) 30.1 (DMSO) 31.1 a [24] 175.0499 C5H13O3PNa 175.0500
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Table 8. Identification of the diesters (3A–d/a–d). 

Compound  δP[found] δP[lit] 
HRMS 

[M + Na]+found Formula 
[M + Na]+calcu-

lated 

 
(3Aa) 30.1 (DMSO) 31.1 a [24] 175.0499 C5H13O3PNa  175.0500 

 
(3Ab) 30.2 (DMSO) 30.8 a [24] 203.0811 C7H17O3PNa  203.0813 

 
(3Ac) 28.2 (DMSO) 30.9 a [24] 181 b C7H18O3P  181 

 
(3Ad) 30.2 (DMSO) 30.1 a [24] 231.1132 C9H21O3PNa  231.1126 

 
(3Ba) 33.1 (DMSO) 34.3 a [24] 189.0655 C6H15O3PNa  189.0657 

 
(3Bb) 33.1 (DMSO) 33.0 a [24] 217.0966 C8H19O3PNa  217.0970 

 
(3Bc) 31.2 (DMSO) 32.9 a [24] 195 b C8H20O3P  195 

 
(3Bd) 33.1 (DMSO) 31.5 a [24] 245.1279 C10H23O3PNa  245.1283 

 
(3Ca) 31.7 (DMSO) 31.8 a [24] 203.0815 C7H17O3PNa  203.0813 

 
(3Cb) 31.1 (DMSO) 31.1 a [24] 231.1126 C9H21O3PNa  231.1126 

 
(3Cc) 29.8 (DMSO) 30.9 a [24] 209 b C9H22O3P  209 

 
(3Cd) 31.7 (DMSO) 30.7 a [24] 259.1440 C11H25O3PNa  259.1439 

 
(3Da) 32.1 (DMSO) 33.5 [25] (CDCl3) 217.0963 C8H19O3PNa  217.0970 

 
(3Db) 32.0 (DMSO) – 245.1282 C10H23O3PNa  245.1283 

 
(3Dc) 30.1 (DMSO) – 245.1283 C10H23O3PNa  245.1283 

 
(3Dd) 32.1 (DMSO) 33.1 [26] (CDCl3) 273.1598 C12H27O3PNa  273.1596 

a No solvent was provided; b Identified as [M + H]+. 
  

(3Ab) 30.2 (DMSO) 30.8 a [24] 203.0811 C7H17O3PNa 203.0813
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(3Cd) 31.7 (DMSO) 30.7 a [24] 259.1440 C11H25O3PNa  259.1439 

 
(3Da) 32.1 (DMSO) 33.5 [25] (CDCl3) 217.0963 C8H19O3PNa  217.0970 

 
(3Db) 32.0 (DMSO) – 245.1282 C10H23O3PNa  245.1283 

 
(3Dc) 30.1 (DMSO) – 245.1283 C10H23O3PNa  245.1283 

 
(3Dd) 32.1 (DMSO) 33.1 [26] (CDCl3) 273.1598 C12H27O3PNa  273.1596 

a No solvent was provided; b Identified as [M + H]+. 
  

(3Ac) 28.2 (DMSO) 30.9 a [24] 181 b C7H18O3P 181
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Table 8. Identification of the diesters (3A–d/a–d). 

Compound  δP[found] δP[lit] 
HRMS 

[M + Na]+found Formula 
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(3Cc) 29.8 (DMSO) 30.9 a [24] 209 b C9H22O3P  209 

 
(3Cd) 31.7 (DMSO) 30.7 a [24] 259.1440 C11H25O3PNa  259.1439 

 
(3Da) 32.1 (DMSO) 33.5 [25] (CDCl3) 217.0963 C8H19O3PNa  217.0970 

 
(3Db) 32.0 (DMSO) – 245.1282 C10H23O3PNa  245.1283 

 
(3Dc) 30.1 (DMSO) – 245.1283 C10H23O3PNa  245.1283 

 
(3Dd) 32.1 (DMSO) 33.1 [26] (CDCl3) 273.1598 C12H27O3PNa  273.1596 

a No solvent was provided; b Identified as [M + H]+. 
  

(3Ad) 30.2 (DMSO) 30.1 a [24] 231.1132 C9H21O3PNa 231.1126
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Table 8. Cont.

