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ABSTRACT

Multiple high-throughput omics techniques pro-
vide different angles on systematically quantifying
and studying metabolic regulation of cellular pro-
cesses. However, an unbiased analysis of such data
and, in particular, integration of multiple types of
data remains a challenge. Previously, for this pur-
pose we developed GAM web-service for integra-
tive metabolic network analysis. Here we describe
an updated pipeline GATOM and the correspond-
ing web-service Shiny GATOM, which takes as input
transcriptional and/or metabolomic data and finds a
metabolic subnetwork most regulated between the
two conditions of interest. GATOM features a new
metabolic network topology based on atom transi-
tion, which significantly improves interpretability of
the analysis results. To address computational chal-
lenges arising with the new network topology, we
introduce a new variant of the maximum weight con-
nected subgraph problem and provide a correspond-
ing exact solver. To make the used networks up-
to-date we upgraded the KEGG-based network con-
struction pipeline and developed one based on the
Rhea database, which allows analysis of lipidomics
data. Finally, we simplified local installation, provid-
ing R package mwcsr for solving relevant graph op-
timization problems and R package gatom, which
implements the GATOM pipeline. The web-service
is available at https://ctlab.itmo.ru/shiny/gatom and
https://artyomovlab.wustl.edu/shiny/gatom.

GRAPHICAL ABSTRACT

INTRODUCTION

The study of metabolism has emerged as one of the impor-
tant and promising areas of research in biology, with ap-
plications in the fields like immunology, cancer and ageing
(1–5). As many of the cell functions are tied to metabolic
processes (6–8), understanding metabolic regulation is in-
dispensable for understanding cell biology.

Systematically, metabolism can be studied with a num-
ber of experimental omics: transcriptomics, proteomics,
metabolomics and lipidomics. These techniques provide
views on different aspects of metabolic regulation and can
be useful in separate, as well as in integration. For the anal-
ysis of these data in the context of metabolism various
tools were developed, such as IMPaLa (9), 3Omics (10) and
MetaboAnalyst (11), or more focused for the analysis of
lipidomics data like LipidSuite (12) or LipidSig (13). How-
ever, these tools heavily rely on the presence of metabolic
pathway annotations which limits the analysis, in particu-
lar when only parts of the pathways are regulated or when
complex pathway interactions are involved.

Network analysis methods, on the other hand, can be
utilized for an unbiased analysis of metabolic interaction,
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without requirement for predefined pathways. In particular,
so called active module approaches allow to find the most
regulated subnetwork based on the provided omics data.
These methods were successfully used to interpret transcrip-
tomics data (jActivemodules (14), BioNet (15), KeyPath-
wayMineR (16)) and genomics data (HotNet2 (17), Net-
Sig (18)). However, straightforward application of these ap-
proaches for studying metabolism is difficult due to unique
features of metabolic networks.

Here, we present Shiny GATOM: an update of a previ-
ously published web-service GAM (https://academic.oup.
com/nar/article/44/W1/W194/2499310) for integrated net-
work analysis of metabolic and transcriptional data. While
the overall approach remains the same: the method takes
as input transcriptional and/or metabolic data and finds a
metabolic subnetwork most regulated between the two con-
ditions of interest, we introduced several major improve-
ments both conceptual and technical. First, in GATOM we
introduce the atom transition network structure which bet-
ter captures pathway-like structure of the metabolic interac-
tions. Second, to address the changes in the network struc-
ture we introduced a new computational approach for find-
ing an active metabolic module. Finally, GATOM covers a
wider range of reference networks, thus expanding the scope
of its applicability, in particular for analysis of lipidomics
data.

MATERIALS AND METHODS

Analysis pipeline overview

The GATOM network analysis pipeline is similar to the pre-
vious version implemented in GAM web-service (19). The
key steps are:

1) The input table with differential expression results for
genes and/or metabolites are overlaid on a global
metabolic network to construct an experiment-specific
network.

2) The obtained network is scored, so that nodes (metabo-
lites) and edges (genes) with highly significant differential
expression have positive scores and ones with not signifi-
cant results have negative scores.

3) A connected subnetwork with the best total score is found
by solving an optimization problem.

4) The found subnetwork represents an active metabolic
module, capturing the most regulated reactions. It can be
explored, annotated and downloaded.

Global network construction

The GATOM pipeline relies on three types of database-like
objects:

1) A reaction network – contains a list of reactions, their
reactants and mappings to enzyme classes.

