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Abstract: Evidence exists regarding the association between advanced glycation end products and
different cardiovascular disease subclinical processes, such as arterial stiffness and atherosclerosis.
With this systematic review and meta-analysis, we aimed to provide a synthesis of the evidence
regarding the association of arterial stiffness measured by pulse wave velocity and atherosclerosis
measured by carotid intima media thickness with skin autofluorescence. A systematic search
was performed using: MEDLINE (PubMed), SCOPUS, and Web of Science, until 30 March 2020.
Cross-sectional studies or baseline data from prospective longitudinal studies were considered.
The DerSimonian and Laird method was used to calculate the pooled estimates of correlation
coefficients and the corresponding 95% confidence intervals (CI) for the association of pulse wave
velocity and carotid intima media thickness with skin autofluorescence. Twenty-five studies were
included in the systematic review and meta-analysis, including 6306 subjects. The pooled correlation
coefficient was 0.25 (95% CI: 0.18, 0.31) for pulse wave velocity and skin autofluorescence, and 0.31
(95% CI: 0.25, 0.38) for carotid intima media thickness and skin autofluorescence. This systematic
review and meta-analysis provide a synthesis of the evidence showing a positive weak association of
pulse wave velocity and carotid intima media thickness with skin autofluorescence.

Keywords: cardiovascular disease; skin autofluorescence; advanced glycation end products;
arterial stiffness; pulse wave velocity; carotid intima media thickness

1. Introduction

Advanced glycation end products (AGEs) are a group of molecules that, through non-enzymatic
glycation reactions and stimulation of oxidative stress [1,2], are involved in the development of
cardiovascular diseases (CVDs) [3]. Evidence suggests that the accumulation of AGEs in tissues,
measured by skin autofluorescence (SAF) [4], increases with age and smoking [5], as well as in
individuals with high levels of inflammation or diabetic conditions [6]. AGEs are involved in the
progression of atherosclerosis and some chronic diseases, such as chronic renal failure, Alzheimer’s
disease, and diabetes mellitus [2,5,7]. Finally, AGEs have also been associated with endothelial
dysfunction and early vascular aging [6].

Int. J. Environ. Res. Public Health 2020, 17, 6936; doi:10.3390/ijerph17186936 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0003-0669-8625
https://orcid.org/0000-0002-6176-1618
https://orcid.org/0000-0001-6121-7893
https://orcid.org/0000-0003-2617-0430
http://dx.doi.org/10.3390/ijerph17186936
http://www.mdpi.com/journal/ijerph
https://www.mdpi.com/1660-4601/17/18/6936?type=check_update&version=3


Int. J. Environ. Res. Public Health 2020, 17, 6936 2 of 14

The aged vascular system is characterized by decreased elasticity of vessels, accumulation of
interstitial collagen, increased arterial stiffness, and thickening of the carotid intima media [8], amongst
other factors. Traditionally, both arterial stiffness and atherosclerosis have been considered good
predictors of increased cardiovascular risk [9]. Arterial stiffness is one of the first changes detected in
the wall of arteries, in both function and structure, playing an important role in CVD [10].

Evidence exists of the association between AGE levels and different CVD subclinical processes,
such as arterial stiffness and atherosclerosis [11,12]. The accumulation of AGEs has been associated with
an increase in pulse wave velocity (PWv), which is the gold standard for measuring arterial stiffness [13],
both in healthy adults and individuals with different pathologies, such as patients with coronary heart
disease, type 1 or 2 diabetes mellitus, and kidney disease [14–19]. Likewise, a positive correlation
between atherosclerosis measured using carotid intima media thickness (C-IMT) and AGEs in both
non-diabetic and diabetic patients has been reported [20–22]. Even though C-IMT is no longer
included as a factor of CVD risk according to international guidelines [23], its assessment allows for
knowledge of arterial thickening in preclinical phases of disease, before the vessel lumen becomes
compromised [24]. However, the evidence for the association between AGEs and these subclinical
markers of atherosclerosis and arterial stiffness is currently sparse and inconclusive.

Therefore, the purpose of this systematic review and meta-analysis was to provide a synthesis
of the evidence on the association of arterial stiffness (measured using PWv) and atherosclerosis
(measured through C-IMT) with AGE levels measured by SAF, which has been proposed as a novel
and effective indicator to help with the prevention of CVD. This knowledge will contribute important
evidence for assessing the cardiovascular risk derived from these subclinical processes.