Compound δP[found] δP[lit]
HRMS

[M + Na]+
found Formula [M + Na]+

calculated
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Table 8. Identification of the diesters (3A–d/a–d). 
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(3Cd) 31.7 (DMSO) 30.7 a [24] 259.1440 C11H25O3PNa  259.1439 

 
(3Da) 32.1 (DMSO) 33.5 [25] (CDCl3) 217.0963 C8H19O3PNa  217.0970 

 
(3Db) 32.0 (DMSO) – 245.1282 C10H23O3PNa  245.1283 

 
(3Dc) 30.1 (DMSO) – 245.1283 C10H23O3PNa  245.1283 

 
(3Dd) 32.1 (DMSO) 33.1 [26] (CDCl3) 273.1598 C12H27O3PNa  273.1596 

a No solvent was provided; b Identified as [M + H]+. 
  

(3Ba) 33.1 (DMSO) 34.3 a [24] 189.0655 C6H15O3PNa 189.0657
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(3Bd) 33.1 (DMSO) 31.5 a [24] 245.1279 C10H23O3PNa  245.1283 
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(3Cc) 29.8 (DMSO) 30.9 a [24] 209 b C9H22O3P  209 

 
(3Cd) 31.7 (DMSO) 30.7 a [24] 259.1440 C11H25O3PNa  259.1439 

 
(3Da) 32.1 (DMSO) 33.5 [25] (CDCl3) 217.0963 C8H19O3PNa  217.0970 

 
(3Db) 32.0 (DMSO) – 245.1282 C10H23O3PNa  245.1283 

 
(3Dc) 30.1 (DMSO) – 245.1283 C10H23O3PNa  245.1283 

 
(3Dd) 32.1 (DMSO) 33.1 [26] (CDCl3) 273.1598 C12H27O3PNa  273.1596 

a No solvent was provided; b Identified as [M + H]+. 
  

(3Bb) 33.1 (DMSO) 33.0 a [24] 217.0966 C8H19O3PNa 217.0970
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Table 8. Identification of the diesters (3A–d/a–d). 

Compound  δP[found] δP[lit] 
HRMS 

[M + Na]+found Formula 
[M + Na]+calcu-

lated 

 
(3Aa) 30.1 (DMSO) 31.1 a [24] 175.0499 C5H13O3PNa  175.0500 

 
(3Ab) 30.2 (DMSO) 30.8 a [24] 203.0811 C7H17O3PNa  203.0813 

 
(3Ac) 28.2 (DMSO) 30.9 a [24] 181 b C7H18O3P  181 

 
(3Ad) 30.2 (DMSO) 30.1 a [24] 231.1132 C9H21O3PNa  231.1126 

 
(3Ba) 33.1 (DMSO) 34.3 a [24] 189.0655 C6H15O3PNa  189.0657 

 
(3Bb) 33.1 (DMSO) 33.0 a [24] 217.0966 C8H19O3PNa  217.0970 

 
(3Bc) 31.2 (DMSO) 32.9 a [24] 195 b C8H20O3P  195 

 
(3Bd) 33.1 (DMSO) 31.5 a [24] 245.1279 C10H23O3PNa  245.1283 

 
(3Ca) 31.7 (DMSO) 31.8 a [24] 203.0815 C7H17O3PNa  203.0813 

 
(3Cb) 31.1 (DMSO) 31.1 a [24] 231.1126 C9H21O3PNa  231.1126 

 
(3Cc) 29.8 (DMSO) 30.9 a [24] 209 b C9H22O3P  209 

 
(3Cd) 31.7 (DMSO) 30.7 a [24] 259.1440 C11H25O3PNa  259.1439 

 
(3Da) 32.1 (DMSO) 33.5 [25] (CDCl3) 217.0963 C8H19O3PNa  217.0970 

 
(3Db) 32.0 (DMSO) – 245.1282 C10H23O3PNa  245.1283 

 
(3Dc) 30.1 (DMSO) – 245.1283 C10H23O3PNa  245.1283 

 
(3Dd) 32.1 (DMSO) 33.1 [26] (CDCl3) 273.1598 C12H27O3PNa  273.1596 

a No solvent was provided; b Identified as [M + H]+. 
  

(3Bc) 31.2 (DMSO) 32.9 a [24] 195 b C8H20O3P 195
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Table 8. Identification of the diesters (3A–d/a–d). 

