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ARTICLE INFO ABSTRACT
Article history: The ability to predict learning performance from brain imaging data has implications for selecting individuals for
Accepted 20 March 2014 training or rehabilitation interventions. Here, we used structural MRI to test whether baseline variations in gray

Available online 26 March 2014 matter (GM) volume correlated with subsequent performance after a long-term training of a complex whole-

body task. 44 naive participants were scanned before undertaking daily juggling practice for 6 weeks, following

g(fr};vz Z:g;l plasticity either a high intensity or a low intensity training regime. To assess performance across the training period
skill learning participants' practice sessions were filmed. Greater GM volume in medial occipito-parietal areas at baseline cor-

MRI related with steeper learning slopes. We also tested whether practice time or performance outcomes modulated
the degree of structural brain change detected between the baseline scan and additional scans performed imme-
diately after training and following a further 4 weeks without training. Participants with better performance had
higher increases in GM volume during the period following training (i.e., between scans 2 and 3) in dorsal pari-
etal cortex and M1. When contrasting brain changes between the practice intensity groups, we did not find any
straightforward effects of practice time though practice modulated the relationship between performance and
GM volume change in dorsolateral prefrontal cortex. These results suggest that practice time and performance

modulate the degree of structural brain change evoked by long-term training regimes.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/3.0/).

Introduction

As adults, we are often faced with the challenge of learning novel
visuo-motor skills, such as using the touchscreen on a new smartphone.
Intuitively, we might expect that how well we acquire these skills de-
pend on multiple factors including how much practice we put in, and
our individual aptitude for such learning. Studies in both animals and
humans show that motor skill learning is associated with structural
brain plasticity in the adult and during development (Draganski et al.,
2004, 2006; Hyde et al., 2009; Kleim et al., 1996; Scholz et al., 2009;
Taubert et al., 2010). However, it remains unclear whether brain struc-
tural properties at baseline are associated with subsequent complex
skill acquisition, and also whether the degree of brain structural change
with long-term training depends on factors such as the amount of prac-
tice time and the performance outcome.

* Corresponding author at: FMRIB, John Radcliffe Hospital, Headington Oxford 0X3
9DU, UK.
E-mail address: heidi,johansen-berg@ndcn.ox.ac.uk (H. Johansen-Berg).
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The ability to make predictions about an individual's future long term
motor skill learning based on baseline brain structural characteristics
could be applied in the context of talent identification (e.g. in elite ath-
letes) and also has relevance in clinical scenarios, such as predicting re-
sponse to the rehabilitation of movement abilities after brain damage.
Inter-individual variability in human brain structure has been shown to
correlate with variation in task performance in both expert and non-
expert populations in cross-sectional studies (Gaser and Schlaug,
2003a,b; Johansen-Berg et al., 2007; Kuhn et al., 2012). However, studies
that have tested whether baseline brain structural measures relate to
subsequent behavioral response, have been limited to simple hand
motor tasks and shorter time periods (between one and five training ses-
sions) (Gryga et al.,, 2012; Tomassini et al,, 2011). Here we test if baseline
brain structure is associated with subsequent performance outcome with
long-term training (several weeks) of a complex whole-body motor skill.

Evidence for a relationship between brain structural change and
amount of practice or performance outcome is also limited. Amount of
practice refers to the duration and or number of training sessions.
Some studies have also examined practice density or intensity by
defining a fixed number of training hours but not training sessions.

1053-8119/© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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Performance outcomes can be assessed by measuring performance after
long-term training, average performance throughout training, or the
rate of change in performance throughout the training period. While
some previous studies have used fixed training schedules, others have
allowed subjects to train at their own pace, or until they reach a partic-
ular performance criterion. In the context of juggling training, a popular
experimental paradigm in this area, most studies have reported that
brain structural changes are not correlated with how quickly subjects
learn to juggle or how well they perform after training (Boyke et al.,
2008; Draganski et al., 2004; Driemeyer et al., 2008; Scholz et al.,
2009). One possibility is that structural changes reflect the amount of
time spent training rather than training outcome; previous studies
have predominantly used fixed amounts of training or fixed outcome
criteria, making it difficult to tease apart effects of training time and per-
formance outcomes. In the context of golf training, there is a recent ev-
idence that higher training intensity, reflected in the number of days
necessary to complete 40 h of training, results in greater gray matter in-
creases, although no correlations with performance outcomes were re-
ported (Bezzola et al., 2011).

The absence of a correlation between training outcome and structural
changes in human neuroimaging studies is puzzling as functional plastic-
ity and map reorganization as measured in animal studies seem to be as-
sociated with learning outcome rather than with amount of practice
(Kleim et al., 1998; Plautz et al., 2000). It is not clear whether this appar-
ent lack of a relationship between training outcome and structural brain
change is real or reflects methodological factors. For example, the lack of
an effect might be due to the assessment of the training outcome, i.e., the
behavioral measures used might not be sensitive or might not represent
the important aspects of learning that drive the structural changes.