2. Materials and Methods

This systematic review and meta-analysis are reported according to the Meta-analysis of
Observational Studies in Epidemiology statement (MOOSE) [25] and the Preferred Reporting Items
for Systematic Reviews and Meta-analyses (PRISMA) [26], and performed following the Cochrane
Collaboration Handbook recommendations [27]. This study was registered in the International
Prospective Register of Systematic Reviews (registration number: CRD42020168219).

2.1. Search Strategy

A systematic search of studies was conducted through three databases: MEDLINE (via PubMed),
Scopus, and Web of Science, from their inception to 30 March 2020 (Table S1). The following keywords
were used to perform the search: “Advanced glycation end products”, “AGEs”, “pulse wave velocity”,
“PWv”, “arterial stiffness”, “intima media thickness”, “IMT”, “vascular stiffness”, “arterial health”,
“vascular function”, “endothelial function”, “cardiovascular disease”, “cardiovascular risk”,
“skin autofluorescence”, and “SAF”. The list of references of the included articles as well as of
previous systematic reviews or meta-analyses were searched. A last search was conducted just before
the final analysis to include the most recently published studies.

2.2. Study Selection

The included studies assessed the association of PWv and C-IMT with SAF. Inclusion criteria
were (1) studies including individuals over 18 years of age, (2) AGEs measured using SAF, (3) arterial
stiffness measured using PWv, (4) C-IMT measured using ultrasound techniques, and (5) cross-sectional
studies or baseline data of prospective longitudinal studies. Studies were excluded if (1) outcome
measures were not reported as correlation values for the association between SAF and PWv or C-IMT;
(2) they were review articles, editorials, or case reports; or (3) they were not written in English
or Spanish.
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The studies were selected independently by two researchers (A.S.-L., I.C.-R.). All abstracts of the
retrieved studies were examined and studies that did not meet the previously described eligibility
criteria were excluded. Disagreements between researchers were solved by consensus or by a third
researcher (C.Á.-B.).

2.3. Search and Data Extraction

The main characteristics of the included studies are summarized in Table 1, which includes
information on (1) the first author and year of publication; (2) country where study data were collected;
(3) study design; (4) sample characteristics (sample size, average age, population type, and body mass
index (BMI)); (5) outcome: PWv (type of PWv (aortic PWv, brachial ankle PWv, carotid femoral PWv,
carotid radial PWv), measuring device, PWv mean values) or C-IMT (measuring device, C-IMT mean
values); and (6) SAF (measuring device, SAF mean).

2.4. Quality Assessment and Potential Bias

Methodological quality was assessed using the Quality Assessment Tool for Observational Cohort
and Cross-Sectional Studies from the United States National Institute of Health National Heart,
Lung, and Blood Institute [28]. This tool evaluates the risk of bias according to the following
domains: Quality of the research question, reporting of the population definition, participation rate,
recruitment, sample size, appropriateness of statistical analyses, timeframe for associations, exposure
levels, ascertainment of the exposure, appropriateness of the outcome measured, outcome blinding
of researchers, loss to follow-up, and confounding variables. The general bias of each study was
considered “good” if most criteria were met and with a low risk of bias; “fair” if some criteria were
met and with a moderate risk of bias; or “poor” if few criteria were met and with a high risk of bias.

Once the information regarding the authors, date, and sources of each included manuscripts
were blinded, two researchers (A.S.-L., I.C.-R.) independently extracted data and assessed quality.
Disagreements were solved by consensus or through the intervention of a third researcher (C.Á.-B.).

2.5. Statistical Analysis

Forest plots are used to show correlation estimates (Pearson and Spearman coefficients) for the
association between PWv with SAF, and C-IMT with SAF. The DerSimonian and Laird method was
used to calculate the pooled estimates of correlation coefficients and their respective 95% confidence
intervals (CIs) [29]. Heterogeneity was examined using the I2 statistic, which ranges between 0%
and 100% [30]. According to the I2 values, heterogeneity was considered not important (0% to 40%),
moderate (30% to 60%), substantial (50% to 90%), or considerable (75% to 100%). The corresponding
p-values were also considered.

