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Meningiomas are common intracranial tumors that can be cured by surgical resection

in most cases. However, the most disconcerting is high-grade meningiomas, which

frequently recur despite initial successful treatment, eventually conferring poor prognosis.

Therefore, the early diagnosis and classification of meningioma is necessary for the

subsequent intervention and an improved prognosis. A growing body of evidence

demonstrates the potential of multi-omics study (including genomics, transcriptomics,

epigenomics, proteomics) for meningioma diagnosis and mechanistic links to potential

pathological mechanism. This thesis addresses a neglected aspect of recent advances

in the field of meningiomas at multiple omics levels, highlighting that the integration of

multi-omics can reveal the mechanism of meningiomas, which provides a timely and

necessary scientific basis for the treatment of meningiomas.
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INTRODUCTION

Meningiomas account for 13–36.6% of the primarymalignant tumors of the central nervous system
(1). Although the reported incidence is around 7.8/100,000 (2), the rate of recurrence increases
dramatically to 32% with progressive/higher grade meningiomas (∼20% of all meningiomas) (3).
Coupled with the high treatment costs (∼$83,838 per person) (4), meningioma is increasingly
recognized as a serious, worldwide public health concern (5). Since the publication of revised
WHO guidelines in 2016, the diagnosis of meningioma is mainly divided into three grades based
on the morphological features (6). Unfortunately, this grading system does not ultimately predict
the clinical behavior of meningiomas, especially long-term recurrence of atypical meningiomas (7).

Recent advances in omics technologies (genomics, transcriptomics, epigenomics, and
proteomics) contribute to large screening of biomarkers for meningioma by tissue microarray to
predict biological behavior of meningiomas (8). Notably, integration of multi-omics with clinical
data represents an accurate and promisingmethodology to provide very accurate predictionmodels
for meningioma progression (Figure 1), suggesting the potential of early and accurate diagnosis,
effective therapeutic strategies, and favorable prognosis of meningioma (9, 10).
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GENOMICS

Accurate and comprehensive sequencing of personal genomes is
an important technical advance based on bioinformatics analysis
(11), which is crucial to genetic studies of complex human
diseases (12). Deep understanding of genetic alterations relating
to meningioma development and progression may provide
new insights into meningioma classification and personalized
treatment (13).

As early as 2011, a sequencing-based genome-wide association
study (GWAS) of 859 patients with meningioma and a control
group (n = 704) identified MLLT10 as a new susceptibility locus
(14). It is worth mentioning that, in the last decades, the role of
MLLT10 in the pathogenesis and progression of meningioma has
been well-established (15, 16). In that same year, an expanded
genome-wide association study of meningioma, including 2,000
patients and 6,000 controls, was initiated by the National
Institutes of Health (17), which earned a significant contribution
in understanding genetic factors of meningioma. Notably, the
results, including an inverse relationship between hormones and
allergies, provided a clear framework and direction for further
meningioma study as well as the establishment of comparative
oncology (18–20). Furthermore, a genotype analysis in 65
samples using high-density single nucleotide polymorphism
(SNP) arrays found associations between meningiomas and
variation in PIAS2, KATNAL2, TCEB3C, TCEB3CL, and
CTNNA3, especially TARDBP mutations with amyotrophic
lateral sclerosis (21), which further improves the identification
of susceptible sites of meningioma by genomics. Subsequently, a
GWAS involving 1,606 meningioma patients and 9,823 controls
provided additional support for the link between obesity and
risk of recurrence in meningioma (22), which laid a solid
foundation for meningioma characteristics, including risk factors
and epidemiology (23, 24). To further illustrate the genetic
basis and construct a genetic linkage map of meningioma,
Claus et al. identified a new meningioma susceptibility site
at 11p15.5 through a combined reference panel from UK10K
data including a total of 2,138 and 12,081 controls and 1,000
genomic projects in 2018 (25). It is worth pointing out that the
susceptible site included a new pathogenic mutation in RIC8A,
which is necessary for the development of cranial neural crest-
derived structures. Therefore, this study suggests the cytogenetic
relationship between meningiomas and nerve sheath structures
(26) (Figure 2).

