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Abstract

Motivation: A central aim of molecular biology is to identify mechanisms of transcriptional regulation. Transcription
factors (TFs), which are DNA-binding proteins, are highly involved in these processes, thus a crucial information is
to know where TFs interact with DNA and to be aware of the TFs’ DNA-binding motifs. For that reason, computation-
al tools exist that link DNA-binding motifs to TFs either without sequence information or based on TF-associated
sequences, e.g. identified via a chromatin immunoprecipitation followed by sequencing (ChlP-seq) experiment.

In this paper, we present MASSIF, a novel method to improve the performance of existing tools that link motifs to
TFs relying on TF-associated sequences. MASSIF is based on the idea that a DNA-binding motif, which is correctly
linked to a TF, should be assigned to a DNA-binding domain (DBD) similar to that of the mapped TF. Because DNA-
binding motifs are in general not linked to DBDs, it is not possible to compare the DBD of a TF and the motif directly.
Instead we created a DBD collection, which consist of TFs with a known DBD and an associated motif. This collection
enables us to evaluate how likely it is that a linked motif and a TF of interest are associated to the same DBD. We
named this similarity measure domain score, and represent it as a P-value. We developed two different ways to im-
prove the performance of existing tools that link motifs to TFs based on TF-associated sequences: (i) using meta-
analysis to combine P-values from one or several of these tools with the P-value of the domain score and (ii) filter un-
likely motifs based on the domain score.

Results: We demonstrate the functionality of MASSIF on several human ChiP-seq datasets, using either motifs from
the HOCOMOCO database or de novo identified ones as input motifs. In addition, we show that both variants of our
method improve the performance of tools that link motifs to TFs based on TF-associated sequences significantly in-
dependent of the considered DBD type.

Availability and implementation: MASSIF is freely available online at https://github.com/SchulzLab/MASSIF.
Contact: marcel.schulz@em.uni-frankfurt.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction . o .
recognized sequences are the genetic trigger for many diseases

Transcription factors (TFs) are proteins that bind to DNA by recog-
nizing specific DNA sequences with tertiary protein structures, so-
called DNA-binding domains (DBDs) (Luscombe ez al., 2000).
Thereby, TFs can regulate transcription by building complexes with
other proteins, e.g. RNA polymerases (Reiter ez al., 2017). Recent
studies suggest that TFs also directly influence chromatin state
(Swinstead et al., 2016). Besides, TFs are involved in many function-
al processes, e.g. maintaining the cell cycle, preserving and establish-
ing specific cell types as well as inducing cell death (Vaquerizas
et al., 2009). Deregulation or mutations in TFs or mutations in TF-
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(Deplancke et al., 2016). Further details are elaborated in Lambert
et al. (2018).

To understand the function of TFs, the composition of the
sequences they bind to must be known. These sequences are called
TF binding sites (TFBSs). Several experimental techniques are
known to determine TFBSs in vivo or in vitro (Bulyk, 2007; Furey,
2012; Tuerk and Gold, 1990). To denote the sequence preference of
a TF, all TFBS are summarized within TFBS patterns or motifs (in
the following only motifs). These motifs are essential for computa-
tional inference of TFBSs and have been combined successfully with
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diverse epigenetic datasets to predict genome wide TF binding e.g.
Pique-Regi et al. (2011) or Schmidt ez al. (2018).

Currently, chromatin immunoprecipitation followed by sequenc-
ing (ChIP-seq) (Furey, 2012) is a popular technique to identify
TFBS, since this in vivo method provides a genome wide and tissue-
specific overview of TF binding. After peak calling the resulting
DNA-sequences within the peaks are usually longer than the TFBS
of the considered TF, with DNA-sequence lengths depending on the
TF itself, the used peak caller and the quality of the data. Since
TFBS are in general between 6 bp and 21 bp long, de novo motif dis-
covery tools are commonly used to identify motifs enriched in these
sequences (reviewed in Tompa et al., 2005 or Tran and Huang,
2014). The result of a de novo motif discovery tool is a list of motifs,
which were significantly enriched in the considered sequences. Not
only the true motif of the TF can be detected, but also motifs of co-
factors of the TF of interest, as well as repetitive sequences.
Alternatively, methods like Clover (Chen er al., 2004), PASTAA
(Roider et al., 2009), CentriMo (Bailey and Machanick, 2012), i-
CisTarget (Potier et al., 2015), REGGEA (Kehl et al., 2018) or
iRegulon (Janky et al., 2014) make use of the increasing number of
already known motifs linked to TFs to detect enriched motifs in the
given sequences. The known motifs are usually taken from motif
databases like JASPAR (Khan ez al., 2018), TRANSFAC (Matys
et al., 2006) or HOCOMOCO (Kulakovskiy ez al., 2018). Some of
these methods can also handle de novo motifs as input; hence they
are used as a follow-up analysis to eliminate repetitive motifs from
the de novo motif discovery algorithm or to improve their ordering.