Sensitivity analyses (systematic re-analyses while removing each study one at a time) were
conducted to assess the robustness of the summary estimates. A sensitivity analyses between
each of the outcomes (PWv and C-IMT) with SAF were conducted considering diabetic patients
only. Additionally, a sensitivity analysis was performed including only studies with a control group.
Random effects meta-regression analyses were performed to determine whether age, sex, BMI, total
cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides, systolic blood
pressure (SBP), diastolic blood pressure (DBP), or glycated hemoglobin A1c (HbA1c) are significant
moderators of the association between PWv and SAF, and C-IMT and SAF.

Finally, publication bias was assessed through Egger’s regression asymmetry test [31]. A p-value
of <0.10 was used to determine if there was significant publication bias.

Analyses were performed with Stata 15.0 (Stata, College Station, TX, USA).
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3. Results

3.1. Systematic Review

The flowchart of this systematic review and meta-analysis is presented in Figure 1. The search
retrieved a total of 90 articles, of which 25 studies [12,13,15–18,20–22,32–47] were selected for inclusion
in the systematic review according to the inclusion criteria. Finally, 12 studies evaluating the association
between PWv and SAF and 17 studies evaluating the association between C-IMT and SAF were
identified and considered in the meta-analysis. From the studies included in the systematic review,
five presented results for both PWv and C-IMT.

Figure 1. Flowchart: Search strategy.

The descriptive characteristics of the included studies are shown in Table 1 and Table S2. Studies
were published between 2006 and 2018, were cross-sectional (22 studies) or prospective longitudinal
(three studies) [41,42,44], with sample sizes ranging from 38 to 1717 subjects (aged 18 to 80 years),
and were performed in Europe (14 studies) and Asia (11 studies). All studies included both men
and women, except for two including men only and one including women only. Regarding the type
of population, nine studies included participants with diabetes mellitus (type 1 or 2), four included
individuals with different stages of chronic kidney disease, and the remaining studies included
individuals with different types of pathologies, such as vascular, metabolic, or autoimmune pathologies.
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Table 1. Characteristics of the studies included in the systematic review and meta-analysis of the relationship between pulse wave velocity or carotid intima media
thickness and skin autofluorescence.

Study (Year) Country Study Design
Population Characteristics Outcome Skin Autofluorescence

Sample
Size (n) Age (Years) Type of

Population BMI (kg /m2) Type Measuring
Device Mean (mm) Measuring

Device Mean (AU)

Araszkiewicz
et al., 2015 [42] Poland Prospective

longitudinal UHS: 77 UHS: 23 (20–28) DM type 1 UHS: 23 (21–25) C-IMT Acuson Cv
70 UHS: 0.57 (0.52–0.67) AGE

Reader UHS: 2.2 (1.9–2.6)

Hollander
et al., 2007 [34]

The
Netherlands Cross-sectional UHS: 8

HS: 30
UHS: 27 (20–34)
HS: 25 (21–32)

Glycogen
storage disease

type Ia

UHS: 24 (22–28)
HS: 23 (21–26) C-IMT Acuson 128 XP UHS: 0.53 (0.48–0.59)

HS: 0.6 (0.58–0.62)

AGE
Reader

UHS: 1.67
(1.57–1.76)
HS: 1.55

(1.30–1.76)

Blaauw et al.,
2006 [32]

The
Netherlands Cross-sectional UHS: 26

HS: 17
UHS: 30.0 ± 4.0
HS: 32.0 ± 3.0 Preeclampsia UHS: 25.0 ± 5.0

HS: 23.0 ± 3.0 C-IMT Acuson 128 XP UHS: 0.64 ± 0.07
HS: 0.63 ± 0.09

USB2000 NA

Llaurado et al.,
2014 [16] Spain Cross-sectional UHS: 68

HS: 68
UHS: 35.3 ± 10.1
HS: 35.4 ± 10.2 DM type 1 UHS: 25.7 ± 3.6

HS: 24.0 ± 3.1 a-PWV
Millar

tonometer:
SPC-301

UHS: 6.8 (6.0–7.9)
HS: 6.1 (5.5–6.7)

AGE
Reader

UHS: 2.1 (1.8–2.3)
HS: 1.7 1.6–2.1)

Osawa et al.,
2017 [21]

Japan Cross-sectional UHS: 105
HS: 23

UHS: 37.4 ± 12.4
HS: 34.7 ± 6.2 DM type 1

UHS: 23. 0 ± 3.0
HS: 20.6 ± 2.6

ba-PWV BP203RPE UHS: 13.18 ± 2.48
HS: 12.25 ± 1.56 AGE

Reader
UHS: 2.07 ± 0.50
HS: 1.90 ± 0.26

C-IMT NA UHS: 1.09 ± 0.48
HS: 0.76 ± 0.21

De Leeuw
et al., 2007 [33]