Abbreviations: WHO, World Health Organization; GWAS, Genome Wide

Association Study; UK, United Kingdom; aCGH, array comparative genomic

hybridization; 64-MMP, 64-CpG meningiomas methylation predictor; HRR,

homologous recombination repair; PTX3, Recombinant Pentraxin 3; MN1,

meningioma 1; miRNA, microRNA; snoRNA, small nucleolar RNA; sncRNA,

small interfering RNA; siRNA, small interfering RNA; HMGN5, high-mobility

group nucleosome-binding protein 5; K-Ras, K-rat sarcoma; SELDI-TOF MS,

surface-enhanced laser desorption/ionization time-of-flight mass spectrometry;

ITRAQ, isobaric tags for relative and absolute quantification; ESI-Q-TOF,

electrospray ionization- quadrupole-time of flight; Q-Exactive MS, thermo

scientific Q exactive; SELDI, surface-enhanced laser desorption/ionization time-

of-flight mass spectrometry; AKAP12, a-kinase anchor protein 12; FoxM1,

Forkhead Box M1; ITP, immune thrombocytopenia; TNF-α, tumor necrosis factor

α; NF2, Neurofibromatosis Type 2.

In addition to the potential role of genetic factors on
meningioma, genomics has been applied in the diagnosis
and classification of meningioma. Clinically, in the case of
a meningioma specimen that contains atypical tumor regions
that are difficult to assess, molecular marker techniques for
patient genome analysis, such as array comparative genomic
hybridization (aCGH) and expression array profiles, can be used
for histopathological grading (27). The first instance from a
whole genome sequencing project of malignant subtypes revealed
mutational signatures and frequently altered genes in malignant
meningiomas, including NF2, MN1, ARID1B, SEMA4D, and
MUC2, which confirmed the role of pathogenic NF2 mutations
in the development of meningiomas, and expression ofMN1may
be a valuable diagnostic tool for determining the potential in
malignant transformation (28).

So far, genomics has made a tremendous contribution
to the criteria for diagnosis, staging, risk stratification, and
response assessment of meningiomas (Table 1). Regrettably,
some aspects of genetic factors in meningioma have been
ignored, and the gene regulatory network leading to meningioma
remains unclear. Further pooling research in genomics will
advance the field of meningiomas’ genetic basis and pathological
mechanisms, which may also provide novel research horizons
and suggestions for intervention strategies and clinical practice
of meningioma.

EPIGENOMICS

Epigenetic factors, mainly DNA methylation and histone
modification, have considerable effects on the pathogenesis of
meningioma (29). In the last few years, developments in multi-
omics technologies provide tools for high-throughput and high-
density molecular analyses, which has provided a novel view
regarding the functional organization of the molecular layer. The
pathogenic role of chromosome markers in gene regulation and
other processes were also inferred by it (30).

WHO classification of meningiomas is based on histologic
characteristics. However, part of malignant meningiomas was
histologically described to benign meningiomas (31); therefore,
novel diagnostic strategies are urgently required while DNA
methylation assessment has considerable potential to reconstruct
the grade of meningioma. Expression profiles of 10,422 genes
at the early stage of meningioma using cDNA microarray
indicate hypermethylation of gene subsets are critical in
tumor development (32). Further research identified 64-
CpG meningioma methylation predictor (64-MMP), which is
responsible for tumor recurrence (hazard ratio = 12.16) (33).
In 2017, Sahm et al. compiled a genome-wide mapping of
differentially methylated regions by DNA methylation profiling
from 497 meningioma and 309 extra-axial skull tumors that
might histologically mimic meningioma variants. On this
basis, six different clinically relevant methylation types of
meningioma were distinguished, and they relate to typical
mutations, cytogenetics, and gene expression patterns (34).
Notably, the classification by methylation provides more precise
prognostication of progression-free survival outcomes at 10
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FIGURE 1 | Comprehensive analysis of pathology and molecular genetics of meningioma from multi-omics perspective. Structure of gene with the meningioma

pathogenic variants have been revealed by genomics; performance of the epigenomics showing the influence of the genetic modification on meningioma; pathological

gene expression in meningioma were analyzed by transcriptomics; applications of proteomics visually show the endocranial shape changes during meningioma. From

genomics to proteomics, the pathological process and potential therapeutic targets involved in meningioma progression will be revealed as never before.

FIGURE 2 | Genetic association of the nerve sheath development and meningioma. The RIC8A located in area 11p15.5 were revealed to be associated with

pathological phenotypes in meningioma. It is important to mention that the same genes have been confirmed to be related to cranial neural crest-derived structures.

Consider the correlation between nerve sheath and ganglia, which might explain a series of cases of nerve sheath meningioma and ganglia intraparenchymal

meningioma.