2) A metabolite annotation – contains mappings between
different metabolite identifiers.

3) An organism annotation – contains an organism-specific
mapping between enzyme classes and genes, as well as
mapping between different types of gene identifiers.

There are two major network sources used for global net-
work construction: KEGG (20) and Rhea (21). The KEGG
database is more mature, but the Rhea database provides
significantly better coverage of the lipid species. For KEGG
database, KEGG API is used for downloading the neces-
sary information. For Rhea, the information is extracted
from the files available for download.

An important step for both network databases is the atom
mapping in reactions. For this purpose we use the Reac-
tion Decoder Tool (RDT) (22). RDT takes as an input a
reaction in RXN format and returns one-to-one correspon-
dence between atoms in a substrate and atoms in a product.
For Rhea database RXN files are immediately available for
download, for KEGG database RXN files are generated by
our pipeline from individual compound MOL files down-
loaded from KEGG database. The output of RDT is pro-
cessed using the ChemmineR package (23).

Metabolite annotations are constructed from KEGG and
ChEBI databases. Mappings between ChEBI and HMDB
were obtained with metaboliteIDmapping package. Map-
pings between ChEBI and KEGG databases were extracted
via KEGG API.

GATOM includes four organism annotations built-in:
for human, mouse, arabidopsis and yeast. The map-
pings are generated based on the corresponding organism
annotations packages from Bioconductor (org.Hs.eg.db,
org.Mm.eg.db, org.Sc.sgd.db, org.At.tair.db) with addi-
tional enzyme mapping obtained from KEGG via its
REST API. Additionally, selected metabolic pathways from
KEGG and Reactome (24) databases are stored for module
annotation purposes.

Finally, a lipid specific network is generated based on the
Rhea network. SwissLipids database (25) is used to iden-
tify lipids among the reactants, and only the reactions with
at least one lipid species are kept. SwissLipids and ChEBI
databases are used to generate identifier mapping for lipid
species. Mappings between lipid reactions and genes are
enriched using direct UniProt references from the Rhea
database.

Input data

As the input GATOM takes tables with differential expres-
sion results for genes and/or metabolites in text or XLSX
formats. For genes, RNA-seq or microarray-based data ta-
bles are supported, in particular coming from tools like DE-
Seq2 (26) or limma (27). For metabolites, metabolomics and
lipidomics data tables are supported.

The following columns are expected:

• ‘ID’: RefSeq mRNA transcript ID, Entrez ID or sym-
bols for genes; HMDB ID, KEGG ID or ChEBI ID
for metabolites; SwissLipids ID, LipidMaps ID, ChEBI
ID or Species name for lipids (supports LipidMaps and
SwissLipids nomenclature). Multiple annotations for fea-
tures are supported (e.g. multiple genes for a microarray
probe or multiple metabolites for a mass-spectrometry
peak), in that case IDs should be separated with ‘///’.

• ‘pval’: Differential expression P-value (non-adjusted).
• ‘log2FC’: Base 2 logarithm of the fold-change.
• ‘baseMean’ (for genes): average expression level.

https://academic.oup.com/nar/article/44/W1/W194/2499310
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• ‘signal’ (optional): ID of the measured entity such as
probe ID for gene expression microarrays and peak ID
for mass-spectrometry data. If absent, the ‘signal’ column
will be generated based on unique ‘pval’ and ‘log2FC’
combinations.

Three example datasets are provided. Two of them with
gene and metabolite differential expression between unstim-
ulated and LPS + IFNg-stimulated macrophages are the
same as described previously in GAM. Additionally we
provide a lipidomics dataset with comparison of high fat
and normal fat diet in peritoneal macrophages. For this
we obtained the dataset ST001289 (28) from Metabolomic
Workbench. Only wildtype samples were selected (without
LDLR knock-out), and the differential expression analy-
sis was performed between normal cholesterol, normal fat
(NCNF) diet and high cholesterol, high fat (HCHF) diet
samples using LipidSig web-service (13). The correspond-
ing file is available as Supplementary Table S1.

Finding active metabolic module

Following the GAM pipeline, GATOM is built on the
maximum-likelihood formulation of the active module
problem introduced by Dittrich et al. (29). However, instead
of directly scoring genes and metabolites, as was done in
GAM, in GATOM we introduce a notion of signals: the
entities that were measured and analysed (for example, mi-
croarray probes or mass-spectrometry ions). Consequently,
an individual signal can be associated with multiple genes or
metabolites and assigned to multiple reaction network ele-
ments. Signals for each data type are scored independently.