A closely related field of research tries to identify motifs of TFs
independently of any associated DNA-sequences. One of the first
studies (Tan et al., 2005) that linked TFs to their motifs only used
the information of the TFs derived from their amino acid sequences
and thus also included the DBDs of the TFs. The motivation of this
approach is that TFs associated to the same DBD are in general
more similar to each other in terms of amino acid sequence and
therefore tend to bind to similar motifs. Tan et al. (2005) used a
probabilistic framework that included DBD similarity of motifs and
comparative information for prediction in Escherichia coli. Later, it
was shown, using a support vector regression model, that for some
DBDs useful features from the protein sequence can be derived to
predict the binding motif of a TF (Schroder ez al., 2010). However,
the recent study by Zamanighomi et al. (2017) showed that using
only features derived from the DBDs yield a high number of false
positives (FPs). To overcome this problem, they combined the DBD-
based information with a probabilistic model of motifs hits using
epigenetic data.

In conclusion, the information derived from DBDs was successfully
used in studies that link TFs to their motifs often independently from
any TF-associated sequences. On the other hand, if tools are used that
search for enriched motifs in TF-associated sequences, we recognized
that these make no use of the powerful DBD information. Here, we
introduce a method called MASSIF—motif association with domain
information—that extends existing tools that link motifs to TFs and
improves their performance using DBD information, utilizing a statis-
tic comparable to Tan ez al. (2005). We demonstrate that well-known
and commonly used tools show significantly improved performance
on real ChIP-seq data when combined with MASSIF.

2 Materials and methods

2.1 Overview

Our approach is based on the idea that a motif linked to a TF of
interest is more likely to be correct if the TF and the motif are associ-
ated to the same DBD. For TFs, the DBD is usually known, but
motifs are in general not associated to DBDs. For that reason, it is
not possible to compare the DBD of a TF and the linked motif dir-
ectly. To enable the comparison, we constructed a DBD collection
consisting of TFs with known DBDs and linked motifs. We use the
DBD collection to compare the linked motif to all motifs in the col-
lection which are associated to the DBD of the TF of interest. This
results in a similarity measure, called domain score, which we
represent as a P-value. We use the domain score in two different

ways: (i) Using Fisher’s method as a meta-analysis (Fisher, 1934) to
combine the domain score with the results of existing tools. (ii)
Applying the domain score as a filter to reduce the motif set before
applying an existing tool. An overview is shown in Figure 1.

2.2 Similarity measurement and clustering of position
frequency matrices

During the construction of the DBD collection, we use a cluster al-
gorithm for Position Frequency Matrices (PFMs) developed by Pape
et al. (2008). Also, our domain score is based on the similarity meas-
urement S™** defined in their work. Pape ef al. developed a software
package, called Mosta, which conducts motif similarity computation
and motif clustering.

Two PFMs, X and Y are assumed to be similar if they describe a
similar binding site, or to put it in another ways, if they have a high
number of overlapping hits in a random sequence. Therefore,
Mostas’ similarity concept between two PFMs is based on an over-
lap probability yy y(k) at position k of X and Y as well as on the
probabilities of independent hits for X and Y at this position k,
denoted by ax and ay The overlap probability yy y(k) sums the
probability for all possible words x € X and y € Y to overlap at a
position k. In addition, oy is the probability that the words x € X
occur in a background model, equally for Y. Applying the logarithm
to the ratio of the overlap probability and the product of the proba-
bilities of independent hits for X and Y, gives the similarity Sx y:

Sxy = log (mw) (1)

oy - oy

The ratio describes the probability to observe two hits assuming
the motifs X and Y represent a similar binding site, normalized by
the probability to observe hits for X and Y assuming they do not de-
scribe a similar binding site. MASSIF applies a concept, also pro-
vided by Mosta called S™** which is based on Equation (1). S™** is a
maximization over all possible k’s and it also considers the reverse
complement of the motifs.

Based on the definition of the similarity between two PFMs,
Mosta determine clusters in a set of motifs. Each resulting cluster
contains a set of motifs which is represented by a consensus motif.
Initially, all considered motifs are interpreted as a separate cluster
containing one motif which is also the consensus motif at the same
time. Then in a greedy fashion, clusters are merged using $™* as a
similarity measure. The procedure stops if the motifs in a cluster are
not similar enough to the cluster consensus motif. The algorithm ter-
minates if all pairs of consensus motifs are considered at least once
or if the similarity of the remaining motif pairs is too low.