Frontiers in Oncology | www.frontiersin.org 3 August 2020 | Volume 10 | Article 1491

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Liu et al. Multi-Omics Features of Meningiomas

TABLE 1 | Genomics research associated with meningiomas.

Phenotype Sample size

(case, control)

Tissue/tissue Ethnicity Tested

genes/techniques

Major results PMID

Meningiomas

and normal

N = 1,563 Meningiomas tissue (I, II, III) German 10p12.31, MLLT10 Marker of meningiomas with WHO grade I,

II, III

21804547(14)

Meningiomas

and normal

N = 14,219 Meningiomas tissue (I, II, III) German RIC8A Marker of meningiomas with WHO grade I,

II, III

29762745(25)

Meningiomas N = 9 Meningiomas tissue (III) China NF2 Important marker of meningiomas with

WHO grade III

25549701(28)

Meningiomas N = 9 Meningiomas tissue (III) China MN1 Candidate gene for malignant

transformation of meningioma

25549701(28)

Meningiomas N = 9 Meningiomas tissue (III) China ARID1B Marker of meningiomas with WHO grade III 25549701(28)

Meningiomas N = 9 Meningiomas tissue (III) China SEMA4D Marker of meningiomas with WHO grade III 25549701(28)

Meningiomas N = 9 Meningiomas tissue (III) China MUC2 Marker of meningiomas with WHO grade III 25549701(28)

years’ follow-up compared to WHO grading, which highlights
the diagnostic and prognostic implications of malignant
meningioma by assessing methylation status.

Importantly, epigenetic profiles in meningioma contribute
to the construction of an individualized prediction model of
early progression and recurrence in meningioma (35). For
example, DNA methylation profiles of 282 clinically annotated
meningioma samples were used for construction of a prediction
model of 5-year recurrence-free survival (RFS) in meningioma.
Notably, the recurrence model provides important prognostic
information (hazard ratio = 7.7, area under curve = 0.82),
which is more accurate than prediction based on clinical factors,
including extent of resection and WHO grade (1 area under
curve= 0.25) (36).

In addition to the roles in tumor classification, a
comprehensive understanding of epigenetic regulation that
has characterized meningioma development and progression
may also provide useful guidance for targeted therapies. So
far, methylation of TIMP3, CDKN2, and other genes that
can regulate the progression of meningiomas have been
identified by genome-wide methylation DNA analysis (37);
further work reveals the connection between the H3K27me3
signal and hypermethylated phenotype in meningiomas,
integrating with microarray analysis of the transcriptional
network controlled by E2F2 and FOXM1. This study makes
recommendations for potential targets for therapeutic
intervention (38).

The progress in epigenetic research on meningioma have
proved to be a valuable tool in pathological classification and
intervention of meningiomas (Supplementary Table 1) (21).
However, recent advances in epigenomics of meningioma have
mainly focused on DNA methylation; the role of histone
modification and chromosome organization have been neglected.
It is also worth noting that chromosomes are associated with
homologous recombination repair (HRR) defects, which has
been confirmed as a primary causative factor of meningioma
(39, 40), suggesting that histone modification has great potential
in the development of novel meningioma prevention and
intervention measures.

TRANSCRIPTOMICS

By comparing the transcriptome differences between
meningioma patients and controls, transcriptomics can
screen out the specific expression differences with diagnostic
significance, which can be used in the diagnosis and early
intervention of meningiomas.

Since the occurrence and development of meningiomas are
often caused by the accumulation of multiple gene changes,
transcriptome can detect the gene expression differences between
normal tissues and meningiomas from the transcriptional level
(Supplementary Table 2) (41–45). In 2017, a genome-wide
array comparing microRNAs expression in meningioma from
50 patients showed that miRNA-21 expression increased
significantly with increasing histopathologic grade with
reduction of miRNA-107 (41, 46). Notably, upregulated
miR-29c-3p coupled with reduction of its predicted target
recombinant pentraxin 3(PTX3) was observed in the same year
using whole transcriptomemicroarray chips, which indicated the
level of tumor suppressor PTX3 is inhibited by miR-29c-3p (42).
Interestingly, PTX3 overexpression was frequently observed
in high-grade gliomas and meningiomas with poor prognosis,
which suggests that PTX3 may be an important contributor to
meningioma cell proliferation and invasion (47). The conflicting
results have been obtained, which remind us that further studies
of changes in transcriptome of meningioma is necessary.