Accordingly, we define a new variant of the maxi-
mum weight connected subgraph (MWCS) problem - the
signal generalized maximum weight connected subgraph
(SGMWCS) problem. Let consider a graph G with vertices
V, and edges E, and a set of signals S. Each signal has a
score w(S) and can be assigned to multiple graph elements
(both vertices and edges). The score of a subgraph is defined
as a sum of scores of unique signals assigned to its vertices
and edges. The SGMWCS problem consists in finding a sub-
graph with a maximal score.

The SGMWCS problem is NP-hard as well as MWCS,
as the former is a more general case. To be able to solve in-
stances of the problem, we developed an exact solver Virgo-
solver (https://github.com/ctlab/virgo-solver) based on re-
duction to mixed integer linear programming (MILP) prob-
lem and solving it using IBM CPLEX library, extending the
solver previously developed by our group (30).

Postprocessing

After the construction of the module post-processing steps
can be done within the web-service.

First, reactions not controlled by products of highly
changing genes but controlled by products of genes with
high average expression can be added, using the baseMean
input column.

Second, as GATOM works with atom-transition graphs,
when a module is found the same metabolite can appear
multiple times in the module via different atoms. In such

cases it may be useful to connect atoms belonging to the
same metabolite with edges. The other way is to collapse
them into one vertex.

Finally, canonical metabolic pathways can be highlighted
in the module. Hypergeometric test for enrichment is ap-
plied with genes from the scored network used as a universe
and genes from the module as the query gene set. Pathways
reaching an adjusted P-value of 0.05 are shown, and reac-
tions with the corresponding enzymes can be selected.

The resulting module can be downloaded in SVG format
and can easily be later edited in any vector image editor.
Alternatively, the module can be downloaded in XGMML
format and imported into Cytoscape desktop application.

Implementation details

Shiny GATOM is implemented in R and uses shiny library
for interaction with the user. The source code is available
at https://github.com/ctlab/shinyGatom. shinyCyJS and cy-
toscape.js (31) libraries are used for interactive module
display. The analysis pipeline itself is implemented as an
R package gatom (https://github.com/ctlab/gatom). Gatom
package depends on the ability to solve the SGMWCS prob-
lem. For this we developed an R package mwcsr (https:
//cran.r-project.org/package=mwcsr), which implements an
interface to exact SGMWCS solver Virgo-solver, along with
two heuristic solvers: one based on simulated annealing and
one based on relax-and-cut procedure.

RESULTS

Atom-based network topology

In GATOM we introduce an atom-based metabolic net-
work topology. There, each vertex corresponds to an indi-
vidual carbon atom of a metabolite. Two atoms A1 and A2
of metabolites M1 and M2 are connected if there is a reac-
tion R with M1 and M2 on different sides of the equation
and atom A1 of M1 transforms into atom A2 of M2 in that
reaction. Useful notion is that if atom A1 of metabolite M1
is heavy-labeled (for example replaced with C13) then atom
A2 will be also labeled.

Atom-based network topology has a useful property: any
path from one vertex to another corresponds to a valid se-
quence of reactions. This property has been previously used
for identification of pathways (32,33) as it forces a pathway-
like structure of the subgraph. In the context of identifying
active metabolic modules it simplifies the interpretation. In
particular, linear pathways such as glycolysis are naturally
recovered.

Figure 1 shows the active module found for macrophages
activated with IFNg + LPS based on the atom transition
network. The module displays major metabolic regulation
of glycolysis, TCA cycle, pentose phosphate pathway and
fatty acid metabolism. For comparison, the module ob-
tained for the metabolite-level network is shown on Sup-
plementary Figure S1. While the overall present pathways
are similar, the connections between pathways in the atom
based module are more canonical and consistent with the
findings from the original publication (34): glycolysis path-
way directly feeds into TCA cycle, and arginine metabolism
fragment is connected to TCA cycle via glutamate.

https://github.com/ctlab/virgo-solver
https://github.com/ctlab/shinyGatom
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Figure 1. Metabolic module obtained for the example data of
macrophages activated by IFNg + LPS. The KEGG network with
atom topology was used. The module layout was done in Shiny GATOM.
The shown pathway annotations were added separately.