In this study, we tested whether individuals' ability to learn a com-
plex whole-body visuo-motor skill (juggling) could be explained by
brain structural measures obtained before learning. We also tested if
baseline brain structure was associated with brain structure change
after long-term skill training. Furthermore, we varied the amount of
training time in order to directly test whether an amount of practice
or performance outcome modulates structural brain changes. To assess
performance across the training period participants' practice sessions
were filmed.

Methods
Participants

All subjects gave their informed consent to participate in the study in
accordance with local ethics committee approval (REC B 07/Q1605/65).

44 participants with no prior experience of juggling were recruited
and randomly assigned to one of the 2 groups: a high intensity training
group that learned to juggle for 30 min per day, 5 days a week, for
6 weeks; and a lower intensity group that practiced for 15 min per
day, 5 days a week, for 6 weeks. From the initial 44 recruited partici-
pants, 40 completed the study (22 in the higher intensity group and
18 on the lower intensity group) (mean age 23.8, standard deviation
3.5; 22 female). Participants were scanned at baseline, after 6 weeks
of training and 4 weeks after the end of training. During the final
4-week interval participants were asked not to juggle.

All participants were right handed and matched for age and gender
(low intensity group: mean age 23.8, standard deviation 3.3, 10 fe-
males) (high intensity group: mean age 23.9, standard deviation 3.6,
12 females).

Behavioral assessment

Participants in the training groups had a group juggling lesson on the
first training day, where the fundamentals of the 3-ball cascade were
taught. Subsequently, participants were instructed to practice continu-
ously for 15 (low intensity group) or 30 (high intensity group) minutes

per day for 29 days. There was no fixed structure or number of juggling
attempts per training session. Volunteers who mastered the ‘3-ball cas-
cade’ before the end of the training period were encouraged to practice
more advanced juggling patterns. After the training period, participants
were not told to juggle for 4 weeks. Participants filmed every home
training session using a webcam and were required to upload their
training videos to a secure website daily. After the final scan (following
the four-week period without juggling) participants were asked to film
themselves again for 5 min while juggling. Videoing of training sessions
ensured compliance and provided us with objective information for
later assessment. For the daily performance scores the experimenter
rated each of the 29 training videos per participant on a scale of 0-10
(Scholz et al., 2009) (0: 2 balls; 1: 1 cycle of ‘3-ball cascade’; 2: 2 cycles;
3:3 cycles; 4: 5-10 s of sustained 3-ball cascade; 5: 10-20's; 6: 20-30's;
7:>30 s; 8:>60 s; 9:>60 s and at least one other pattern for <60 s;
10:>60 s and at least one other pattern for >60 s). A learning curve
was plotted for each participant based on the score for each day. A log-
arithm curve was then fitted to each participant's learning curve and the
slope of the curve (learning rate) was calculated (see Inline
Supplementary Figure S1b).

Inline Supplementary Fig. S1 can be found online at http://dx.doi.
org/10.1016/j.neuroimage.2014.03.056.

For each subject we calculated the following measures: daily perfor-
mance score, best performance score over all training days, perfor-
mance on the last day of practice, average performance over 29 days,
and learning rate. Furthermore long-term retention was calculated as
the difference between the final behavioral test (4 weeks after partici-
pants stopped juggling) and the average performance of the last 3
days of juggling training. These scores were used to explore behavioral
differences between groups.

We tested for performance differences over time and between
groups with a Repeated Measures ANOVA (RM — ANOVA) of the daily
scores including the factors of day (29 days of training) and group
(high vs low intensity). When Mauchly's test of sphericity was statisti-
cally significant, Greenhouse-Geisser F-test was used and the respective
degrees of freedom are reported.

Additionally, T-tests were used to investigate between-group differ-
ences in: performance on the last day of practice, best performance,
learning rate, the last performance measure acquired after the last
scan (4 weeks after participants were asked to stop juggling), and
long-term retention. Of the several performance parameters calculated,
average performance over 29 days per participant (from now on re-
ferred to as average performance or just performance) (mean = 4.83,
SD = 1.78) was used to test for the effects of performance outcome
on structural brain changes as this measure captured performance
over the whole training period and showed a wide variation across sub-
jects (See Inline Supplementary Figure S1c).

MRI acquisition

Data was acquired on a 3 T Trio scanner (Siemens, Erlangen,
Germany) with a 12-channel head coil. We acquired one axial
T1-weighted anatomical image using a MPRAGE sequence (TR =
20.4 ms; TE = 4.7 ms; flip angle = 8°; voxel size = 1 x 1 x 1 mm°).