Compound  δP[found] δP[lit] 
HRMS 

[M + Na]+found Formula 
[M + Na]+calcu-

lated 

 
(3Aa) 30.1 (DMSO) 31.1 a [24] 175.0499 C5H13O3PNa  175.0500 

 
(3Ab) 30.2 (DMSO) 30.8 a [24] 203.0811 C7H17O3PNa  203.0813 

 
(3Ac) 28.2 (DMSO) 30.9 a [24] 181 b C7H18O3P  181 

 
(3Ad) 30.2 (DMSO) 30.1 a [24] 231.1132 C9H21O3PNa  231.1126 

 
(3Ba) 33.1 (DMSO) 34.3 a [24] 189.0655 C6H15O3PNa  189.0657 

 
(3Bb) 33.1 (DMSO) 33.0 a [24] 217.0966 C8H19O3PNa  217.0970 

 
(3Bc) 31.2 (DMSO) 32.9 a [24] 195 b C8H20O3P  195 

 
(3Bd) 33.1 (DMSO) 31.5 a [24] 245.1279 C10H23O3PNa  245.1283 

 
(3Ca) 31.7 (DMSO) 31.8 a [24] 203.0815 C7H17O3PNa  203.0813 

 
(3Cb) 31.1 (DMSO) 31.1 a [24] 231.1126 C9H21O3PNa  231.1126 

 
(3Cc) 29.8 (DMSO) 30.9 a [24] 209 b C9H22O3P  209 

 
(3Cd) 31.7 (DMSO) 30.7 a [24] 259.1440 C11H25O3PNa  259.1439 

 
(3Da) 32.1 (DMSO) 33.5 [25] (CDCl3) 217.0963 C8H19O3PNa  217.0970 

 
(3Db) 32.0 (DMSO) – 245.1282 C10H23O3PNa  245.1283 

 
(3Dc) 30.1 (DMSO) – 245.1283 C10H23O3PNa  245.1283 

 
(3Dd) 32.1 (DMSO) 33.1 [26] (CDCl3) 273.1598 C12H27O3PNa  273.1596 

a No solvent was provided; b Identified as [M + H]+. 
  

(3Bd) 33.1 (DMSO) 31.5 a [24] 245.1279 C10H23O3PNa 245.1283
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Table 8. Identification of the diesters (3A–d/a–d). 

Compound  δP[found] δP[lit] 
HRMS 

[M + Na]+found Formula 
[M + Na]+calcu-

lated 

 
(3Aa) 30.1 (DMSO) 31.1 a [24] 175.0499 C5H13O3PNa  175.0500 

 
(3Ab) 30.2 (DMSO) 30.8 a [24] 203.0811 C7H17O3PNa  203.0813 

 
(3Ac) 28.2 (DMSO) 30.9 a [24] 181 b C7H18O3P  181 

 
(3Ad) 30.2 (DMSO) 30.1 a [24] 231.1132 C9H21O3PNa  231.1126 

 
(3Ba) 33.1 (DMSO) 34.3 a [24] 189.0655 C6H15O3PNa  189.0657 

 
(3Bb) 33.1 (DMSO) 33.0 a [24] 217.0966 C8H19O3PNa  217.0970 

 
(3Bc) 31.2 (DMSO) 32.9 a [24] 195 b C8H20O3P  195 

 
(3Bd) 33.1 (DMSO) 31.5 a [24] 245.1279 C10H23O3PNa  245.1283 

 
(3Ca) 31.7 (DMSO) 31.8 a [24] 203.0815 C7H17O3PNa  203.0813 

 
(3Cb) 31.1 (DMSO) 31.1 a [24] 231.1126 C9H21O3PNa  231.1126 

 
(3Cc) 29.8 (DMSO) 30.9 a [24] 209 b C9H22O3P  209 

 
(3Cd) 31.7 (DMSO) 30.7 a [24] 259.1440 C11H25O3PNa  259.1439 

 
(3Da) 32.1 (DMSO) 33.5 [25] (CDCl3) 217.0963 C8H19O3PNa  217.0970 

 
(3Db) 32.0 (DMSO) – 245.1282 C10H23O3PNa  245.1283 

 
(3Dc) 30.1 (DMSO) – 245.1283 C10H23O3PNa  245.1283 

 
(3Dd) 32.1 (DMSO) 33.1 [26] (CDCl3) 273.1598 C12H27O3PNa  273.1596 

a No solvent was provided; b Identified as [M + H]+. 
  

(3Ca) 31.7 (DMSO) 31.8 a [24] 203.0815 C7H17O3PNa 203.0813
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Table 8. Identification of the diesters (3A–d/a–d). 