2.3 DBD collection

To build the DBD collection, we used information from the motif
database JASPAR (version from 2016). JASPAR contains known
motifs linked to TFs. Each TF of the database is associated to a
DBD, based on the TFClass system (Wingender et al., 2013). In a
first step, we separate the JASPAR TFs and hence, indirectly the
motifs, according to their DBDs. The considered motifs belong to 30
different DBDs (listed in Supplementary Table S1).

Since the JASPAR database contains 515 motifs, several motifs
are assigned to the same DBD. However, there is no guarantee that
motifs associated to the same DBD are similar to each other. The do-
main score determines a similarity between a candidate motif and
the motifs within a DBD, it is important to represent the diversity of
motifs for a DBD as accurately as possible to avoid FPs as well as
false negatives (FNs). The idea is to cluster motifs associated to the
same DBD annotation into distinct groups, so that the motifs within
each group are more similar to each other than to the motifs outside
this group. Then we can compare the candidate motif to the differ-
ent groups within a DBD to determine the domain score. Therefore,
we cluster the corresponding PFMs of the motifs within a DBD
using the cluster algorithm provided by Mosta. We get for each
DBD a set of clusters D;, where / € {1,...,30} since we observed
30 DBDs. Then D is defined as a the set of all DBDs
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Fig. 1. An overview of the DBD collection and MASSIF is shown. (a) Depicts the different steps of how the DBD collection is constructed. (b) Illustrates the necessary input for
MASSIEF. (c) Outlines the workflow of the two variants of MASSIF. The upper part of the figure displays the variant where the domain score is used in a meta-analysis. The

lower one shows how to apply the domain score as a filter

D ={Dy,...,Ds}. Each set of clusters D, consist of a varying num-
ber 7 of clusters cf with k € {1,...,n} depending on how similar
the motifs within the DBD are. Thus, we can write

Dy ={c},....c!}. In addition, the motifs within a cluster ¢} are rep-

resented by a consensus motif M. To sum up, the DBD collection

contains 515 JASPAR motifs, which belong to 30 DBDs with an
average number of 10 clusters per DBD (for detailed information,
see Supplementary Section S4).

2.4 Domain score

To calculate the domain score between a motif and a TF, we need to
be aware of the DBD of the TF. In general, for most of the TFs, the
DBD is known and can be looked up, for instance in UniProt (The
UniProt Consortium, 2017). Otherwise, if the DNA- or protein se-
quence is known, the DBD can be predicted using tools like SMART
(Letunic et al., 2015) or UniPROBE (Hume et al., 2015).

Knowing the DBD of a TF, we can use the DBD collection to
look up the consensus motifs of the set of clusters C; associated to
this DBD. Based on that, the domain score is computed yielding for
each candidate motif a score indicating how similar this candidate
motif is to the most similar consensus motif of the DBD of the cur-
rent TF. In more detail, we calculate the similarities S™** between
the PFM P of the candidate motif and all consensus motifs M« of
the DBD of the current TF. So, the set of similarities can be com-
puted as following:

sim(P, D)) = {Sm""‘ (P,Mcf> | e c,}. (2)

Among all calculated similarities, we pick the highest one, since
the maximum similarity is achieved for the consensus motif that is
most similar to the candidate motif. The consensus motifs of a DBD
might be different to each other, thus the maximization is important.
Since the similarity value also depends on the motif itself, we divide
the maximal similarity by the sum of all maximal similarities over
all DBDs to normalize for this effect. So, we get the following for-
mula for the domain score Ip:

max sim (P, D,
Ip(P,Dy) = X om (P D) 6

>~ max sim (P,D,,)

m=1

The higher the similarity the more likely the candidate motif has
the same DBD as the current TF. Figure 2 illustrates an example
how to calculate the domain score. To enable a better interpretation

of the domain scores as well as to give us the possibility to use them
in a statistical test, the domain scores are represented as P-values:

P-value := Pr(Ip(P, D;) > x|Hy) (4)

where x is an observed value of the domain score and the null hy-
pothesis Hy is defined as: ‘the DBD of the current TF and the DBD
associated to the motif are not the same’. Since we have no analytic-
al description of Hy, we approximate it by using Monte Carlo sam-
pling. By randomly sampling 100 000 PFMs (average entropy > 0.6,
length between 6 and 21) we obtain a set of random PFMs R. For
further information about the PFM sampling, see Supplementary
Section S6. We calculate for each random motif r € R the domain
score x for a given DBD D, and we estimate a P-value for this score
as follows:

_ |{r\ID(r,D1) >x,r € R}|

P, D) = i ‘ (5)

Basically, we count how often a random motif has an observed
domain score for a given DBD that is higher than the score x and
divide it by the total number of motifs in R.