Two sets of whole brain diffusion weighted volumes (60 directions;
b-value = 1000 s/mm?; 65 slices; voxel size 2 x 2 x 2 mm>; repetition
time (TR) = 9.3 s; echo time (TE) = 94 ms) plus six volumes without
diffusion weighting (b-value = 0 s/mm?) were also acquired. Due to
technical problems DTI was only acquired in 35 participants (19 from
the high intensity group and 16 from the low intensity group).

MRI analysis
We carried out analyses with the FSL package, version 4.1 (http://fsl.

fmrib.ox.ac.uk/fsl/fslwiki/). We analyzed T1-weighted anatomical im-
ages using FSL-VBM (Douaud et al., 2007, http://fsl.fmrib.ox.ac.uk/fsl/
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fslwiki/FSLVBM), an optimized VBM protocol (Good et al., 2001) carried
out with FSL tools (Smith et al., 2004). A longitudinal protocol increas-
ing the sensitivity for detecting changes in gray matter thickness was
used to avoid any registration and interpolation bias (Douaud et al.,
2009). In brief, the non-linear registration was determined from the
gray matter images for all 3 time points averaged in midspace: this
way, changes in gray matter detected between time points can be main-
ly interpreted as changes in thickness (Douaud et al., 2009; Scholz et al.,
2009). More specifically, for each subject, we calculated the midspace
between the 3 scans and aligned each scan to this midspace using linear
registration (FLIRT) (7 DOF), after which all scans for a given subject
were averaged in midspace. For each subject, we ran brain extraction
with BET (Smith, 2002) on the midspace averaged brain and back-
projected the brain mask to each of the original (native space) scans.
Then the brain-extracted native space images were segmented into
gray matter (GM) using FAST4 as the algorithm optimally works on
non-interpolated data (Zhang et al., 2001). The resulting GM partial vol-
ume images were linearly transformed into that subject's midspace, av-
eraged and then aligned to MNI152 standard space using the nonlinear
registration FNIRT (Andersson et al., 2007a,b). The registered GM im-
ages (average across time for each subject) were then averaged across
all subjects to create a GM study-specific template, to which each of
the midspace average GM image was then non-linearly re-registered.
Finally, we combined the affine midway transformation with the non-
linear warpfield generated between the midspace averaged GM images
and the study-specific template, and applied this final transformation to
the original GM images for each scan. We modulated the registered
maps using the Jacobian of the warpfield of the non-linear transforma-
tion from midspace to MNI study-specific template space to correct for
local geometric expansions or contractions. The modulated segmented
images were then smoothed with an isotropic Gaussian kernel with a
sigma of 3 mm (~7 mm FWHM).

DTI data were analyzed with FMRIB's Diffusion Toolbox (FDT). First,
all data were corrected for eddy current distortions and head move-
ments. Voxel-wise maps of fractional anisotropy (FA) were then
estimated for each subject and each time point using dtifit, and these
were then analyzed using the Tract Based Spatial Statistics (TBSS)
approach (Smith et al., 2006). Again to avoid any registration bias
(Scholz et al., 2009), FA maps were registered for each subject to a
midspace between scans and the registered maps were then averaged.
The averaged maps for each subject were non-linearly aligned to FSL's
standard FA template and averaged to generate a study specific mean
FA map. The white matter skeleton was then extracted from this
mean FA image by thresholding it at an FA value of 0.2 to represent
the center of the tracts common to all subjects. The tract centers for
each subject were projected onto the skeleton, which were then used
for voxel-wise statistical comparisons.

MRI statistical analysis

For statistical whole brain analyses of GM volumes and FA, a voxel-
wise general linear model (GLM) was applied using permutation-
based non-parametric testing (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
Randomize). Clusters were formed at t > 2 and tested for significance
at p < 0.05, corrected for multiple comparisons across space (Nichols
and Holmes, 2002). For GM analysis we are correcting across all GM
voxels in the brain and for FA analysis across all voxels on the WM
skeleton.

We tested whether baseline structural characteristics correlated
with subsequent learning across all subjects. We addressed this ques-
tion using GM or FA images from the baseline scan and analyzed this
using a design matrix that included a regressor representing learning
rate (slope), average performance and long-term retention as measure-
ments of performance. Age and gender were included as covariates of
no interest.

To address the effect of practice and performance on structural brain
change with training, we have considered each pair of time points sep-
arately (scan 1 vs 2; 2 vs 3; 1 vs 3), creating difference images between
time points for GM volume or FA, which were then analyzed separately
with whole brain voxel-wise analyses. For each pair of time points, we
used a single design matrix to model both performance and amount of
training and the interaction between these variables. This allowed us
to test for a main effect of time, as well as interactions between perfor-
mance, practice, and both in a single design.