As mentioned earlier, due to its high recurrence rate and
poor prognosis, a lot of work on the research of malignant
meningioma is required (48), and it is associated with shorter
progression-free and overall survival after complete resection
(49). Fortunately, novel markers of malignant meningiomas
identified through differential gene expression analyses can be
achieved through transcriptomics. For example, an illumina
expression microarray to assess gene expression levels from
a sample set of 19 resected meningiomas identified dense
coexpression subnetworks in meningioma and detected
carcinogenic modules associated with malignant meningioma.
Among the 23 identified coexpression modules, a module
involving 356 genes is highly correlated with occurrence of
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FIGURE 3 | The regulatory role of miRNA in meningiomas. miRNA has a reduced expression in atypical and anaplastic meningiomas, which increases cell proliferation

and reduces apoptotic susceptibility. In addition, reduced miRNA reduces migration, invasion, and adhesion of meningioma cells. It can also alter meningioma cell

morphology, resulting in low elongation and adhesion.

meningioma. It should be noted that putative meningioma
tumor suppressive meningioma 1 (MN1) in this module
was differentially expressed between malignant and benign
meningioma (43), indicating it can be used as a predictor of
meningioma classification.

In addition to characterization of differentially expressed
genes, some RNAs were also found to have potential meaning
in classification of benign and malignant meningiomas. In 2013,
a tissue microarray indicated reduced expression of miR-145 in
WHO grade II/III meningiomas using frozen samples from 42
meningiomas. Notably, the follow-up studies demonstrated the
antiproliferation, morphogenesis, and antimigration effects of
miR-145 inmeningioma cells, suggesting the proposed role of the
miR-145 in restraining meningioma progression (44) (Figure 3).
Besides, the small nucleolar RNAs(snoRNAs), such as SNORA46
and SNORA48, were also found differentially expressed between
grade I and grade II/III meningiomas, which is identified by RNA
sequencing (RNA-seq) analysis after numerous genes were found
differentially expressed by real time-PCR (45).

In addition, miRNAs belong to small ncRNAs (sncRNAs),
and small interfering RNA (siRNAs) are functionally similar
to miRNA, modulating post-transcriptional gene expression by
binding to specific mRNAs (50). But transcriptomics studies
focused on miRNAs are much more than that on siRNAs
although siRNA has been found to relate to some meaningful
molecules in meningiomas. For example, siRNA can decrease the
expression of high-mobility group nucleosome-binding protein
5 (HMGN5), which has a positive association with meningioma
histological grade (51). As for snoRNA, more and more evidence

reveal the importance of snoRNA in tumorigenesis (52, 53),
such as SNORD50A/B (C/D box), which can directly bind
to and inhibit K-rat sarcoma (K-Ras), is deleted in many
cancer types (54). However, the lack of transcriptomic studies
pertaining to the expression of siRNAs and snoRNAs or relative
pathways suggest that transcriptomic studies taking siRNA into
consideration are required in the field of meningioma research.

PROTEOMICS

Proteomics is a large-scale study of protein properties, including
protein expression levels, post translation modification, protein–
protein interaction, etc., which has been proven to be a
useful tool in the identification between varieties of meningeal
neoplasms (55).

Proteomics can detect the differential expression of
proteins in different grades or types of meningiomas
(Supplementary Table 3) (56–58). As early as 2006, the
pure meningioma cell population was sequenced to indicate
the differentially expressed proteins of each WHO grade
meningioma. This study identified the 15 proteins that
were significantly related to atypical meningioma, and nine
proteins can be used to discriminate atypical from anaplastic
meningiomas (57). Similar biomarkers were also reported in
2014; the expression of galectin-3, vimentin was decreased
significantly in meningiomas, and the expression of 40S
ribosomal protein S12 and glutathione S-transferase was
increased significantly (59). It is worth mentioning that
the function of galectin-3 was further investigated in 2017;
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FIGURE 4 | FOXM1/Wnt signaling axis drives meningioma prolife ratio and tumor growth. NF2 mutation, FOXM1 gene expression, and DNA methylation can cause

the increase of FOXM1 expression or activity, which would activate the FOXM1/WNT signaling axis, resulting in primary or aggressive meningioma cell proliferation. In

addition, through the principle of drug repositioning, fostamatinib, a kind of medicine aimed at chronic immune thrombocytopenia (ITP), which targets the FoxM1, may

also be used in the treatment of meningiomas.

high expression of galectin-3 was observed in meningioma
infiltration and recurrence (60). However, the role of galectin-3
in meningioma remains controversial; there is still a need for
further studies to confirm the exact mechanism of galectin-3
in meningioma. Recently, with highly sensitive instruments
in proteomics, low-abundance proteins could be found to
be meaningful in different grades of meningiomas. For
example, comparative tissue proteomic analysis was performed
by isobaric tags for relative and absolute quantification
(ITRAQ)-based quantitative proteomics by using electrospray
ionization-quadrupole-time of flight (ESI-Q-TOF) and thermo
scientific Q exactive (Q-Exactive MS), which quantified many
transmembrane receptors and transcription factors, such as
activated RNA polymerase II transcriptional coactivator p15 in
pathology of meningioma (61).