Compound  δP[found] δP[lit] 
HRMS 

[M + Na]+found Formula 
[M + Na]+calcu-

lated 

 
(3Aa) 30.1 (DMSO) 31.1 a [24] 175.0499 C5H13O3PNa  175.0500 

 
(3Ab) 30.2 (DMSO) 30.8 a [24] 203.0811 C7H17O3PNa  203.0813 

 
(3Ac) 28.2 (DMSO) 30.9 a [24] 181 b C7H18O3P  181 

 
(3Ad) 30.2 (DMSO) 30.1 a [24] 231.1132 C9H21O3PNa  231.1126 

 
(3Ba) 33.1 (DMSO) 34.3 a [24] 189.0655 C6H15O3PNa  189.0657 

 
(3Bb) 33.1 (DMSO) 33.0 a [24] 217.0966 C8H19O3PNa  217.0970 

 
(3Bc) 31.2 (DMSO) 32.9 a [24] 195 b C8H20O3P  195 

 
(3Bd) 33.1 (DMSO) 31.5 a [24] 245.1279 C10H23O3PNa  245.1283 

 
(3Ca) 31.7 (DMSO) 31.8 a [24] 203.0815 C7H17O3PNa  203.0813 

 
(3Cb) 31.1 (DMSO) 31.1 a [24] 231.1126 C9H21O3PNa  231.1126 

 
(3Cc) 29.8 (DMSO) 30.9 a [24] 209 b C9H22O3P  209 

 
(3Cd) 31.7 (DMSO) 30.7 a [24] 259.1440 C11H25O3PNa  259.1439 

 
(3Da) 32.1 (DMSO) 33.5 [25] (CDCl3) 217.0963 C8H19O3PNa  217.0970 

 
(3Db) 32.0 (DMSO) – 245.1282 C10H23O3PNa  245.1283 

 
(3Dc) 30.1 (DMSO) – 245.1283 C10H23O3PNa  245.1283 

 
(3Dd) 32.1 (DMSO) 33.1 [26] (CDCl3) 273.1598 C12H27O3PNa  273.1596 

a No solvent was provided; b Identified as [M + H]+. 
  

(3Cb) 31.1 (DMSO) 31.1 a [24] 231.1126 C9H21O3PNa 231.1126
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Table 8. Identification of the diesters (3A–d/a–d). 

Compound  δP[found] δP[lit] 
HRMS 

[M + Na]+found Formula 
[M + Na]+calcu-

lated 

 
(3Aa) 30.1 (DMSO) 31.1 a [24] 175.0499 C5H13O3PNa  175.0500 

 
(3Ab) 30.2 (DMSO) 30.8 a [24] 203.0811 C7H17O3PNa  203.0813 

 
(3Ac) 28.2 (DMSO) 30.9 a [24] 181 b C7H18O3P  181 

 
(3Ad) 30.2 (DMSO) 30.1 a [24] 231.1132 C9H21O3PNa  231.1126 

 
(3Ba) 33.1 (DMSO) 34.3 a [24] 189.0655 C6H15O3PNa  189.0657 

 
(3Bb) 33.1 (DMSO) 33.0 a [24] 217.0966 C8H19O3PNa  217.0970 

 
(3Bc) 31.2 (DMSO) 32.9 a [24] 195 b C8H20O3P  195 

 
(3Bd) 33.1 (DMSO) 31.5 a [24] 245.1279 C10H23O3PNa  245.1283 

 
(3Ca) 31.7 (DMSO) 31.8 a [24] 203.0815 C7H17O3PNa  203.0813 

 
(3Cb) 31.1 (DMSO) 31.1 a [24] 231.1126 C9H21O3PNa  231.1126 

 
(3Cc) 29.8 (DMSO) 30.9 a [24] 209 b C9H22O3P  209 

 
(3Cd) 31.7 (DMSO) 30.7 a [24] 259.1440 C11H25O3PNa  259.1439 

 
(3Da) 32.1 (DMSO) 33.5 [25] (CDCl3) 217.0963 C8H19O3PNa  217.0970 

 
(3Db) 32.0 (DMSO) – 245.1282 C10H23O3PNa  245.1283 

 
(3Dc) 30.1 (DMSO) – 245.1283 C10H23O3PNa  245.1283 

 
(3Dd) 32.1 (DMSO) 33.1 [26] (CDCl3) 273.1598 C12H27O3PNa  273.1596 

a No solvent was provided; b Identified as [M + H]+. 
  

(3Cc) 29.8 (DMSO) 30.9 a [24] 209 b C9H22O3P 209
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Table 8. Identification of the diesters (3A–d/a–d). 