Results
Behavioral results

Participants were asked to practice juggling, while filming them-
selves, 5 days a week for 6 weeks, resulting in a total of 30 days training
and 29 videos (excludes the juggling class on the first day of training).
Compliance was good: Subjects submitted on average 27.9 videos
(SD = 2.2) and reported juggling on average for 28.6 days (SD = 0.9).
The low intensity (15 min daily practice) group showed a mean im-
provement in performance (i.e., from a starting point of zero to their
final day performance scores) of 6.47 rating points (SD = 2.4), and the
high intensity (30 min daily practice) group showed a mean improve-
ment in performance of 7.3 rating points (SD = 1.7) but the difference
in performance improvement between groups was not statistically sig-
nificant (tsg) = 1.29, p = 0.205). We explored differences between
groups and over practice days with RM — ANOVA including factors of
day (29 days) and group (high vs low intensity) (Fig. 1a). The test
revealed an effect of day on performance (F (4127, 152.704) = 157.5,
p < 0.001), confirming significant improvements in performance with
practice. However, no interaction effect between day and group
(F (4127, 152704y = 1.113, p = 0.353) or main effect of group (F (1, 35y =
0.064, p = 0.801) was found. There were no differences found between
groups for the average performance over 29 days (t(y, 35y = 0.077,p =
0.783), learning rate (slope) (t(1, 35y = 1.47, p = 0.234) or best perfor-
mance (t;, 33y = 1.439, p = 0.238). Differences between groups
were also tested in the last performance measure acquired after the
last scan (4 weeks after participants were asked to stop juggling).
There were no significant differences between groups at this last time

Scan 1 Scan 2 Scan 3

Ratings
N
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1 4 weeks

A

L] L] L] L] L] L] L] L] L] L] L] L] L]
1 35 7 911131517 192123252729

Days of Training

=0~ Low Intensity =B~ High Intensity

Fig. 1. Average performance score for each group per day. (0: 2 balls; 1: 1 cycle of 3-ball
cascade; 2: 2 cycles; 3: 3 cycles; 4: 5-10 s of sustained 3-ball cascade; 5: 10-20 s; 6:
20-30s; 7:>30s; 8: >60 s; 9: >60 s and at least one other pattern for <60 s; 10: >60 s
and at least one other pattern for >60 s). There is a significant effect of day but no signif-
icant interaction effect or significant differences between groups. Bars represent standard
error.
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point (t(1, 35y = 0.411, p = 0.683). We did not find significant
differences between groups for the long-term retention (t(, 35y = 1.52,
p = 0.141). In summary, daily practice improved juggling performance
but the amount of practice per day did not have any statistically signifi-
cant effect on performance outcomes.

GM volume at baseline correlates with how fast participants
learned to juggle

We found that GM volume at baseline correlated with subsequent
learning rate. Participants with higher GM volume in right visual areas
(including areas V1, V2, V4, according to the Juelich probabilistic atlas
http://fsL.fmrib.ox.ac.uk/fsl/fslwiki/Atlases), right precuneus and right
posterior cingulate at baseline learned to juggle faster than jugglers
that had lower GM volume in these regions (cluster p = 0.05)
(Fig. 2a). Interestingly, some of these brain areas partially overlap with
regions that show GM change with learning in the same participants
(described below Fig. 4c) and in a previous related study (Scholz et al.,
2009), particularly in precuneus, V1 and V2 areas (Fig. 2c). We tested
whether GM volume at baseline was associated with the magnitude of
GM change in these overlapping regions, but no correlation was found.

Furthermore, we found a positive correlation with GM volume in the
DLPFC and SMA and long-term retention (cluster p = 0.02) (Fig. 2d).
We did not find any negative correlations between GM and perfor-
mance measures.

We found no evidence that baseline FA was related to later perfor-
mance at the selected threshold (p < 0.05). There were no significant
differences between groups in baseline brain structure.

What drives structural brain changes? Effects of time, amount of
practice or performance?

In order to distinguish the contribution of time, practice and perfor-
mance outcome to structural brain plasticity a series of whole brain
analyses were performed, in which the inputs were GM or FA difference

images between each pair of time points (1 vs 2; 1 vs 3; 2 vs 3), and the
regressors represented factors of practice (low intensity vs high intensi-
ty groups) and performance outcome (average performance over
6 weeks of training). For each pair of time points, the main effect of
time was tested. Additionally, interactions were also tested between
time and performance; time and practice; and time, practice and
performance.

Training period: changes between scan 1 and scan 2

No main effect of time was found, and no two-way interactions be-
tween time and performance or time and practice on GM volume differ-
ences between scans 1 and 2. However, a significant interaction
between time, performance and practice was found in the left motor
and dorsolateral prefrontal cortex (DLPFC) (p = 0.05), demonstrating
that the relationship between GM changes over time and performance
varied between the two practice groups (Fig. 3). The different relation-
ships underlying this interaction can be seen in the scatter plot in Fig. 3:
For the low intensity group, better average performance was negatively
associated with changes in GM volume between scans 1 and 2 in left
motor and DLPFC, while for the high intensity group, better average per-
formance was positively associated with changes in GM volume be-
tween scans 1 and 2 in the same areas.