In addition, proteomics analysis has also been used to
identify different subtypes of meningiomas. To explore the
different protein expression patterns of bone-infiltrating
and non-invasive meningioma, the researchers used a
protein spectrum combined with surface-enhanced laser
desorption/ionization time-of-flight mass spectrometry (SELDI),
and the results show meaningful differences in fibrous and
meningothelial grade I meningiomas that contribute to

distinguish the two types of meningiomas (60). Therefore,
invasive and non-invasive growth behavior of grade I fibrous
and meningothelial meningioma can be distinguished by
analyzing the protein profile of benign meningioma. Notably,
the early diagnosis of invasive grade I meningioma is
thought to contribute to follow-up policies and the issue of
radiotherapy (62).

In addition to protein expression, proteomics studies about
post-translational modifications have also been conducted to
map the mechanisms of aggressiveness of meningiomas. By using
two high-throughput technologies: unbiased iTRAQ LCMS/MS
and biased Pamchip peptide arrays, it was found that the A-kinase
anchor protein 12 (AKAP12) protein (a phosphoprotein) is
downregulated in all grades of meningioma (58). Further studies
have shown that knocking down AKAP12 in benign meningioma
cells promotes proliferation, migration, and invasion, suggesting
that AKAP12 is a central regulator of invasive meningioma
progression (58). However, although studies have provided
increasing evidence that post-translational modification is closely
connected with cell-based functional characterization, which
has a close connection with function and malignancy of the
disease, phospho-proteomes are rarely studied in meningiomas
(61, 63, 64).
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MULTI-OMICS STUDIES IN MENINGIOMAS

Despite a valuable contribution, the results from single omics are
unable to map the comprehensive meningioma-related signaling
pathways and networks. Therefore, advantages of integrated
analysis usingmulti-omics data have been gradually revealed. For
example, the FoxM1 target gene in the case of increased FoxM1
mRNA expression was identified by RNA sequencing, DNA
methylation sequencing, and target gene expression profile from
meningiomas with low survival rate and high local recurrence
rate (65). In addition, integration of multi-omics data contributes
to the identification of radiation-induced meningioma, an
uncommon late risk of cranial irradiation with higher recurrence
rate and pathologically malignant features compared to the
sporadic meningioma (66). For example, comparative genome
hybridization was used for the identification of chromosome
1p loss in radiation-induced meningioma (67). Notably, NF2
rearrangement in radiation-induced meningioma was identified
through exome, methylation, and RNA-seq analysis from
31 cases, which can be used for the differentiation of
radiation-induced meningioma from sporadic meningioma as
neurofibromatosis type 2 (NF2) rearrangement has still not been
reported in sporadic meningioma (68).

The target gene identified by multi-omics studies can
potentially be used in drug repositioning in meningiomas
(Supplementary Table 4), which appeared to be cheaper, quicker,
and more effective (69). For example, Fostamatinib, targeting
FoxM1, has been approved by the FDA for the treatment
of chronic immune thrombocytopenia (ITP). Given the same
putative drivers of disease associations, Fostamatinib may
improve meningioma via regulating synthesis and secretion of
tumor necrosis factor α(TNF-α) (70) (Figure 4).

CONCLUSION

In 2016, the World Health Organization included the molecular
standards into the classification of meningiomas (71). Soon after

this, accurate pathological diagnosis and treatment decisions
at the molecular level depend on powerful clinical molecular
detection using genome, epigenome, and transcriptome
tools is highly applied in clinical studies (72). Although it is
necessary to carry out molecular detection of brain tumors
in medicine, there are still great differences in the acquisition
and utilization of molecular diagnosis technology in various
institutions, and the lack of compensation for such detection
is still a major obstacle (72). Notably, the important role
of omics studies in the molecular level pathological study
and grading of meningiomas has potential value in clinical
diagnosis and treatment. Therefore, there is no doubt that
multi-omics studies will shed further light on the novel
strategies for the prediction, prevention, and treatment
of meningiomas.
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