The
Netherlands Cross-sectional UHS: 55

HS: 55
UHS: 43.0 ± 12.
HS: 43.0 ± 13.0

Systemic lupus
erythematosus

UHS: 24.3 ± 4.0
HS: 24.7 ± 4.0 C-IMT NA UHS: 0.67 ± 0.16

HS: 0.69 ± 0.15
AGE

Reader
UHS: 1.50 ± 0.5
HS: 1.28 ± 0.4

De Groot et al.,
2015 [44]

The
Netherlands

Prospective
longitudinal

UHS: 58
HS: 58

UHS: 18–80
HS: 18–80

Rheumatoid
arthritis NA C-IMT NA UHS: 0.73 (0.45–1.64)

HS: 0.72 (0.39–1.46)
AGE

Reader

UHS: 2.55
(1.29–4.65) HS:

2.12
(1.32–3.82)
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Table 1. Cont.

Study (Year) Country Study Design
Population Characteristics Outcome Skin Autofluorescence

Sample
Size (n) Age (Years) Type of

Population BMI (kg /m2) Type Measuring
Device Mean (mm) Measuring

Device Mean (AU)

De Leeuw
et al., 2010 [36]

The
Netherlands Cross-sectional UHS: 24

HS: 21
UHS: 51.0 ± 11.0
HS: 56.0 ± 14.0

Systemic
autoimmune

Disease
(Wegener’s

granulomatosis)

UHS: 25.0 ± 3.0
HS: 26.0 ± 5.0 C-IMT NA UHS: 0.72 (0.62–0.81)

HS: 0.67 (0.59–0.79) NA UHS: 1.5 ± 0.5
HS: 1.3 ± 0.3

Den Dekker
et al., 2013 [39]

The
Netherlands Cross-sectional

UHS1: 67
UHS2: 60

HS: 96

UHS1: 51.8 ± 7.8
UHS2: 63.5 ± 7.6

HS: 43.8 ± 9.5
Atherosclerosis

UHS1: 26.6
(23.8–29.8)
UHS2: 26.3
(24.2–29.5)
HS: 25.0

(23.1–27.7)

C-IMT Acuson 128 XP

UHS1: 0.83
(0.67–0.98)
UHS2: NA

HS: 0.65 (0.57–0.74)

AGE
Reader

UHS1: 2.11
(1.83–2.46)
UHS2: 2.71
(2.15–3.27)

HS: 1.87
(1.68–2.12)

Dadoniene
et al., 2015 [43] Lithuania Cross-sectional UHS: 47

HS: 47
UHS: 52.64 ± 11.2
HS: 52.57 ± 7.69 Systemic sclerosis UHS: 24.27 ± 4.63

HS: 26.09 ± 4.50 cr-PWV SphygmoCor UHS: 7.53 ± 1.70
HS: 7.51 ± 1.30

AGE
Reader

UHS: 2.23 ± 0.54
HS: 1.90 ± 0.47

Lutgers et al.,
2010 [20]

The
Netherlands Cross-sectional UHS: 59 UHS: 55.0 ± 10.0

Healthy
Metabolic
syndrome

UHS: 24.9 ± 2.5 C-IMT Acuson 128 XP UHS: 0.8 ± 0.15 NA UHS: 1.57 ± 0.41

Ueno et al.,
2008 [17] Japan Cross-sectional UHS: 120

HS: 110
UHS: 58.1 ± 9.3
HS: 57.0 ± 10.5

End-stage renal
disease NA ba-PWV BP203RPE UHS: 17.92 ± 4.49

HS: 14.21 ± 2.26
AGE

Reader
UHS: 1.8 ± 0.7
HS: 1.3 ± 0.5

Ninomiya et
al., 2018 [13]

Japan Cross-sectional UHS: 140 UHS: 59.3 ± 12.8 DM type 1 and
type 2 UHS: 27.3 ± 5.5

ba-PWV BP203RPE UHS: 16.98 ± 4.04 AGE
Reader

UHS: 2.5 ± 0.5
C-IMT NA SS: 1.8 ± 0.8

Ueno et al.,
2011 [38]