No main effect of time, and no interactions between time and prac-
tice group were found for scans 1 to 2 for FA. A trend for an interaction
between time and performance was found for FA change in the posteri-
or region of the corpus callosum (p = 0.08), reflecting greater increases
in FA for subjects showing greater increases in FA between scans 1 and 2
in this region.

Longer term effects: scans 1 to 3; scans 2 to 3
A main effect of time on GM volume changes between scans 1 and 3

was found that corresponded to decreases in GM in the left operculum,
insula and superior temporal gyrus (p < 0.028) (Figs. 4a, b). We did

GM Baseline
(=]
i

0 1 2 3 4 5
Learning Rate

d ® Low Intensity ® High Intensity

Fig. 2. Baseline GM volume correlates with subsequent learning rate. a) GM volume in right visual and parietal cortex at baseline correlates with subsequent learning rate. Yellow-red
voxels represent significant clusters superimposed on MNI template. Color bar represents t-scores. b) Scatter plot showing the correlation between GM volume averaged across voxels
in significant brain areas (shown in 2a) and learning rate for the low intensity group (dark gray symbols) and the high intensity group (black symbols) is displayed for visualization of
the range of individual values only and not for inference. c) Regions where GM volume correlates with subsequent learning partly overlap with regions where GM changes with learning
in the current study (see Fig. 4c). Yellow cluster corresponds to regions showing significant GM volume change after learning (from Fig. 4c), blue cluster represents regions showing a
correlation between GM volume at baseline and learning rate (from Fig. 2a) and green cluster shows the intersection between both clusters. d) GM volume in bilateral DLPFC and SMA
correlated with long-term-retention. Yellow-red voxels represent significant clusters superimposed on MNI template. Color bar represents t-scores. Clusters are shown at a corrected clus-

ter extent threshold of p < 0.05.
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Fig. 3. Interaction effect between practice group and average performance, between scan 1 and scan 2. a) Yellow-red voxels correspond to the significant cluster, superimposed on MNI
template. Color bar represents t-scores. b) Scatter plot of mean GM change and average performance correlation for the low intensity group (dark gray symbols) and the high intensity
group (black symbols) are displayed for visualization of the range of values only and not for inference. Clusters are shown at a corrected cluster extent threshold of p < 0.05.
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Fig. 4. Longer term effects: Scans 1 to 3 and scans 2 to 3. a) GM volume decreases between scans 1 and 3 in the left temporal cortex, insula and operculum. Blue-dark blue voxels corre-
spond to the significant clusters. b) Mean GM values of the blue clusters throughout time relative to scan 1. c) GM volume increases between scans 2 and 3 in the visual and parietal cortex
(Yellow-red voxels). d) Mean GM values of the yellow-red clusters at different time points relative to scan 1. e) GM volume decreases between scans 2 and 3 in the superior temporal
gyrus, insula and operculum (Blue-dark blue voxels). f) Mean GM values of the blue clusters throughout time relative to scan 1. Plots are for illustrative purposes only and not for inference.
Error bars represent standard error. Clusters are superimposed on MNI template. Color bars represent t-scores. Clusters are shown at a corrected cluster extent threshold of p < 0.05.
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Fig. 5. Participants with better performance have higher GM increases during the follow-up period. a) Cluster's mean GM change values correlation with the average performance after the
learning period (between scans 2 and 3). b) Correlation plot between the average performance and GM change in a) is displayed for visualization of the range of individual values and not
for inference. Color bar represents t-scores. Clusters are shown at a corrected cluster extent threshold of p < 0.05.

not find any interactions with performance for this pair of time-
points.

During the follow-up period (between scans 2 and 3) we found two
main effects of time. Jugglers had increased GM volume in occipital and
parietal regions bilaterally (p = 0.015) (Figs. 4c, d), in similar areas to
those reported by the previous studies to change with juggling training
(Boyke et al., 2008; Draganski et al., 2004; Driemeyer et al., 2008; Scholz
et al., 2009). Decreases in left operculum, insula and superior temporal
gyrus were also found (p = 0.05) (Figs. 4e, f).

There were no significant main effects of time, or interactions of time
with performance, or practice for FA. There were, however, trends for a
main effect of time between scan 2 and scan 3 (p = 0.09) and scan 1
and scan 3 (p = 0.07) in the corticospinal tract, motor and premotor
areas of the corona radiata, reflecting increases in FA over time in
these regions.

There was also an interaction between time and performance for GM
change for this time period (between scans 2 and 3): jugglers that had
higher GM increases in the right motor cortex, parietal cortex and pre-
SMA also scored a higher average performance during their learning pe-
riod (p = 0.015) (Fig. 5) There were no interactions with practice
group.