Compound  δP[found] δP[lit] 
HRMS 

[M + Na]+found Formula 
[M + Na]+calcu-

lated 

 
(3Aa) 30.1 (DMSO) 31.1 a [24] 175.0499 C5H13O3PNa  175.0500 

 
(3Ab) 30.2 (DMSO) 30.8 a [24] 203.0811 C7H17O3PNa  203.0813 

 
(3Ac) 28.2 (DMSO) 30.9 a [24] 181 b C7H18O3P  181 

 
(3Ad) 30.2 (DMSO) 30.1 a [24] 231.1132 C9H21O3PNa  231.1126 

 
(3Ba) 33.1 (DMSO) 34.3 a [24] 189.0655 C6H15O3PNa  189.0657 

 
(3Bb) 33.1 (DMSO) 33.0 a [24] 217.0966 C8H19O3PNa  217.0970 

 
(3Bc) 31.2 (DMSO) 32.9 a [24] 195 b C8H20O3P  195 

 
(3Bd) 33.1 (DMSO) 31.5 a [24] 245.1279 C10H23O3PNa  245.1283 

 
(3Ca) 31.7 (DMSO) 31.8 a [24] 203.0815 C7H17O3PNa  203.0813 

 
(3Cb) 31.1 (DMSO) 31.1 a [24] 231.1126 C9H21O3PNa  231.1126 

 
(3Cc) 29.8 (DMSO) 30.9 a [24] 209 b C9H22O3P  209 

 
(3Cd) 31.7 (DMSO) 30.7 a [24] 259.1440 C11H25O3PNa  259.1439 

 
(3Da) 32.1 (DMSO) 33.5 [25] (CDCl3) 217.0963 C8H19O3PNa  217.0970 

 
(3Db) 32.0 (DMSO) – 245.1282 C10H23O3PNa  245.1283 

 
(3Dc) 30.1 (DMSO) – 245.1283 C10H23O3PNa  245.1283 

 
(3Dd) 32.1 (DMSO) 33.1 [26] (CDCl3) 273.1598 C12H27O3PNa  273.1596 

a No solvent was provided; b Identified as [M + H]+. 
  

(3Cd) 31.7 (DMSO) 30.7 a [24] 259.1440 C11H25O3PNa 259.1439
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Table 8. Identification of the diesters (3A–d/a–d). 

Compound  δP[found] δP[lit] 
HRMS 

[M + Na]+found Formula 
[M + Na]+calcu-

lated 

 
(3Aa) 30.1 (DMSO) 31.1 a [24] 175.0499 C5H13O3PNa  175.0500 

 
(3Ab) 30.2 (DMSO) 30.8 a [24] 203.0811 C7H17O3PNa  203.0813 

 
(3Ac) 28.2 (DMSO) 30.9 a [24] 181 b C7H18O3P  181 

 
(3Ad) 30.2 (DMSO) 30.1 a [24] 231.1132 C9H21O3PNa  231.1126 

 
(3Ba) 33.1 (DMSO) 34.3 a [24] 189.0655 C6H15O3PNa  189.0657 

 
(3Bb) 33.1 (DMSO) 33.0 a [24] 217.0966 C8H19O3PNa  217.0970 

 
(3Bc) 31.2 (DMSO) 32.9 a [24] 195 b C8H20O3P  195 

 
(3Bd) 33.1 (DMSO) 31.5 a [24] 245.1279 C10H23O3PNa  245.1283 

 
(3Ca) 31.7 (DMSO) 31.8 a [24] 203.0815 C7H17O3PNa  203.0813 

 
(3Cb) 31.1 (DMSO) 31.1 a [24] 231.1126 C9H21O3PNa  231.1126 

 
(3Cc) 29.8 (DMSO) 30.9 a [24] 209 b C9H22O3P  209 

 
(3Cd) 31.7 (DMSO) 30.7 a [24] 259.1440 C11H25O3PNa  259.1439 

 
(3Da) 32.1 (DMSO) 33.5 [25] (CDCl3) 217.0963 C8H19O3PNa  217.0970 

 
(3Db) 32.0 (DMSO) – 245.1282 C10H23O3PNa  245.1283 

 
(3Dc) 30.1 (DMSO) – 245.1283 C10H23O3PNa  245.1283 

 
(3Dd) 32.1 (DMSO) 33.1 [26] (CDCl3) 273.1598 C12H27O3PNa  273.1596 

a No solvent was provided; b Identified as [M + H]+. 
  

(3Da) 32.1 (DMSO) 33.5 [25]
(CDCl3) 217.0963 C8H19O3PNa 217.0970
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Table 8. Identification of the diesters (3A–d/a–d). 