Japan Cross-sectional UHS: 212 UHS: 59.9 ± 10.1 End-stage renal
disease

UHS: 21.4 ± 2.8
NA NA NA AGE

Reader UHS: 1.8 ± 0.7
C-IMT NA UHS: 0.762 ± 0.163

Hangai et al.,
2016 [45]

Japan Cross-sectional UHS: 122 UHS: 61.0 ± 13.0 DM type 2 UHS: 26.4 ± 5.1
ba-PWV BP203RPE UHS: 15.69 ± 3.11 AGE

Reader
UHS: 2.42 ± 0.417

C-IMT LOGIQ 500 UHS: 1.64 ± 0.70 mm

Osawa et al.,
2018 [12]

Japan Cross-sectional UHS: 193
HS: 24

UHS: 61.1 ± 12.3
HS: 40.3 ± 7.8

DM type 2 UHS: 27.7 ± 5.95
HS: 20.9 ± 2.9

ba-PWV BP203RPE UHS: 17.19 ± 4.58
HS: 12.75 ± 1.38 AGE

Reader
UHS: 2.57 ± 0.47
HS: 1.91 ± 0.29

C-IMT NA SS: 1.89 ± 0.78
HS: 0.92 ± 0.54
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Table 1. Cont.

Study (Year) Country Study Design
Population Characteristics Outcome Skin Autofluorescence

Sample
Size (n) Age (Years) Type of

Population BMI (kg /m2) Type Measuring
Device Mean (mm) Measuring

Device Mean (AU)

Yoshioka, 2018
[47] Japan Cross-sectional UHS: 162

HS: 42
UHS: 61.2 ± 11.2
HS: 53.8 ± 13.0 DM type 2 UHS: 24.9 ± 4.0

HS: 22.6 ± 4.0 C-IMT NA UHS: 1.64 ± 0.73
HS: 1.10 ± 0.23

AGE
Reader UHS: 2.53 ± 0.45

HS: 2.19 ± 0.34

Tanaka et al.,
2009 [35] Japan Cross-sectional UHS: 128

HS: 19
UHS: 65.1 ± 11.6
HS: 64.1 ± 12.4

Chronic kidney
disease (DM)

UHS: 22.1 ± 3.3
HS: 24.6 ± 3.2 C-IMT SSD-

5000
UHS: 0.9 ± 0.4

HS: NA
AGE

reader
UHS: 2.35 ± 0.68
HS: 1.30 ± 0.37

Kimura et al.,
2014 [41] Japan Prospective

longitudinal
UHS: 86 UHS: 65.1 ± 11.6

DM, primary
glomerulonephritis,

Hypertension,
and other diseases

UHS: 22.1 ± 3.3 C-IMT SSD- 5000 UHS: 0.9 ± 0.4
AGE

reader UHS: 2.35 ± 0.68

Temma et al.,
2015 [22] Japan Cross-sectional UHS: 61 UHS: 66.6 ± 9.2 DM type 2 UHS: 25.5 ± 4.6 C-IMT GM-72P00A UHS: 1.64 ± 0.75 mm AGE

Reader UHS: 2.50 ±0.50

Hofmann et al.,
2013 [18] Germany Cross-sectional UHS: 52 UHS: 68.7 ± 10.15 Coronary heart

disease UHS: 27.8 ± 4.0 a-PWV Vicorder NA AGE
Reader NA

McIntyre et al.,
2011 [37]

United
Kingdom Cross-sectional UHS: 284

HS: 1423
UHS: 73.5 ± 8.0
HS: 72.8 ± 9.0

Chronic kidney
disease stage 3 NA cf-PWV Vicorder UHS: 10.4 ± 2.0

HS: 9.8 ± 2.0
AGE

Reader
UHS: 3.0 ± 0.7
HS: 2.7 ± 0.6

McIntyre et al.,
2013 [40] Switzerland Cross-sectional UHS: 1717 UHS: 74 (67–79) Chronic kidney

disease
UHS: 28.4
(25.6–31.8) a-PWV Vicorder UHS: 9.9 ± 2.0

AGE
Reader UHS: 2.67

(2.30–3.07)