Discussion

We found that inter-individual differences in GM volume in
occipital-parietal areas before learning correlated with subsequent
learning rate in a complex visuo-motor task. The identified brain areas
have been previously implicated in the present task as part of a large
GM cluster that was found to increase in volume after juggling learning
(Scholz et al., 2009). The same areas overlapped with a significant in-
crease in GM volume after learning in the present group of participants.
Additionally we directly tested for performance and practice effects on
structural brain change. We found that performance outcome plays an
important role in modulating positive structural brain change over cer-
tain time points in GM volume. We did not find straightforward effects
of amount of practice on structural brain change, but found evidence to
suggest that an amount of practice interacts with performance outcome
in modulating structural brain change, as discussed below.

GM volume at baseline correlated with how fast participants
learned to juggle

GM volume at baseline in occipital-parietal areas before learning
correlated with subsequent learning rate. These areas have been previ-
ously implicated in visual spatial processing and spatial attention
processes that would be important for learning to juggle. More specifi-
cally, the posterior cingulate cortex (PCC) is involved in spatial attention

shifting and in navigation tasks (Hopfinger et al., 2000; Kovacs et al.,
2010). The precuneus is a major association area that connects to
other parietal regions such as the intraparietal sulcus (IPS) as well as
premotor regions like the supplementary motor areas (SMA)
(Cavanna and Trimble, 2006). Due to its anatomical connections, this
area has been considered to be part of a network that specializes in
spatially guided behavior and in the spatial relationships for body
movements, playing a role in the visual guidance of hand movements,
reaching and grasping (for review see (Culham and Valyear, 2006)).
This region is also more active in complex bimanual tasks compared
to a complex unilateral task (Wenderoth et al., 2005). Taken together,
all these areas are functionally relevant for juggling, which involves
complex bilateral reaching and grasping movements. It is feasible that
people who have greater eye-hand coordination, that translates into
higher GM volume (either by previous learning or genetic predisposi-
tion) in brain areas that are related to this function, learn to juggle
faster.

Furthermore, we found a positive correlation with GM volume in bi-
lateral DLPFC and SMA and long-term retention measures. Participants
that have greater GM volume in these areas involved in complex
whole-body movements and bilateral movements were found in this
study to retain the acquired skill for longer.

Most studies that have examined the relationship between behavior
and brain structure in non-expert populations have used simple tasks
that can be performed with more or less difficulty by the participants
(Johansen-Berg et al., 2007; Rudebeck et al., 2009; van Gaal et al.,
2011). However, in this study the participants were scanned before
they were able to juggle. The observed correlation between baseline
brain structure and subsequent learning rate in this complex task
shows that the potential to learn complex skills partially depends on
structural properties of gray matter of functionally relevant areas. Sim-
ilarly, a previous study of sequential pinch force learning found that
baseline GM volume in the cerebellum predicted subsequent behavioral
gains (Gryga et al., 2012). That same study found that baseline cerebel-
lar structure also predicted structural change in motor, premotor and
prefrontal cortex. By contrast, in the current study we found that even
though there was overlap between regions whose baseline structure
predicted learning and regions showing increase in GM volume after
learning, the magnitude of subsequent GM change after learning was
not associated with GM volume at baseline.

The observed correlations between baseline GM structure and sub-
sequent learning should motivate future studies to test the predictive
value of baseline GM structure. The ability to predict subsequent learn-
ing from baseline imaging measures is relevant to a number of real-life
situations. For example, it can offer the opportunity to channel time-
consuming training and limited resources by identifying people that
might benefit the most from it. Such an approach could be used in the


image of Fig.�5

164 C. Sampaio-Baptista et al. / Neurolmage 96 (2014) 158-166

context of elite sports and highly skilled professions, as well as in clinical
domains such as predicting response to rehabilitation. This seems to be
true not only for motor skills but also for the cognitive domain. Recently
a study found that baseline hippocampal volume in third grade students
was correlated with behavioral improvements after one-on-one math
tutoring (Supekar et al., 2013). This knowledge could be used to tailor
training programs to people's needs, not only taking advantage of the
“natural” inclinations but also maximizing brain plasticity mechanisms
through learning.

Effects of time, amount of practice or performance on gray matter change

In some regions and time periods, GM volume was not associated
with performance and/or amount of training. Specifically, we found
bilateral GM increases in widespread regions of visual and parietal
cortex, during the follow-up period, in regions that coincide with
the previous reports of GM change with juggling (Draganski et al.,
2004; Scholz et al., 2009). However, the increases detected in the
current study were found at a later time-point compared to the pre-
vious studies.