The domain score can either be used in a meta-analysis or as a
motif filter. In the following, both variants are explained in more
detail.

2.4.1 Domain scores used in a meta-analysis

Tools that link motifs to TFs relying on TF-associated sequences
usually return a list of motifs describing the likelihood that the
motifs are over-represented in the set of input sequences. For each
motif a P-value is given that is used to compare the motifs with each
other. For each motif within this list, we determined the domain
score I [Equation (3)] and the corresponding P-value as explained
in Equation (5). A meta-analysis is performed by using Fisher’s
method to combine the P-values of the used tools and the domain
score:

X(p1,- o bm) = =2y _ log(pi), (6)
=1

where p; represents the P-value of the ith method, and 7 is the num-
ber of methods considered. Fisher’s method follows the ¥* distribu-
tion with 2k degrees of freedom (Fisher, 1934), hence we can obtain
the corresponding P-value by computing 1 — Fy(x), where Fy(x) is
the cumulative distribution function of the ? distribution.
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A part of the DBD collection: Calculation of Smax between the motif
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Io (P | D Helix-loop-helix)  =7.88/ (1.35+4.07+7.88) =0.592 —> 0.001

Fig. 2. Example how to calculate the domain score on an excerpt of the DBD collec-
tion (left). For each DBD the corresponding consensus motifs are shown and the TFs
within this cluster listed below. (Right) The similarities S™** between the PFM P (here
for TF ARNT) and the consensus motifs of all DBDs are computed. (Bottom) The cal-
culated domain scores and the corresponding P-values assuming the candidate TF has
the DBD “Tryptophan cluster’, ‘C2H2 zinc finger’ or ‘Helix-loop-helix’ are shown

2.4.2 Domain score used as a motif filter

The idea of the filtering is to reasonably reduce the set of input
motifs for a tool that links motifs to a TF depending on TF-
associated sequences, since we observed that the performance is usu-
ally better if we consider a smaller number of input motifs (data not
shown). Therefore, we choose a P-value =, such that we can decide
if the P-value of a domain score is significant or not. If a P-value of
the domain score is higher than the corresponding 7, we assume that
it is unlikely that the TF and the motif are associated to the same
DBD and exclude the motif from the set of input motifs. On the
other hand, if the P-value of the domain score is equal to or smaller
than 7, we keep the motif. Finally, we apply the considered tools on
the reduced motif set and, when we use more than one tool, we com-
bine the results with Fisher’s method.

2.5 ChlIP-seq data preparation

We downloaded ChIP-seq data for DNA binding proteins for Homo
sapiens from ENCODE (The ENCODE Project Consortium, 2012)
(ENCODE accession numbers in Supplementary Table S2). The
dataset includes sequence sets for 102 TFs assayed in K562. Here,
we use optimal IDR threshold peaks peak calls in narrow bed for-
mat computed with the uniform ENCODE processing pipeline and
version GRCh38 of the human reference genome. Using these pub-
licly accessible, and transparently processed files allows for easy re-
producibility of our results. In case that more than one peak file is
available, we randomly choose one. Next, we use the BEDTools
(Quinlan and Hall, 2010) getfasta command to extract the genomic
sequences corresponding to the ChIP-seq peaks. In the header of the
fasta file, we list the genomic location of the sequences, extended
with the signalValue provided in the bed files. If a tool that links
motifs to TFs based on TF-associated sequences, requires a biologic-
al information we use this signalValue. Sets of different sequence
length are obtained from the middle of the peaks.

2.6 Evaluation of the results
To assess the performance of the tested methods, we determine for
how many TFs a motif was linked correctly. As motif input set, we

use (i) motifs from the HOCOMOCO database (401 motifs) or (ii)
de novo motifs using GimmeMotifs (van Heeringen and Veenstra,
2011). To account for similarity between different HOCOMOCO
motifs in the evaluation, we combine similar motifs by clustering,
using Mosta. Linked motifs that belong to the same cluster as the
true motif are counted as correctly linked. GimmeMotifs applies a
clustering step to reduce the redundancy of the identified de novo
motifs within their analysis, hence we do not cluster the motifs again
for the evaluation. To determine which de novo motif is the correct
one, we calculated the similarity for each of them to the known
motif of the TF of the current ChIP-seq dataset. For this, we used
the similarity function sstat from Mosta, which determines the simi-
larity between two PFMs. The de novo motif that is most similar to
the motif of the TF is assumed to be the correct one, after checking
all motifs manually.