Compound  δP[found] δP[lit] 
HRMS 

[M + Na]+found Formula 
[M + Na]+calcu-

lated 

 
(3Aa) 30.1 (DMSO) 31.1 a [24] 175.0499 C5H13O3PNa  175.0500 

 
(3Ab) 30.2 (DMSO) 30.8 a [24] 203.0811 C7H17O3PNa  203.0813 

 
(3Ac) 28.2 (DMSO) 30.9 a [24] 181 b C7H18O3P  181 

 
(3Ad) 30.2 (DMSO) 30.1 a [24] 231.1132 C9H21O3PNa  231.1126 

 
(3Ba) 33.1 (DMSO) 34.3 a [24] 189.0655 C6H15O3PNa  189.0657 

 
(3Bb) 33.1 (DMSO) 33.0 a [24] 217.0966 C8H19O3PNa  217.0970 

 
(3Bc) 31.2 (DMSO) 32.9 a [24] 195 b C8H20O3P  195 

 
(3Bd) 33.1 (DMSO) 31.5 a [24] 245.1279 C10H23O3PNa  245.1283 

 
(3Ca) 31.7 (DMSO) 31.8 a [24] 203.0815 C7H17O3PNa  203.0813 

 
(3Cb) 31.1 (DMSO) 31.1 a [24] 231.1126 C9H21O3PNa  231.1126 

 
(3Cc) 29.8 (DMSO) 30.9 a [24] 209 b C9H22O3P  209 

 
(3Cd) 31.7 (DMSO) 30.7 a [24] 259.1440 C11H25O3PNa  259.1439 

 
(3Da) 32.1 (DMSO) 33.5 [25] (CDCl3) 217.0963 C8H19O3PNa  217.0970 

 
(3Db) 32.0 (DMSO) – 245.1282 C10H23O3PNa  245.1283 

 
(3Dc) 30.1 (DMSO) – 245.1283 C10H23O3PNa  245.1283 

 
(3Dd) 32.1 (DMSO) 33.1 [26] (CDCl3) 273.1598 C12H27O3PNa  273.1596 

a No solvent was provided; b Identified as [M + H]+. 
  

(3Db) 32.0 (DMSO) – 245.1282 C10H23O3PNa 245.1283
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Table 8. Identification of the diesters (3A–d/a–d). 

Compound  δP[found] δP[lit] 
HRMS 

[M + Na]+found Formula 
[M + Na]+calcu-

lated 

 
(3Aa) 30.1 (DMSO) 31.1 a [24] 175.0499 C5H13O3PNa  175.0500 

 
(3Ab) 30.2 (DMSO) 30.8 a [24] 203.0811 C7H17O3PNa  203.0813 

 
(3Ac) 28.2 (DMSO) 30.9 a [24] 181 b C7H18O3P  181 

 
(3Ad) 30.2 (DMSO) 30.1 a [24] 231.1132 C9H21O3PNa  231.1126 

 
(3Ba) 33.1 (DMSO) 34.3 a [24] 189.0655 C6H15O3PNa  189.0657 

 
(3Bb) 33.1 (DMSO) 33.0 a [24] 217.0966 C8H19O3PNa  217.0970 

 
(3Bc) 31.2 (DMSO) 32.9 a [24] 195 b C8H20O3P  195 

 
(3Bd) 33.1 (DMSO) 31.5 a [24] 245.1279 C10H23O3PNa  245.1283 

 
(3Ca) 31.7 (DMSO) 31.8 a [24] 203.0815 C7H17O3PNa  203.0813 

 
(3Cb) 31.1 (DMSO) 31.1 a [24] 231.1126 C9H21O3PNa  231.1126 

 
(3Cc) 29.8 (DMSO) 30.9 a [24] 209 b C9H22O3P  209 

 
(3Cd) 31.7 (DMSO) 30.7 a [24] 259.1440 C11H25O3PNa  259.1439 

 
(3Da) 32.1 (DMSO) 33.5 [25] (CDCl3) 217.0963 C8H19O3PNa  217.0970 

 
(3Db) 32.0 (DMSO) – 245.1282 C10H23O3PNa  245.1283 

 
(3Dc) 30.1 (DMSO) – 245.1283 C10H23O3PNa  245.1283 

 
(3Dd) 32.1 (DMSO) 33.1 [26] (CDCl3) 273.1598 C12H27O3PNa  273.1596 

a No solvent was provided; b Identified as [M + H]+. 
  

(3Dc) 30.1 (DMSO) – 245.1283 C10H23O3PNa 245.1283
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Table 8. Identification of the diesters (3A–d/a–d). 