We were particularly interested in how changes over time varied
with practice time and performance outcomes. We found that partici-
pants with better performance had higher increases in GM volume dur-
ing the period after training (i.e., between scans 2 and 3) in dorsal
parietal cortex and primary motor cortex. These regions are relevant
to the trained skill as they are involved in complex motor learning and
eye-hand coordination (Culham and Valyear, 2006). This finding appar-
ently contradicts some previous studies where no correlations between
GM structural change and performance were found (Draganski et al.,
2004; Driemeyer et al., 2008; Scholz et al., 2009). There are however a
number of differences between the current study and previous reports
that could help explain this discrepancy. For example, in the current
study, the correlation related to structural brain changes detected dur-
ing the follow-up period between scans 2 and 3, and might therefore
be related to delayed, off-line processes rather than changes occurring
during the training period itself, which was the focus of most prior stud-
ies. Furthermore, for the first time video recording was used in the cur-
rent study to objectively assess daily performance, which could have
provided a more sensitive or accurate measure than the self-report
used in a similar previous study (Scholz et al., 2009). Finally, whereas
many prior studies (Boyke et al., 2008; Draganski et al., 2004;
Driemeyer et al., 2008) required participants to reach a set performance
criterion during the training period, we did not impose any criteria, and
we also deliberately varied practice time, and so ended up with a larger
spread of performance across individuals.

Our findings of correlations between brain change and behavioral
change are consistent with a previous study of sequential pinch force
learning which found that subjects showing greater performance im-
provements showed training-related increases in GM in motor,
premotor and DLPFC, whereas those with smaller behavioral gains
showed no change or a decrease in GM with training in the same re-
gions (Gryga et al,, 2012). In the current study, we also detected varia-
tions with performance in DLPFC, a region that is involved in effortful
motor learning (Jueptner et al., 1997; Sakai et al., 1998). In addition,
by manipulating practice time in our experimental design, we were
able to show that our observed relationship between performance and
training-related brain changes in DLPFC also varied between the high
and low intensity practice groups: participants that perform better ei-
ther increase (for the high intensity group) or decrease (low intensity
group) their GM after learning.

While the specific relationships between practice, performance and
brain change found here are complex, we believe that some aspects of
our results can be better understood when considered in the light of an-
imal literature concerning potential underlying cellular mechanisms, as
discussed below.

Underlying cellular mechanisms

Because MRI does not allow us to differentiate the underlying cellular
mechanisms, it is not straightforward to interpret the structural changes
detected here. For example, increases or decreases in GM volume can be
attributed to a variety of events, such as myelination, angiogenesis, syn-
aptogenesis, spine formation or elimination, dendritic branching or
pruning, gliogenesis and even neurogenesis (Zatorre et al., 2012).
There is extensive evidence in animal literature that all these events
occur in response to experience and learning (Anderson et al., 1994;
Chang and Greenough, 1982; Eriksson et al., 1998; Gould et al., 1999;
Greenough et al., 1985; Hihara et al., 2006; Ramirez-Amaya et al., 2001).

Evidence from animal studies also suggests possible interpretations
for some of the more counter-intuitive findings from the current study.
For example, similar to previous human imaging studies (Gryga et al.,
2012; Langer et al., 2012; Taubert et al., 2010), we found both decreases
and increases in brain structural measures in task-relevant areas, some
of which were modulated by practice or performance. Evidence from
several animal and human studies suggests that the time-course of GM
structural brain change is not linear (Kleim et al., 2004; Taubert et al.,
2010). Therefore, different phases of learning might be associated with
different cellular mechanisms that MRI is not able to distinguish. For in-
stance, an initial learning phase might be associated with rapid and tran-
sient GM remodeling in functionally relevant brain areas, whereas more
persistent GM changes might be associated with later learning phases,
consolidation and long-term storage. Animal studies have provided evi-
dence that this is indeed the case. Synaptogenesis and map reorganiza-
tion occur during the late phase in a rat reaching task, but not during
the early learning phase, with synaptogenesis preceding map reorgani-
zation (Kleim et al., 2004). Recent studies employing invasive in-vivo
techniques have shown that new spines formed within hours, that
were relevant for task acquisition, are stable, while learning destabilizes
older spines that are later eliminated (Xu et al., 2009; Yang et al., 2009).
Spine formation and elimination were found to correlate with perfor-
mance (Yang et al., 2009). These studies provide evidence that not
only spine formation but also spine elimination is important for coding
learning and performance, thus circuit pruning is an essential aspect of
neural plasticity. Due to the technique employed, these studies are not
able to track changes in the whole dendritic tree, however there is evi-
dence from histological studies that dendritic trees can be remodeled
by experience (for review see (Markham and Greenough, 2004)).