Igase et al.,
2017 [46] Japan Cross-sectional UHS: 18

HS: 208
UHS: 76.5 ± 6.7
HS: 67.2 ± 9.9

Mild cognitive
impairment

UHS: 22.9 ± 2.1
HS: 22.8 ± 3.0 ba-PWV FORM/ABI UHS: 17.7 ± 3.19

HS: 15.77 ± 2.77
AGE

Reader
UHS: 2.56 ± 0.55
HS: 2.10 ± 0.41

Watfa et al.,
2012 [15] France Cross-sectional HS1: 55

HS2: 61
HS1: 49.1 ± 10.4
HS2: 77.5 ± 8.4 Healthy HS1: 27.2 ± 5.5

HS2: 25.3 ± 4.5 cf-PWV
Pulse pen

device
(DiaTecne srl)

HS1: 7.48 ± 1.92
HS2: 11.83 ± 4.17

AGE
Reader

HS1: 2.11 ± 0.45
HS2: 2.75 ± 0.6

Data are shown as mean ± SD or interquartile range: a-PWV: Aortic pulse wave velocity; AU: Arbitrary units; ba-PWV: Brachial ankle pulse wave velocity; BMI: Body max index; cf-PWV:
Carotid femoral pulse wave velocity; C-IMT: Carotid intima media thickness; cr-PWV: Carotid radial pulse wave velocity; DM: Diabetes mellitus; HS: Healthy subjects; NA: Not available;
PWV: Pulse wave velocity; SD: Standard deviation; UHS: Unhealthy subjects.
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3.2. Quality Assessment and Potential Bias

The overall risk of bias of studies reporting the association between SAF and PWv was moderate
in nearly two-thirds of the studies (61.5%). None of the studies provided information regarding the
justification of the sample size or the blinding of evaluators. Additionally, all included studies were
cross-sectional, affecting the domains related to the exposure levels and time frame to observe an
effect. Finally, the domains evaluating repeated exposure and follow-up rate could not be evaluated
(Table S3).

The overall risk of bias of studies reporting the association between SAF and C-IMT was moderate
in over two-thirds of the studies (70.6%). A low risk of bias was observed in 17.6% of included studies,
whereas 11.8% had a high risk of bias. Regarding each domain, 70.6% of included studies did not
provide justification for the necessary sample size. For domains concerning exposure levels, 82.4% of
the studies presented a high risk of bias due to their cross-sectional design, and consequently did not
provide repeated exposure assessments or follow-up rates. Additionally, 88.2% of the studies did not
report whether the evaluator was blinded and the duration of the follow-up to see an effect (Table S4).

3.3. Meta-Analysis

Figure 2 shows the correlation coefficients between PWv and SAF, and C-IMT and SAF. The pooled
correlation coefficient estimate was 0.25 (95% CI: 0.18, 0.31) for PWv and SAF with substantial
heterogeneity (I2: 76.3%; p < 0.001), and 0.31 (95% CI: 0.25, 0.38) for C-IMT and SAF with moderate
heterogeneity (I2 = 49.9%; p = 0.007).

Figure 2. Forest plot including correlation between pulse wave velocity or carotid intima media
thickness and skin autofluorescence.
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3.4. Sensitivity and Meta-Regression Analyses.

The pooled correlation coefficient estimate was not significantly different (in magnitude or
direction) when individual study data were removed from the analyses one at a time.

Figure 3 shows the correlation coefficients between PWv and SAF, and C-IMT and SAF for the
analyses performed considering diabetic patients only. The pooled correlation coefficient estimate for
PWv and SAF was 0.31 (95% CI: 0.21, 0.42), with moderate heterogeneity (I2: 50.0%; p = 0.091). For C-IMT
and SAF, the pooled correlation coefficient estimate was 0.29 (95%CI: 0.22, 0.37), with moderate
heterogeneity (I2 = 40.0%; p = 0.112).

Figure 3. Forest plot including correlation between pulse wave velocity or carotid intima media
thickness and skin autofluorescence in diabetic patients.

Figure S1 shows the correlation coefficients between PWv and SAF, and C-IMT and SAF for
the analyses that included only studies with a control group. The pooled correlation coefficient
estimate for PWv and SAF was 0.24 (95% CI: 0.15, 0.33), with moderate heterogeneity (I2: 72.7%;
p = 0.000). For C-IMT and SAF, the pooled correlation coefficient estimate was 0.35 (95% CI: 0.27, 0.44),
with moderate heterogeneity (I2 = 52.5%; p = 0.017).

Meta-regression models of random effects for PWv showed significant results for age (p = 0.007)
and HbA1c (p = 0.004). Age (p = 0.004) and SBP (p = 0.08) were significant moderators of the association
between C-IMT and SAF (Table S5).