Signal maximum weight connected subgraph problem

As in the previous version, the key step of the GATOM
analysis is finding a connected subnetwork of a metabolic
network that captures the most changing genes and metabo-
lites. Mathematically, this corresponds to solving a Max-
imum Weight Connected Subgraph (MWCS) problem.
However, modifications from a classic problem where only
nodes are weighted are required to better capture features
of metabolic networks.

Here, we introduce a new variant of the MWCS prob-
lem, the signal generalized maximum weight connected sub-
graph (SGMWCS) problem. There, as in the previously de-
fined generalized MWCS (GMWCS) problem, both nodes
and edges can be scored (e.g. from metabolomic and tran-
scriptomic data respectively). However, the scores are as-
signed indirectly via a notion of signals. Intuitively, a sig-
nal in SGMWCS corresponds to a measured entity (e.g.
mass-spectrometry ion or a gene) with its score represent-
ing a significance of the change between two conditions (as
in GAM). These signals can be repetitive in the metabolic
network, such an ion corresponding to multiple metabolites
or a gene participating in multiple reactions. Consequently,
the weight of the subgraph in SGMWCS is defined as a sum
of scores of unique signals.

To solve SGMWCS instances we extended the previously
developed GMWCS solver (30). Briefly, the solver uses a re-
duction to the mixed integer linear programming (MILP),

which then can be solvedto a provable optimality with IBM
ILOG CPLEX library. The core of the MILP formula-
tion and used heuristics remain the same as in GMWCS,
with the necessary adaptations to account for the signal-
based scoring. The solver supports setting a time limit, af-
ter which the current best solution is returned. Similar to the
GMWCS solver performance benchmark (30) we have run
SGMWCS solver on instances generated from the datasets
submitted to Shiny GAM during the testing phase. For
gene only inputs (66 instances) median time to solve the
SGMWCS problem to optimality was 6 s for metabolite
topology and 25 s for atom topology. For simultaneous gene
and metabolite inputs (27 instances) median time to solve
the SGMWCS problem to optimality was 18 s for metabo-
lite topology and 48 seconds for atom topology. The bench-
marks were run on a laptop with Intel Core i5-7200U CPU
@ 2.50GHz.

Formulating the active module problem as the SGMWCS
problem prevents artifacts, which happens when multiple
instances of the same significantly changed signal is re-
peated multiple times within a small region of the network,
effectively multiplying its score. To illustrate the problem we
have applied the GMWCS solver for finding an active mod-
ule for the example macrophage activation dataset, with
the only difference from the GATOM pipeline in counting
each gene and metabolite as many times as it appears in
the module. The resulting module for metabolite topology
(Supplementary Figure S2) contains two artifacts that add
major bias for the module score calculation: repeated ap-
pearance of Mgst3 gene and repeated appearances of phos-
pholipid metabolism genes (Pla2g4a, Pla2g7, Plaat3, Lipg,
Cept1). In the module for the atom topology (Supplemen-
tary Figure S3) these artifacts are multiplied further, as each
metabolite appears in the atom transition network several
times, creating even further bias. Previously, in GAM, we
addressed this problem by using different network struc-
tures (interpreting reactions as nodes or as edges) depend-
ing on the input data types. Introduction of SGMWCS al-
lows the user to use the desired network structure as it is,
independent of the provided types of data.

Updated networks

Compared to the previous release, we have updated the
network construction pipeline so that up-to-date reaction
databases are used. Importantly, on top of the upgrade to
the recent versions of KEGG database, we have added sup-
port for Rhea database. Overall the KEGG-based networks
and Rhea-based networks are similar, producing the similar
analysis results. However, the Rhea-based networks provide
much better coverage of lipid species and thus allows fo-
cused analysis of lipidomics data. For that purpose we cre-
ated a lipid-specific Rhea subnetwork. The sizes of the net-
works (in terms of associated genes) are shown in Table 1.