Further, we calculate Precision-Recall (PR) curves. Recall is
defined as the number of correctly linked motifs (TP) divided by the
number of FNs plus TP e.g. recall := % Further, precision is
specified as the number of TP divided by TP plus the FPs e.g.
precision := %EFP Additionally, we determine for each method
shown in the PR-Curves the area under the curve (AUC).

3 Results

In this study, we consider the following task: Given a TF, to which
no motif is linked, and a set of sequences that are associated with
the TF, e.g. identified via a ChIP-seq experiment, the aim is to iden-
tify the correct motif. To solve this, we developed a tool, called
MASSIF, which improves the performance of existing tools that link
motifs to TFs depending on TF-associated sequences by using the
DBD of a TF to calculate a domain score. This score is based on the
assumption that a motif which is correctly linked to a TF, should be
assigned to a similar DBD than the TF. Since we do in general not
know the DBDs of the motifs, we cannot directly compare the DBDs
of the linked motif and the TF of interest. We construct a DBD col-
lection, which consists of TFs with known motifs associated to a
DBD from the JASPAR database. The DBD collection allows us to
determine how likely it is that a linked motif and a TF of interest are
associated to the same DBD. We compute the domain score between
the linked motif and the set of motifs associated with the DBD of
the TF, which we looked up in the DBD collection. The domain
score can either be used in a meta-analysis or as a motif filter. An
overview of the DBD collection and MASSIF is provided in Figure 1.

3.1 Analysis of domain score distributions

To decide if an observed domain score is significant or not, we cal-
culate a domain score distribution for each DBD (Section 2.4). It is
important to do this separately for each DBD, because the distribu-
tions of different DBDs heavily differ from each other (Fig. 3).
Generally, the observed domain scores of DBDs that contain fewer
motifs have a smaller mean than DBDs with a large number of
motifs. An explanation for this effect is that the DBDs with a large
number of motifs typically consist of more clusters than small ones.
In addition, the bigger the clusters in a DBD the less specific are the
consensus motifs, hence it is more likely that a randomly generated
motif achieves a high similarity to the consensus motifs simply by
chance.

3.2 Results on ENCODE data

MASSIF can only improve the performance of existing tools that
link motifs to TFs relying on TF-associated sequences, hence we had
to decide which of them we want to consider in our study. We
choose CentriMo and PASTAA, because they are among the most
used methods (McLeay and Bailey, 2010).

CentriMo (Bailey and Machanick, 2012) was designed for the
analysis of ChIP-seq data and prioritizes motifs that are found in the
middle of peak regions, by using a binomial test of motif occur-
rences in the center compared to border regions in the sequences.

PASTAA (Roider et al., 2009) is a tool that uses not only the TF-
associated sequences to link a motif but also biological information.
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Fig. 3. The distributions of the domain scores for two DBDs, namely ‘C2H2 zinc fin-
ger factors’ and ‘STAT domain factors’ are shown. The black vertical lines mark the
smallest values of the domain score of all real motifs of the DBDs ‘C2H2 zinc finger
factors’ and ‘STAT domain factors’

In detail, PASTAA considers lists of ranked sequences based on TF
binding signals for instance of a ChIP-seq experiment or tissue-
specific gene expression data.

Both tools are user-friendly, easy to apply and have an acceptable
run time even for large sequence sets. Especially runtime is important,
because we validate MASSIF on a huge collection of ChIP-seq data-
sets. For an easy reproducibility of our results, the used commands for
PASTAA and CentriMo are listed in Supplementary Section S1.

We consider 102 ChIP-seq datasets, where a linked motif for
each chipped TF is known. To evaluate the performance of MASSIF,
we use the sequences determined via the ChIP-seq experiment as in-
put, and try to identify a motif for this TF. Whether we linked the
correct motif or not, can be checked by comparing with the known
true motif. To control if MASSIF improves the results of the consid-
ered approaches, that link motifs to TFs based on TF-associated
sequences, we test multiple variations, for which we developed the
naming scheme shown in Table 1. We first tested MASSIF with the
known motifs of the HOCOMOCO database and than in a more
difficult scenario, where we use de novo motifs as input motifs.

3.2.1 Results using HOCOMOCO motifs as input

We run MASSIF for all variants shown in Table 1 on four sequence
sets differing in the length (100 bp, 300 bp 500 bp and 700 bp), and
evaluate the performance with the clustering evaluation as explained
previously. The results are shown in Figure 4, where (a) shows ex-
emplary the PR-Curve for all used variants for sequence length
500bp and (b) the PR-AUCs for all variants for the different se-
quence lengths. To get a first clue how well PASTAA and CentriMo
perform, we run them without any modifications. We observe that
the PR-AUC of PASTAA is highest (=0.310) for the shortest se-
quence length and drops for the longer ones. On the other hand, we
see the opposite effect for the PR-AUC of CentriMo. The lowest PR-
AUC (0.237) is observed for a sequence length of 100 bp, and the
performance is improved for longer sequences e.g. a PR-AUC of
0.382 is achieved for a sequence length of 300 bp.