Although spine formation and elimination of old spines occur during
early learning, with a small number of new spines persisting throughout
life (Yang et al., 2009), it is not clear what happens at the structural level
during later stages of learning. There is evidence that map reorganiza-
tion, such as enlargement of the hand representation with motor skill
learning (Kleim et al., 1998), occurs in late stages preceded by synapto-
genesis (Kleim et al., 2004), but whether the map reorganization is
sustained by synaptogenesis and functional changes alone or by more
complex structural reorganization is unknown. Also unclear is the
time-course of non-neuronal events, like angiogenesis or gliogenesis,
which might more realistically underlie some of the MRI detected GM
changes. Furthermore, late stages in most animal studies usually corre-
spond to a few days or weeks. Learning stages will be intrinsically con-
nected to the type and complexity of the task; a week can be enough to
master a simple finger tapping sequence but it will take months or years
to learn to play a complex piece of music on the piano. It is likely that the
more complex the skill, and the longer it takes to master, the greater the
brain restructuring needs to be.

These animal studies highlight the fact that learning encompasses
circuit refinement, thus including pruning as well as formation of new
connections. This could explain why decreases in GM volume were
found in task relevant brain areas. Furthermore, the observed interac-
tion between practice group, performance and time in the DLPFC
could reflect the different practice groups being at different stages of
learning, despite the apparent absence of performance differences. It is
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conceivable that cellular mechanisms are dependent on the practice
level — from our findings we would anticipate that lower amounts of
practice would elicit pruning and rely mostly on previously established
functional connections, whereas higher amounts of practice would
cause formation of new connections.

Limitations

We did not find performance differences between naive participants
that learned to juggle for 15 min per day and participants that practiced
twice as much, for the same period of time, but it is possible that our
measures are too crude to detect subtle differences between groups.
We only assessed the amount of sustained juggling each participant
could perform in each training session and did not quantify juggling
speed or more importantly the quality of the movement. Similarly,
assessing changes in performance within each training session could
provide more sensitive measures of group differences. Muscle fatigue,
concentration or memory interferences are other temporary factors
that might have affected the high intensity group immediate perfor-
mance thus obscuring any differences in performance between groups
(Kantak and Winstein, 2012). Despite this, we were still able to find a
relationship between a derived performance outcome and brain struc-
ture change.

Furthermore, we did not assess the previous experience in complex
visuomotor skills such as sports and musical training. However, we did
not find any differences in brain structure between groups at baseline
and the participants were comparable in terms of baseline demographics.

We have reported correlations between baseline GM measures and
subsequent learning behavior. However, to directly test the ability of
baseline GM characteristics to predict learning behavior on an individu-
al subject basis would require a stricter test, such as out-of-sample cross
validation. Unfortunately, our current sample was not large enough,
considering the variance in the data, to robustly obtain high accuracy
with such cross-validation approach.

For our longitudinal analyses, we calculated difference maps be-
tween each pair of scan time points (i.e., 1v2, 2v3, 1v3) and fed these
into separate general linear models. However, we did not correct the
subsequent contrasts for these three separate measures. The main effect
of time corresponding to GM increases (Fig. 4b), and the correlation be-
tween GM change and performance (Fig. 5) would have survived such
correction, whereas the interaction with practice group (Fig. 3) and
the GM decreases (Fig. 4c), would not. Therefore the reported interac-
tion with practice group and the decreases should be considered explor-
atory findings.

We did not detect statistically significant effects of time, practice or
performance on FA, though a few trends for increasing FA with training
and with greater behavioral outcomes were found in task-relevant
pathways. The lack of significant effects is likely due to the smaller
number of participants acquired with DTI protocol compared with the
T1-weighted scan from the current study and compared with the previ-
ous studies that have reported FA change with visuomotor training
(Scholz et al., 2009; Taubert et al., 2010).

Recently, concerns have been raised about the current evidence
from MRI studies supporting structural plasticity in the adult human
brain (Thomas and Baker, 2013). The authors mainly discuss flaws in
the experimental design, statistical and analysis methods, reproducibil-
ity of the findings, and the relationship between the findings and behav-
ioral performance (Thomas and Baker, 2013). The current study did not
set out to demonstrate structural change per se, but rather to identify
factors that might modulate the degree of structural change (i.e., prac-
tice time and performance outcome). In this study we have addressed
some of the methodological concerns raised by using unbiased mid-
space registration (as developed in (Douaud et al., 2009) and used in a
previous juggling study by (Scholz et al., 2009)), robust statistical anal-
ysis and have found a correlation between GM volume increases and
behavioral performance.

Conclusions

Individual differences in brain structure in areas that are functionally
relevant to motor skill learning relate to the speed at which a novel
visuo-motor skill can be acquired. Furthermore, learning the skill itself
drives structural changes that depend to some extent on training
outcomes and practice time. The current study suggests that MR-
detectable changes in brain structure with learning are more complex
than previously thought. Although we can only speculate about the un-
derlying cellular mechanisms, the specific relationships reported here
are consistent with the animal studies of dynamic, bi-directional struc-
tural changes with learning.
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