
Complete Genome Sequences of Two Mutacin-Producing
Streptococcus mutans Strains, T8 and UA140

Indranil Biswasa

aDepartment of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA

ABSTRACT Streptococcus mutans is known to produce various antimicrobial pep-
tides called mutacins. Two clinical isolates, T8 and UA140, are well characterized re-
garding their mutacin production, but genome sequence information was previously
unavailable. Complete genome sequences of these two mutacin-producing strains
are reported here.

Streptococcus mutans is an oral pathogen associated with human dental caries
formation (1). The oral cavity harbors a complex microflora that contains �700

different bacterial species; nearly 30% of the microflora belongs to the genus Strepto-
coccus (2, 3). To maintain its dominant presence in the oral cavity, S. mutans secretes
small antibacterial peptides called mutacins to inhibit the growth of other streptococci
and competing bacteria. Mutacins are classified into two categories, namely, lantibiot-
ics, which are peptides containing the unusual amino acids lanthionine and dehydrated
amino acids, and nonlantibiotics, which are unmodified linear peptides. Production of
mutacin-like peptides is highly variable among S. mutans strains (4–6).

Among the few S. mutans strains from which mutacins were first purified and
characterized are strains T8 and UA140 (7–9). While T8 predominantly produces lan-
tibiotics (mutacin II), UA140 produces both lantibiotics (mutacin I) and nonlantibiotics
(mutacin IV) (7–9). UA140 is a well-characterized strain that is widely used for physio-
logical study, but its genome sequence had not been determined previously (10–13).
The T8 strain is primarily used for production and characterization of mutacin II (7,
14–18), and its genome sequence had not been determined previously. The genome
sequences of these two strains were determined.

The strains, which were collected long ago, were grown overnight at 37°C in
Todd-Hewitt medium (BBL) supplemented with 0.2% yeast extract, under microaero-
philic conditions. Genomic DNA was isolated using a MasterPure DNA purification kit
(Lucigen) as described previously (19–21). DNA quantity and quality were checked with
a NanoDrop spectrophotometer (Thermo Fisher Scientific) and gel electrophoresis,
respectively. SMRTbell DNA libraries were prepared using the Express template prep-
aration kit v2.0 (Pacific Biosciences) according to the manufacturer’s protocol. Samples
were pooled into a single multiplexed library and size selected using BluePippin (Sage
Sciences) according to the manufacturer’s recommendations. The size-selected SMRT-
bell libraries were annealed, bound, and sequenced on a Sequel II system with Sequel
II chemistry v1.0 at SNPsaurus. Raw reads were converted to the fasta format with
SAMtools (22). Flye v2.4.1 (23) with default parameters was used to assemble the T8 and
UA140 genomes from 640,000,860 bases (N50, 12,098 bp) and 383,461,336 bases
(N50, 13,094 bp), respectively. The final genome coverages for T8 and UA140 were
326-fold and 195-fold, respectively. The genome annotation was carried out using the
IGS Prokaryotic Annotation Pipeline at the Institute of Genome Sciences at the Univer-
sity of Maryland (24). The T8 and UA140 strains harbor a single chromosome of
1,976,303 bp (GC content, 37.04%) and 2,005,049 bp (GC content, 37.04%), respectively.
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The genome sequences were analyzed to predict putative biosynthetic gene clus-
ters (BGCs), including mutacins, using the antiSMASH (25) and BAGEL4 (26) Web servers
with default parameters. As expected, the T8 and UA140 genomes encoded mutacin II
and mutacin I, respectively; both genomes also encoded nonlantibiotics and contained
other BGC loci. The genome sequencing identified several new methylation motifs in S.
mutans, in addition to the common GATC motif. These new methylation motifs are
CGRAC and GGTGNGAGCG for T8 and CGCGA and TACNNNGTA for UA140. I think this
study will provide useful information for comparative genomic analysis and under-
standing of the lantibiotic and nonlantibiotic repertoires in S. mutans.

Data availability. The complete genome sequences of these S. mutans strains have
been deposited in GenBank under the accession numbers CP044492 (T8) and CP044495
(UA140). The GenBank assembly numbers for the genomes are GCF_008831345.1 (T8)
and GCF_008831365.1 (UA140). The BioProject accession number for the genomes is
PRJNA525085. The raw files were deposited in the SRA database under accession
numbers SRR11812840 (T8) and SRR11812841 (UA140).
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