An important aspect of working with lipids is the exis-
tence of complex lipid hierarchy spanning from high-level
lipid classes to isomeric subspecies. For conciseness, reac-
tions in Rhea databases use lipid identifiers from all of these
levels. To account for that we use the following scheme of
conversion between input lipids and ChEBI IDs used in
the Rhea network. First, using SwissLipids hierarchy we
group the lipids subspecies based on their species. We de-
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Table 1. Sizes of Shiny GATOM built-in metabolic networks. Number of genes corresponding to reactions in the networks are shown

Organism

Network type Human Mouse Arabidopsis Yeast

KEGG 2641 2713 3212 1072
Rhea 2719 2799 3270 1153
Rhea-lipidomic 626 624 582 260

note the corresponding species as a representative of the
group. Next, data entries for any of the group elements
are assigned to all of the group members. After that the
data entries are propagated up by the hierarchy to lipid
classes. Finally, thus expanded entries are mapped from
SwissLipids to ChEBI using the direct references available
at these databases.

An R package

The core functions of the web-service were implemented
as an R package gatom available at GitHub repository
https://github.com/ctlab/gatom. The package can be easily
installed locally if an R environment is available. Using the
package one can carry the analysis including input-data
handling, finding the active metabolic modules and visual-
izing the result. Additionally, the package can be used to
create new organism annotations based on corresponding
Bioconductor packages.

GATOM analysis depends on the ability to solve the
maximum weight connected subgraph problem. To simplify
the set up we additionally developed an R package mwcsr
(https://cran.r-project.org/package=mwcsr) containing an
R interface for the exact Virgo solver (https://github.com/
ctlab/virgo-solver) which requires IBM ILOG CPLEX li-
braries, as well as a number of heuristic solvers which do
not require any dependencies.

Case study: Trem2 deficiency in bone-marrow derived
macrophages

As a case study we applied GATOM to transcriptomics
and metabolomics profiling data of bone-marrow derived
macrophages from WT and Trem2-deficient mice (35). The
input data is provided as Supplementary Tables S2 and S3.

The differential expression tables were loaded into
Shiny GATOM web-service and analysed using atom and
metabolite topologies with the default parameters, as well as
loaded into previously developed Shiny GAM web-service.
The module obtained for the atom transition network is
shown on Supplementary Figure S4, for the metabolite
topology the module is shown on Supplementary Figure
S5, and the module obtained with Shiny GAM is shown
on Supplementary Figure S6. Importantly, only the atom
based module shows deregulation of the glycolysis pathway,
with the other modules containing only individual glycoly-
sis reactions. In the study (35) deficiency of the glycolysis
pathway in Trem2 KO macrophages was validated by mea-
surement of extracellular acidification rate (ECAR).

Case study: lipidomics

As a case study of working with lipidomics data we com-
pared peritoneal macrophages from mice fed with nor-

mal fat and high fat diet (28). The dataset ST001289 was
obtained from Metabolomic Workbench. The differential
abundance analysis was performed In LipidSig and the re-
sults were uploaded into Shiny GATOM. The input data
are provided as Supplementary Table S1 and as the exam-
ple dataset in the web-service.

The resulting module is shown on Figure 2. The
module shows up-regulation of cholesterol derivatives in
macrophages from high fat diet samples, as well as ma-
jor deregulation of glycerphospholipid metabolism. Up-
regulated cholesterol is naturally expected under the high-
cholesterol diet and might be considered as a positive con-
trol. As many other macrophages, peritoneal macrophages
have high levels of base metabolism of phospholipids,
comparing to other myeloid cells (monocytes and den-
dritic cells) (36), thus glycerophospholipid deregulation
on high-fat diet might reflect the response to main-
tain phospholipid homeostasis. Interestingly, arachidonoyl-
CoA (labeled as ‘(5Z,8Z,11Z,14Z)-eicosatetraenoyl-CoA’
in the module) appears in the module surrounded by
changing phospholipids, without being measured. This is
consistent with arachidonic metabolism being important
in atherosclerosis and being a viable therapeutic target
(37).

DISCUSSION

In this study, we introduce a novel GATOM approach rep-
resenting an updated version of previously published GAM
method for analysis of ‘omics datasets (19). First, being free
from predefined annotation of reference metabolic network,
GATOM due to its atom based approach still produced fi-
nal modules having pathway-like structure. Second, a sig-
nal variant of maximum weight connected subgraph prob-
lem (SGMWCS) was formulated to account for the updated
network structure, and a corresponding exact solver was de-
veloped. Taken together, the developed approach simplifies
the interpretation of the obtained results as any path from
one vertex to another corresponds to a valid sequence of
reactions.