Compound  δP[found] δP[lit] 
HRMS 

[M + Na]+found Formula 
[M + Na]+calcu-

lated 

 
(3Aa) 30.1 (DMSO) 31.1 a [24] 175.0499 C5H13O3PNa  175.0500 

 
(3Ab) 30.2 (DMSO) 30.8 a [24] 203.0811 C7H17O3PNa  203.0813 
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(3Bb) 33.1 (DMSO) 33.0 a [24] 217.0966 C8H19O3PNa  217.0970 

 
(3Bc) 31.2 (DMSO) 32.9 a [24] 195 b C8H20O3P  195 

 
(3Bd) 33.1 (DMSO) 31.5 a [24] 245.1279 C10H23O3PNa  245.1283 

 
(3Ca) 31.7 (DMSO) 31.8 a [24] 203.0815 C7H17O3PNa  203.0813 

 
(3Cb) 31.1 (DMSO) 31.1 a [24] 231.1126 C9H21O3PNa  231.1126 

 
(3Cc) 29.8 (DMSO) 30.9 a [24] 209 b C9H22O3P  209 

 
(3Cd) 31.7 (DMSO) 30.7 a [24] 259.1440 C11H25O3PNa  259.1439 

 
(3Da) 32.1 (DMSO) 33.5 [25] (CDCl3) 217.0963 C8H19O3PNa  217.0970 

 
(3Db) 32.0 (DMSO) – 245.1282 C10H23O3PNa  245.1283 

 
(3Dc) 30.1 (DMSO) – 245.1283 C10H23O3PNa  245.1283 

 
(3Dd) 32.1 (DMSO) 33.1 [26] (CDCl3) 273.1598 C12H27O3PNa  273.1596 

a No solvent was provided; b Identified as [M + H]+. 
  

(3Dd) 32.1 (DMSO) 33.1 [26]
(CDCl3) 273.1598 C12H27O3PNa 273.1596

a No solvent was provided; b Identified as [M + H]+.

3.4. Additional Spectral Data for the New Ester-Acids
3.4.1. Monopropyl Ethylphosphonate (2Bb)

13C NMR (CDCl3) ∆: 6.3 (d, 2JP,C = 6.7, PCH2CH3), 10.0 (s, OCH2CH2CH3), 19.0 (d,
1JP,C = 145.1, PCH2), 23.7 (d, 3JP,C = 6.1, OCH2CH2), 66.5 (d, 2JP,C = 6.9, OCH2); 1H NMR
(CDCl3) ∆: 0.96 (t, J = 7.4, 3H, CH3), 1.14–1.21 (m, 3H, CH3), 1.66–1.80 (m, 4H, PCH2, CH2),
3.98 (q, J = 6.8, 2H, OCH2), 9.62 (s, 1H, OH).

3.4.2. Monobutyl Ethylphosphonate (2Bd)
13C NMR (CDCl3) ∆: 6.4 (d, 2JP,C = 6.7, PCH2CH3), 13.6 (s, OCH2CH2CH2CH3), 18.7

(s, OCH2CH2CH2), 19.0 (d, 1JP,C = 145.0, PCH2), 32.5 (d, 3JP,C = 6.0, OCH2CH2), 64.7 (d,
2JP,C = 6.8, OCH2); 1H NMR (CDCl3) ∆: 0.94 (t, J = 7.3, 3H, CH3), 1.13–1.21 (m, 3H, CH3),



Molecules 2021, 26, 5303 12 of 14

1.37–1.45 (m, 2H, CH2), 1.63–1.79 (m, 4H, PCH2, CH2), 4.02 (q, J = 6.7, 2H, OCH2), 8.32 (s,
1H, OH).

3.4.3. Monopropyl Propylphosphonate (2Cb)
13C NMR (CDCl3) ∆: 10.0 (s, OCH2CH2CH3), 15.2 (d, 3JP,C = 17.3, PCH2CH2CH3),

16.0 (d, 2JP,C = 4.8, PCH2CH2), 23.8 (d, 3JP,C = 6.0, OCH2CH2), 27.9 (d, 1JP,C = 142.7, PCH2),
66.4 (d, 2JP,C = 6.8, OCH2); 1H NMR (CDCl3) ∆: 0.96 (t, J = 7.3, 3H, CH3), 1.03 (t, J = 7.1, 3H,
CH3), 1.64–1.77 (m, 6H, PCH2, 2 CH2), 3.97 (q, J = 6.6, 2H, OCH2), 7.96 (s, 1H, OH).