Next, we identified that the meta-analysis i.e. combining Pastaa
and Centrimo within Fisher’s method, called CP, leads to an im-
provement in PR-AUC. The PR-AUC of this variant is similar com-
pared to the PR-AUC of CentriMo (expect sequence length 100 bp),
whereas an improvement to the PR-AUC of PASTAA is observed. In
general, the performance of CP is more stable under varying se-
quence length compared to the results of CentriMo or PASTAA
when used individually.

Domain score used as meta-analysis
To test if we can further improve the PR-AUC of CP, we add the
P-values of the domain scores to the meta-analysis. We refer to this

Table 1. Explanation and shortcuts of the different variants

C P CP MCP Mc Mp Mcp

Meta-analysis v v v
Domain score as filter v v 4

Notes: ‘C’ and ‘P’ denote ‘CentriMo’ and ‘PASTAA’, respectively. ‘M’ fol-
lowed by capital letter(s) denotes the use of the domain score in a meta-analysis
and ‘M’ followed by subscript letter(s) the use of the domain score as filter.

variant as MCP, which results in a clear improvement of the PR-
AUC compared to CP. Especially, for the sequence length 100 bp
the increase of correctly linked motifs is substantial. The average im-
provement of the PR-AUC of MCP over CP is around 0.142 for all
sequence lengths.

Domain score used as filtering

Next, we test whether the domain score used as a filter leads to an
improved PR-AUC. Therefore, we evaluate the results of PASTAA
and CentriMo on the reduced motif set, termed Mp and M, separ-
ately. All motifs with = > 0.001 are excluded. Interestingly, these
variants improve many analysis. For sequence length 100 bp the PR-
AUC of Mp is 0.048 lower than the PR-AUC of MCP. On average
over all sequence lengths the PR-AUC for M compared to
CentriMo improves by around 0.204 and Mp compared to PASTAA
by around 0.324. Still, both used tools show varying performance
with the sequence length. For instance, the PR-AUC of Mp drops by
around 0.104 if we increase the sequence length from 100bp to
700 bp.

Finally, we combine the variants Mp and M¢ within the meta-
analysis, and refer to it as Mcp. Compared to M¢ the performance is
similar except, for the shortest sequence length, where we observe
an increase of the PR-AUC of 0.105. For Mp the largest improve-
ment is observed for longer sequences. Additionally, differences in
the PR-AUC for varying sequence lengths are small compared to the
meta-analysis or CentriMo and PASTAA. We observe the stable PR-
AUC over all sequences for Mcp, but for longer sequences the PR-
AUC of Mc is slightly higher. We conclude that adding the domain
score leads to a substantial improvement for both methods with a
slight improvement of the filter-based method over meta-analysis.

3.2.2 Results using de novo motifs as input

As an alternative to the HOCOMOCO motifs, we investigate how
de novo motifs affect the performance of MASSIF. To determine de
novo motifs on the ENCODE ChIP-seq datasets, we applied a tool
named GimmeMotifs (van Heeringen and Veenstra, 2011) on
sequences of length 300 bp. We use this method for the following
reasons: It identifies de novo motifs for ChIP-seq datasets in appro-
priate time and combines several de novo motif discovery tools with-
in one method (used tools: MDmodule, MEME, Weeder,
MotifSampler, trawler, Improbizer, BioProspector, Posmo,
ChIPMunk, AMD, Homer and XXmotif). Additionally,
GimmeMotifs clusters the resulting motifs to decrease the number
of redundant ones. The algorithm was able to identify de novo
motifs for 46 ChIP-seq datasets. We applied MASSIF on these data-
sets using the identified de novo motifs as input motifs.

To evaluate how accurately the different variations perform, we
followed the same strategy as before, and determined how many
motifs are correctly linked to a TF. To determine which de novo
motif is the correct one, we calculated the similarity for each motif
to the known motif of the TF of the current ChIP-seq dataset as out-
lined in Section 2.6. Figure 5 shows the PR curve for the different
variants. In addition to the variants used for MASSIF with
HOCOMOCO motifs, the black curve represents the performance
of GimmeMotifs, which sorts the de novo motifs according to their
internal determined enrichment value.