Additionally, the Rhea network was specifically prepro-
cessed and integrated into the GATOM analysis pipeline.
Rhea network has much better coverage of lipid species,
compared to KEGG, and allows analysis of lipid-rich sam-
ples like brain (38) or adipose tissues (39). Lipid metabolism
also is recognized as an important regulatory circuit in im-
munity (40).

The GATOM method has been tested in multiple stud-
ies. For example, in (35) it was used to show deregulation of
energy metabolism in Trem2-deficient macrophages. In (41)
the GATOM analysis highlighted activation of inositol-
triphosphate metabolism in fasting mice, indicating a po-
tential signalling mechanism.

https://github.com/ctlab/gatom
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Figure 2. Metabolic module obtained for the example lipidomics data, comparing peritoneal macrophages from mice fed with normal fat and high fat diet.

Finally, the Shiny GATOM web-service provides easy ac-
cess to the GATOM method. Still, GATOM analysis can be
carried locally in an R environment. Since the previous ver-
sion, the underlying implementation was greatly reworked,
simplifying the installation. GATOM is available as an R
package on GitHub and depends on the mwcsr R pack-
age developed by our group with interfaces to a number of
solvers, both exact and heuristic.

DATA AVAILABILITY

Source code of the Shiny GATOM is available in several
GitHub repositories:

• Web-service implementation: https://github.com/ctlab/
shinyGatom

• R package with a GATOM pipeline: https://github.com/
ctlab/gatom

• Global network construction pipelines for Rhea
and KEGG: https://github.com/ctlab/Rhea-network-
pipeline, https://github.com/ctlab/KEGG-network-
pipeline

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

FUNDING

Ministry of Science and Higher Education of the Rus-
sian Federation (Priority 2030 Federal Academic Leader-
ship Program). Funding for open access charge: University
funding.

https://github.com/ctlab/shinyGatom
https://github.com/ctlab/gatom
https://github.com/ctlab/Rhea-network-pipeline
https://github.com/ctlab/KEGG-network-pipeline
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkac427#supplementary-data


W696 Nucleic Acids Research, 2022, Vol. 50, Web Server issue

Conflict of interest statement. None declared.

REFERENCES
1. Makowski,L., Chaib,M. and Rathmell,J.C. (2020)

Immunometabolism: from basic mechanisms to translation. Immunol.
Rev., 295, 5–14.

2. Stine,Z.E., Schug,Z.T., Salvino,J.M and Dang,C.V. (2022) Targeting
cancer metabolism in the era of precision oncology. Nature, 21,
141–162.

3. Amorim,J.A., Coppotelli,G., Rolo,A.P., Palmeira,C.M., Ross,J.M.
and Sinclair,D.A. (2022) Mitochondrial and metabolic dysfunction in
ageing and age-related diseases. Nature, 18, 243–258.

4. Smith,H.J., Sharma,A. and Mair,W.B. (2020) Metabolic
communication and healthy aging: where should we focus our energy?
Dev. Cell, 54, 196–211.

5. Mutlu,A.S., Duffy,J. and Wang,M.C. (2021) Lipid metabolism and
lipid signals in aging and longevity. Dev. Cell, 56, 1394–1407.

6. Van den Bossche,J., O’Neill,L.A. and Menon,D. (2017) Macrophage
immunometabolism: where are we (Going)? Trends Immunol., 38,
395–406.

7. Al-Khami,A.A., Rodriguez,P.C. and Ochoa,A.C. (2017) Energy
metabolic pathways control the fate and function of myeloid immune
cells. J. Leukocyte Biol., 102, 369–380.

8. Wculek,S.K., Khouili,S.C., Priego,E., Heras-Murillo,I. and
Sancho,D. (2019) Metabolic control of dendritic cell functions:
digesting information. Front. Immunol., 10, 775.

9. Kamburov,A., Cavill,R., Ebbels,T.M.D., Herwig,R. and Keun,H.C.
(2011) Integrated pathway-level analysis of transcriptomics and
metabolomics data with IMPaLA. Bioinformatics, 27, 2917–2918.

10. Kuo,T.C., Tian,T.F. and Tseng,Y.J. (2013) 3Omics: a web-based
systems biology tool for analysis, integration and visualization of
human transcriptomic, proteomic and metabolomic data. BMC Syst.
Biol., 7, 64.

11. Chong,J., Soufan,O., Li,C., Caraus,I., Li,S., Bourque,G.,
Wishart,D.S. and Xia,J. (2018) MetaboAnalyst 4.0: towards more
transparent and integrative metabolomics analysis. Nucleic Acids
Res., 46, 486–494.