3.4.4. Monoethyl Butylphosphonate (2Da)
13C NMR (CDCl3) ∆: 13.5 (s, PCH2CH2CH2CH3) 16.3 (s, OCH2CH3), 23.6 (d, 2JP,C = 16.8,

PCH2CH2CH2), 24.3 (s, PCH2CH2), 25.6 (d, 1JP,C = 143.0, PCH2), 61.0 (d, 2JP,C = 5.1, OCH2);
1H NMR (CDCl3) ∆: 0.92 (t, J = 7.3, 3H, CH3), 1.33 (t, J = 6.7, 3H, CH3), 1.38–1.45 (m, 2H,
CH2), 1.57–1.64 (m, 2H, CH2), 1.71–1.78 (m, 2H, PCH2), 4.06–4.12 (m, J = 7.3, 2H, OCH2),
10.08 (s, 1H, OH).

3.4.5. Monopropyl Butylphosphonate (2Db)
13C NMR (CDCl3) ∆: 10.0 (s, OCH2CH2CH3), 13.6 (s, PCH2CH2CH2CH3) 23.6 (d, 3JP,C

= 17.6, PCH2CH2CH2), 23.8 (d, 2JP,C = 5.9, OCH2CH2), 24.2 (d, 3JP,C = 4.8, PCH2CH2), 25.5
(d, 1JP,C = 143.8, PCH2), 66.4 (d, 2JP,C = 6.8, OCH2); 1H NMR (CDCl3) ∆: 0.92 (t, J = 7.3, 3H,
CH3), 0.96 (t, J = 7.4, 3H, CH3), 1.38–1.45 (m, 2H, CH2), 1.56–1.64 (m, 2H, CH2), 1.66–1.78
(m, 4H, PCH2, CH2), 3.97 (q, J = 6.8, 2H, OCH2), 9.62 (s, 1H, OH).

3.4.6. Monoisopropyl Butylphosphonate (2Dc)
13C NMR (CDCl3) ∆: 13.6 (s, PCH2CH2CH2CH3) 23.7 (d, 3JP,C = 17.4, PCH2CH2CH2),

24.0 (d, 2JP,C = 3.1, OCH(CH3)2), 24.4 (d, 3JP,C = 2.9, PCH2CH2), 26.1 (d, 1JP,C = 143.8, PCH2),
70.0 (d, 2JP,C = 6.0, OCH2); 1H NMR (CDCl3) ∆: 0.91 (t, J = 7.3, 3H, CH3), 1.33 (d, J = 6.0, 6H,
2 CH3), 1.37–1.45 (m, 2H, CH2), 1.56–1.62 (m, 2H, CH2), 1.69–1.76 (m, 2H, PCH2), 4.65–4.72
(m, J = 6.5, 1H, OCH), 10.46 (s, 1H, OH).

3.4.7. Monobutyl Butylphosphonate (2Dd)
13C NMR (CDCl3) ∆: 13.6 (s, OCH2CH2CH2CH3), 13.6 (s, PCH2CH2CH2CH3), 18.8 (s,

OCH2CH2CH2) 23.7 (d, 3JP,C = 17.5, PCH2CH2CH2), 24.3 (d, 2JP,C = 4.5, PCH2CH2), 25.6 (d,
1JP,C = 143.2, PCH2), 32.5 (d, 3JP,C = 5.9, OCH2CH2), 64.7 (d, 2JP,C = 6.7, OCH2); 1H NMR
(CDCl3) ∆: 0.93 (dt, J = 9.9, 7.3, 6H, 2 CH3), 1.37–1.45 (m, 4H, 2 CH2) 1.57–1.77 (m, 6H,
PCH2, 2 CH2), 4.01 (q, J = 6.7, 2H, OCH2), 9.73 (s, 1H, OH).

3.5. Theoretical Calculations

DFT computations at the M062X/6–311+G (d,p) level of theory were performed con-
sidering the solvent effect of the corresponding alcohol using the SMD solvent model with
the Gaussian 09 program package [27–29]. The geometries of the molecules were optimized
in all cases, and frequency calculations were also performed to assure that the structures
are in a local minimum or in a saddle point. The conformations of the reported structures
have been determined by conformational analysis. The solution-phase Gibbs free energies
were obtained by frequency calculations as well. The G values obtained were given under
standard conditions, the corrected total energies of the molecules were taken into account.
Entropic and thermal corrections were evaluated for isolated molecules using standard
rigid rotor harmonic oscillator approximations. That is, the Gibbs free energy was taken
as the “sum of electronic and thermal free energies” printed in a Gaussian 09 vibrational
frequency calculation. Standard state correction was taken into account. The transition
states were optimized with the QST3 or the TS (Berny) method. Transition states were iden-
tified by having one imaginary frequency in the Hessian matrix, and IRC calculations were
performed in order to prove that the transition states connect two corresponding minima.
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