We observe that in general the tendency of the results of MASSIF
using de novo motifs as input are similar to the ones shown in
Figure 4. The variants which use the domain score as a filter again
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Fig. 5. PR curve of the results of MASSIF with de novo identified motifs for 46
ENCODE ChIP-seq datasets (sequence length 300 bp). The x-axis outlines the recall
of motifs correctly linked to TFs and the y-axis the precision

perform best. Also the PR-AUC from CentriMo, PASTAA and CP
are similar in comparison to MASSIF with HOCOMOCO motifs as
input. Only the performance of MCP decreased and PASTAA per-
forms better than GimmeMotifs.

In general, we noticed that some of the correctly linked de novo
motifs are extremely similar to the true motif. Further, we observed
that the filtering is able to remove de novo motifs that were highly
different from the true one. For 12 out of 46 cases, the filtering
rejected even all de novo motifs because of low similarity to any
known motifs of the DBD of the current TF (x> 0.001).
Supplementary Section S4 outlines some examples of linked de novo
motifs in comparison to the true one.

To conclude, the filtering can be applied as a quality control to
eliminate de novo motifs that are found to be enriched in the sequen-
ces but most likely do not represent the true motif of the TF. Adding
the domain score, especially as filter, leads to a considerable im-
provement of the performance of MASSIF with de novo identified
input motifs.

3.3 Analysis of the motifs that are incorrectly linked
toaTF

To get a better intuition, how the domain score influences the PR-
AUC of the used tools that link motifs to TFs, we analyzed the
motifs, which are incorrectly linked to a TF using the motifs from

the HOCOMOCO database. In particular, we want to investigate
for which DBDs using the domain score is helpful. In Figure 4c, the
number of motifs that are incorrectly linked to a TF per DBD is
shown. The black bars represent the background, which illustrates
the number of TFs of the input ChIP-seq dataset per DBD. If we
compare the number of motifs that are incorrectly linked to a TF of
the different variants, we notice several interesting points.

First, in all cases CP is able to be at least as good as the perform-
ances of CentriMo or PASTAA. For four DBDs ‘Basic leucine zipper
factors,” ‘Basic helix-loop-helix factors’, “Tryptophan cluster factors’
and ‘C2H2 zinc finger factors’ the performance of CP achieves a
better result than CentriMo or PASTAA alone. Interestingly, in two
cases, namely ‘Other C4 zinc-type factors’ and ‘nuclear receptors
with C4 zinc finger’, the performance of CP is poorer compared to
the best used tool, that links motifs to TFs.

The performance for Mcp is in most cases at least as good as the
best considered variant or improves the performance. For the DBD,
‘C2H2 zinc finger factors’ Mcp links two motifs incorrectly, which
are correct linked from CP. In addition, we observe that Mcp leads
to an improvement of seven DBDs in such a way that all linked
motifs are correctly associated, whereas without using the domain
score at least PASTAA or CentriMo linked one motif incorrectly.
Interestingly, five out of these seven DBDs contain only up to five
motifs in the DBD collection, whereas the other two contain 11 and
36 motifs (data shown in the Supplementary Section S4). These find-
ings suggest that for DBDs, which contain less motifs, the domain
score strongly influences performance, which is consistent with the
observation of Figure 3. There, we notice that it is easier for DBDs,
which containing less motifs, to distinguish if a motif is correctly
associated to a DBD or a FP one.

We conclude that, the reduced motif set which results from the
filtering is much more specific, and contains fewer FPs for a TF asso-
ciated to a DBD containing less motifs compared to a TF linked to a
DBD, which contains more motifs. This can lead to better results for
tools, that link motifs to TFs based on TF-associated sequences.

4 Discussion

In the present study, we analyzed how DBDs of TFs can be used to
improve the performance of existing approaches, that link motifs to
TFs relying on TF-associated sequences. Our tool MASSIF is based
on the idea that a correctly linked motif and a TF of interest are
associated with a similar DBD. However motifs are usually not
linked to DBDs. As a solution, we construct a DBD collection that
enables us to calculate how likely it is that a linked motif and the TF
of interest are associated to the same DBD. This measure, called
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domain score, can either be used in a meta-analysis or as a filter to
reduce the set of input motifs. Using MASSIF improves the PR-AUC
of the tools CentriMo and PASTAA significantly. For shorter
sequences, the best results are observed for the variant where we
apply PASTAA and CentriMo on the reduced motif set, and com-
bine the results with Fisher’s method and for longer sequences Mc is
the best variant.