12. Mohamed,A. and Hill,M.M. (2021) LipidSuite: interactive web
server for lipidomics differential and enrichment analysis. Nucleic
Acids Res., 49, 346–351.

13. Lin,W.J., Shen,P.C., Liu,H.C., Cho,Y.C., Hsu,M.K., Lin,I.C.,
Chen,F.H., Yang,J.C. and Ma,W.L. (2021) LipidSig: a web-based tool
for lipidomic data analysis, Nucleic Acids Res., 49, 336–345.

14. Ideker,T., Ozier,O., Schwikowski,B. and Siegel,A.F. (2002)
Discovering regulatory and signalling circuits in molecular
interaction networks. Bioinformatics, 18, 233–240.

15. Beisser,D., Klau,G.W., Dandekar,T., Mueller,T. and Dittrich,M.
(2010) BioNet: an R-package for the functional analysis of biological
networks. Bioinformatics, 26, 1129–1130.

16. Mechteridis,K., Lauber,M., Baumbach,J. and List,M. (2022)
KeyPathwayMineR: de novo pathway enrichment in the r ecosystem.
Front. Genet., 12, 812–853.

17. Vandin,F., Upfal,E. and Raphael,B.J. (2011) Algorithms for detecting
significantly mutated pathways in cancer. J. Comput. Biol., 18,
507–522.

18. Horn,H., Lawrence,M.S., Chouinard,C.R., Shrestha,Y., Hu,J.X.,
Worstell,E., Shea,E., Ilic,N., Kim,E., Kamburov,A. et al. (2018)
NetSig: network-based discovery from cancer genomes. Nat.
Methods, 15, 61–66.

19. Sergushichev,A.A., Loboda,A.A., Jha,A.K., Vincent,E.E.,
Driggers,E.M., Jones,R.G., Pearce,E.J. and Artyomov,M.N. (2016)
GAM: a web-service for integrated transcriptional and metabolic
network analysis, Nucleic Acids Res., 44, 194–200.

20. Kanehisa,M. and Goto,S. (2000) KEGG: kyoto encyclopedia of
genes and genomes. Nucleic Acids Res., 28, 27–30.

21. Bansal,A., Morgat,A., Axelsen,K.B., Muthukrishnan,V., Coudert,E.,
Aimo,L., Hyka-Nouspikel,N., Gasteiger,E., Kerhornou,A.,
Neto,T.B. et al. (2022) Rhea, the reaction knowledgebase in 2022.
Nucleic Acids Res., 50, 693–700.

22. Rahman,S.A., Torrance,G., Baldacci,L., Martı́nez Cuesta,S.,
Fenninger,F., Gopal,N., Choudhary,S., May,J.W., Holliday,G.L.,
Steinbeck,C. et al. (2016) Reaction decoder tool (RDT): extracting
features from chemical reactions. Bioinformatics, 32, 2065–2066.

23. Cao,Y., Charisi,A., Cheng,L.C., Jiang,T. and Girke,T. (2008)
ChemmineR: a compound mining framework for R. Bioinformatics,
24, 1733–1734.

24. Gillespie,M., Jassal,B., Stephan.,R., Milacic,M., Rothfels,K.,
Senff-Ribeiro,A., Griss,J., Sevilla,C., Matthews,L., Gong,C. et al.
(2022) The reactome pathway knowledgebase 2022. Nucleic Acids
Res., 50, 687–692.

25. Aimo,L., Liechti,R., Hyka-Nouspikel,N., Niknejad,A., Gleizes,A.,
Götz,L., Kuznetsov,D., David,F.P.A., van der Goot,G., Riezman,H.
et al. (2015) The swisslipids knowledgebase for lipid biology.
Bioinformatics, 31, 2860–2866

26. Love,M.I., Huber,W. and Anders,S. (2014) Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq2. Genome
Biol., 15, 550.

27. Ritchie,M.E., Phipson,B., Wu,D., Hu,Y., Law,C.W., Shi,W. and
Smyth,G.K. (2015) limma powers differential expression analyses for
RNA-sequencing and microarray studies. Nucleic Acids Res., 43, 47.