3.5. Publication Bias

Evidence of publication bias was observed through funnel plot asymmetry and the Egger´s test
for both PWV and C-IMT with SAF (p = 0.003 and 0.052, respectively).
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4. Discussion

The relationship between early markers of vascular dysfunction, such as PWv or C-IMT and SAF,
suggests that this novel method may be related to arterial stiffness and atherosclerosis. This systematic
review and meta-analysis provide a synthesis of the evidence, showing a positive weak association
between PWv and SAF (pooled r = 0.25; 95% CI: 0.18, 0.31), and between C-IMT and SAF (pooled
r = 0.31; 95% CI: 0.25, 0.38).

Most studies analyzing the association between SAF and arterial stiffness reported that AGEs
were associated with an increase in PWv in healthy individuals, patients with end-stage renal failure,
hypertension, and type 2 diabetes mellitus [14–19]. The pathophysiological mechanisms responsible
for increased arterial stiffness remain unclear. There are two main mechanisms through which
arterial stiffness can be favored by the accumulation of AGEs [48]: (1) A complex interaction between
functional and structural changes in the arterial wall, which lead to an overproduction of collagen and
a decrease in the amount of elastin. These are both responsible for a reduction in arterial compliance
properties, resulting in increased arterial stiffness [49]. (2) Receptors of AGEs (RAGEs) trigger different
signaling pathways, resulting in the activation of nuclear transcription factors, and the secretion of
proinflammatory cytokines and vascular adhesion molecules, which stimulate the progression of
atherosclerosis [50].

Our results are in line with those of previous studies reporting a positive association between
AGEs and C-IMT [22]. Several studies described the usefulness of AGE measurement using SAF
as an indicator of changes in the thickness of the intima media of the carotid artery in the early
stages of atherosclerosis [13]. AGEs are associated with vascular complications due to a change
in the three-dimensional structure of proteins by crosslinking: (1) The accumulation of AGEs
reduces vasodilation by decreasing nitric oxide levels and improves vasoconstriction by increasing
endothelin-1 levels; additionally, this accumulation will cause the AGEs of the extracellular matrix
to be modified accelerating the progression of the disease [51]. (2) The binding of AGEs with
their RAGEs causes changes in the phenotype of different cells, such as endothelial cells, pericytes,
or smooth muscle cells [52]. (3) The AGEs–RAGEs complex activates nuclear transcription factors
and proinflammatory cytokine secretion, producing endothelial adhesion molecules, which positively
influence the development of atherosclerosis [53].

AGEs may play an essential role in endothelial dysfunction and vascular inflammation, which may
be a consequence of the above mentioned mechanisms. AGEs activate different proinflammatory
routes triggering oxidative stress, inflammation, and apoptosis, resulting in arterial stiffness and
atherosclerosis [48,53].

Traditional risk factors, such as age, glucose levels, or blood pressure, also contribute to arterial
stiffness and atherosclerosis [54,55] and are related to AGE levels [6]. However, as reported in our
results, although age, SBP, and HbA1c act are modifiers of the effect, there was a remaining positive
association of PWv and C-IMT and SAF.

Our systematic review and meta-analysis have some limitations that should be stated. First,
since the association reported by the included studies are cross-sectional in nature, a cause–effect
relationship cannot be inferred. Therefore, it seems important that future follow up studies examine
this cause–effect relationship between PWv and C-IMT with SAF. Second, most studies showed a
moderate risk of heterogeneity; therefore, our results should be interpreted with caution. Third,
there was evidence of publication bias by Egger’s test and unpublished results could modify the
findings of this meta-analysis. Fourth, most studies provided neither information on the blinding
of evaluators nor the justification of the necessary sample size, which may have led to bias. Last,
participants with different health conditions (i.e., chronic kidney disease, hypertension, and diabetes)
were included in the meta-analysis and this could have biased the results.
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5. Conclusions

In summary, our results support that the increases in PWv and C-IMT, which are measures of
arterial stiffness and atherosclerosis, respectively, are associated with the increase in SAF. Although
the appropriate use of our results should be understood in each particular clinical context, our data
suggest that clinicians may consider AGE levels measured by SAF when they assess the early stages
of cardiovascular risk. Notwithstanding, our data highlight the need for more research to establish
an optimal level of SAF in different populations to evaluate the appropriateness of including this
biomarker as a routine assessment in clinical practice for cardiovascular risk among patients with
different CVD risk levels.
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