Since we use a similarity measure based on PFMs, MASSIFs’ do-
main score can be applied to improve the performance of any tool that
links motifs to TFs if it is based on motifs in a matrix representation.
More complex representations of DNA motifs could also be included if
a suitable similarity measure exists. Even if a tool does not provide a
P-value as part of its analysis, our domain score can be used as a filter
to improve results. The only additional information MASSIF requires
in comparison to most of the tools that link motifs to TFs based on
TF-associated sequences, is the DBD of the TF of interest. It is practic-
able to determine the DBD of a TF even if the DBD is not listed in a
protein database like UniProt by predicting it using protein domain
profiles (El-Gebali et al., 2019). However, in case this is not possible or
if the domain type is not included in our current DBD collection, our
current method cannot be used to improve the result.

To demonstrate our approach in a realistic setting, we applied it
to 102 human sequence sets resulting from ChIP-seq experiments.
The TFs and the TF-associated sequences considered had diverse
characteristic. As a motif input set, we used either all motifs avail-
able in the motif database HOCOMOCO or de novo motifs for
evaluation purposes. In practice, any motif set can be used, from an-
other motif database, or experimentally derived or de novo motifs.

In our experiments, we investigated sequence sets with differing
length, which illustrated that our approach produces stable results
for all lengths. This is important, as peak length may vary with ex-
periment quality and the used peak caller.

The advantage of using the domain scores in a meta-analysis is
that no threshold has to be selected. However, using Fisher’s method
might not be the optimal statistical test to combine the domain score
with the P-values of tools that link motifs to TFs based on TF-
associated sequences. The smallest possible P-value of the domain
score using default parameters is 107°, since the corresponding dis-
tribution is based on 100000 random motifs. Compared to the
smallest possible P-values of CentriMo and PASTAA, this P-value is
rather big. Fisher’s method is more sensitive to smaller P-values
(Heard and Rubin-Delanchy, 2018). Thus, depending on the reso-
lution, this kind of approach may favor P-values from either
CentriMo or PASTAA. On the other hand, if we use the domain
score as a filter and combine the results of PASTAA and CentriMo,
this bias is less problematic, as the P-values of both tools are in the
same range. This could possibly explain why using the domain score
as a filter achieves better PR-AUC than using the domain score with-
in Fisher’s method. However, the drawback of the filter-based ap-
proach is the need to pick a P-value threshold. We selected a value
between the two extremes by picking the P-value as 0.001, which
may be further improved.

The idea to combine two or more tools, has been applied in the
context of de novo motif discovery tools or methods that link motifs
to TFs based on TF-associated sequences, e.g. MotifViz (Fu et al.,
2004), completeMOTIFs (Kuttippurathu et al., 2011) or MEME-
ChIP (Ma et al., 2014). Nevertheless, none of these approaches com-
bine the results of multiple tools in a statistical analysis.

Clearly, the observed results are also depending on the used
tools, that link motifs to TFs based on TF-associated sequences.
CentriMo, for instance uses flanking regions around the peaks to
simulate a background distribution. Choosing too narrow peaks
leads to worse results since the background is not represented rea-
sonably, as we observed for the sequence length 100 bp and 300 bp.
In contrast, PASTAA uses TRAP (Roider et al., 2007) to estimate a
TF binding affinity for all sites in each sequence. The longer the
sequences, the more sites are incorporated, which may lead to a less
accurate affinity computation. As we observed, longer sequences de-
crease the number of correctly linked motifs.

It is difficult to decide whether known motifs or de novo motifs
should be used as input. While using known motifs is faster and

leads to a more reliable results, as the used motifs are known, the
downside is that no new motifs can be identified. Hence, if the motif
of the studied TF is not similar to any already known motif, this
might be a problem. A solution can be to use de novo motifs as in-
put. However, for roughly 50% of the datasets, GimmeMotifs was
not able to identify significant motifs and for one-third of the
remaining datasets all motifs were excluded by the filtering. In add-
ition, the list of identified de novo motifs can include motifs of the
co-factors of the TF of interest as well as motifs based on repetitive
sequences. Further, depending on the quality of the dataset and the
characteristics of the motif of the TF of interest, the used de novo
motif discovery algorithm might not be able to find the true motif.

An opportunity to improve the performance of MASSIF could be
to refine the DBD collection such that large DBD families like
‘Homeo domain factors’ or ‘C2H2 zinc finger factors’ are split into
multiple smaller ones. By using the domain score as a filter, we
observed the tendency that for smaller DBD families a higher im-
provement is possible than for the larger ones (Fig. 4c). However,
we decided against this additional splitting, because otherwise it
could become difficult for the user to assign the TF of interest to the
corresponding DBD.

In summary, we demonstrate that a commonly available and
easy to access information of the TF, namely the DBD can be used
as additional information to significantly improve the performance
of tools that link motifs to TFs based on TF-associated sequences.
MASSIF is freely available online at https://github.com/SchulzLab/
MASSIF.
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