28. Spann,N.J., Garmire,L.X., McDonald,J.G., Myers,D.S., Milne,S.B.,
Shibata,N., Reichart,D., Fox,J.N., Shaked,I., Heudobler,D. et al.
(2012) Regulated accumulation of desmosterol integrates macrophage
lipid metabolism and inflammatory responses. Cell, 151, 138–152.

29. Dittrich,M.T., Klau,G.W., Rosenwald,A., Dandekar,T. and Müller,T.
(2008) Identifying functional modules in protein-protein interaction
networks: an integrated exact approach.Bioinformatics, 24, 223–231.

30. Loboda,A.A., Artyomov,M.N. and Sergushichev,A.A. (2016)
Solving generalized maximum-weight connected subgraph problem
for network enrichment analysis. In: Frith,M. and Pedersen,C.N.S.
(eds.) Algorithms in Bioinformatics - 16th International Workshop,
WABI 2016, Proceedings. Springer Verlag, Vol. 9838, pp. 210–221.

31. Franz,M., Lopes,C.T., Huck,G., Dong,Y., Sumer,O. and Bader,G.D.
(2016) Cytoscape.js: a graph theory library for visualisation and
analysis. Bioinformatics, 32, 309–311.

32. Pitkänen,E., Jouhten,P. and Rousu,J. (2009) Inferring branching
pathways in genome-scale metabolic networks. BMC Syst. Biol., 3,
103.

33. Heath,A.P., Bennett,G.N. and Kavraki,L.E. (2010) Finding metabolic
pathways using atom tracking. Bioinformatics, 26, 1548–1555.

34. Jha,A.K., Huang,S.C.C., Sergushichev,A., Lampropoulou,V.,
Ivanova,Y., Loginicheva,E., Chmielewski,K., Stewart,K.M.,
Ashall,J., Artyomov,M.N. et al. (2015). Network integration of
parallel metabolic and transcriptional data reveals metabolic modules
that regulate macrophage polarization. Immunity, 42, 419–430.

35. Ulland,T.K., Song,W.M., Huang,S.C.C., Ulrich,J.D.,
Sergushichev,A., Beatty,W.L., Loboda,A.A., Zhou,Y., Cairns,N.J.,
Kambal,A. et al. (2017). TREM2 maintains microglial metabolic
fitness in Alzheimer’s disease. Cell, 170, 649–663.

36. Gainullina,A., Huang,L.H., Todorov,H., Kim,K., Yng,L.S., Kent,A.
and ImmGen ConsortiumImmGen Consortium. (2020). Open
source immgen: network perspective on metabolic diversity among
mononuclear phagocytes. bioRxiv
doi: https://doi.org/10.1101/2020.07.15.204388, 16 July 2020,
preprint: not peer reviewed.

37. Wang,B., Wu,L., Chen,J., Dong,L., Chen,C., Wen,Z., Hu,J.,
Fleming,I. and Wang,D.W. (2021). Metabolism pathways of
arachidonic acids: mechanisms and potential therapeutic targets.
Signal Transduct. Targeted Ther., 6, 1–30.

38. Yu,Q., He,Z., Zubkov,D., Huang,S., Kurochkin,I., Yang,X.,
Halene,T., Willmitzer,L., Giavalisco,P., Akbarian,S. et al. (2020)
Lipidome alterations in human prefrontal cortex during development,
aging, and cognitive disorders. Mol. Psychiatry, 25, 2952–2969.

39. May,F.J., Baer,L.A., Lehnig,A.C., So,K., Chen,E.Y., Gao,F.,
Narain,N.R., Gushchina,L., Rose,A., Doseff,A.I. et al. (2017)
Lipidomic adaptations in white and brown adipose tissue in response
to exercise demonstrate molecular species-specific remodeling. Cell
Rep., 18, 1558–1572.

40. Mogilenko,D.A., Haas,J.T., L’homme,L., Fleury,S., Quemener,S.,
Levavasseur,M., Becquart,C., Wartelle,J., Bogomolova,A., Pineau,L.
et al. (2019) Metabolic and innate immune cues merge into a specific
inflammatory response via the UPR. Cell, 177, 1201–1216.

41. Jordan,S., Tung,N., Casanova-Acebes,M., Chang,C., Cantoni,C.,
Zhang,D., Wirtz,T.H., Naik,S., Rose,S.A., Brocker,C.N. et al. (2019).
Dietary intake regulates the circulating inflammatory monocyte pool.
Cell, 178, 1102–1114.

https://doi.org/10.1101/2020.07.15.204388

