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Radiation mutation breeding has been used for nearly 100 years and has successfully

improved crops by increasing genetic variation. Global food production is facing a series

of challenges, such as rapid population growth, environmental pollution and climate

change. How to feed the world’s enormous human population poses great challenges to

breeders. Although advanced technologies, such as gene editing, have provided effective

ways to breed varieties, by editing a single or multiple specific target genes, enhancing

germplasm diversity through mutation is still indispensable in modern and classical

radiation breeding because it is more likely to produce random mutations in the whole

genome. In this short review, the current status of classical radiation, accelerated particle

and space radiation mutation breeding is discussed, and the molecular mechanisms

of radiation-induced mutation are demonstrated. This review also looks into the future

development of radiation mutation breeding, hoping to deepen our understanding and

provide new vitality for the further development of radiation mutation breeding.

Keywords: mutation breeding, classical radiation, particle radiation, space radiation, mutagenesis

INTRODUCTION

Crops provide the most basic guarantee for human survival on Earth, its domestication plays
an important role in developing wild plants to produce cultivated crops through the long-term
screening of desirable characteristics caused by gene mutations (1, 2). However, spontaneous
mutation appears at an extremely low frequency in nature (∼10−6), rendering the process of
excellent variety cultivation screening tedious. How to accelerate the frequency of mutation has
always been a key problem in crop variety development, with a long history from natural evolution
to cross breeding and mutation breeding in crop breeding.

Mutation breeding refers to the method of using artificial mutagenesis to obtain new biological
cultivars, mainly through chemical or radiation mutagenesis. Chemical mutagenesis refers to the
biochemical reaction between chemical agents and genetic material, and the result is mostly point
mutations in genes. Although chemicalmutagenesis is effective, its environmental optimization and
biological safety need to be improved. Comparatively, radiation mutagenesis has the characteristics
of more complex genetic mutations and more beneficial mutant phenotypes.

Radiation mutation breeding is generally divided into classical radiation mutation breeding,
particle mutation breeding and space radiation mutation breeding. Classical radiation mutation
breeding methods mainly include X-ray and gamma ray applications. As a commonly
used method, classical radiation mutation breeding has been proven to be useful for crop
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variation, which mainly refers to the process of using various rays
to induce a large number of genomic mutations and speed up the
production of mutant traits through energy deposition directly
or indirectly onto DNA. This approach offers the possibility of
inducing desirable attributes that either cannot be expressed in
nature or have been lost during evolution, and a large number
of new varieties widely used in production have been bred by
classical radiation mutation technology (3).

Particle mutation breeding mainly uses accelerated particles,
such as heavy-ions or protons. They have unique physical
properties, such as diversified radiation parameters, complex
track structure and depth-dose distribution. Accelerated particle
has been considered a powerful mutagen for crop breeding
because it induces excellent biological mutagenic effectiveness at
relatively low radiation doses (4). A notable feature of the particle
radiation mutagenesis technology is that it can produce novel
cultivars with good traits without affecting other phenotypes (5).

With the steady advancement of manned space projects,
space exploration activities will become more frequent in
the future. The space environment refers to the outer space
outside the atmosphere accompanied by radiation, microgravity,
and alternating magnetic fields. This special and complex
environment brings new opportunities for mutation breeding.
Compared with traditional radiation, space breeding has the
characteristics of a high mutation frequency and multiple
directions; its mutation rate can reach 10% (6), and a series of
new plant varieties have been developed in this way (7, 8).

Radiation mutation breeding has played an important role
in the cultivation of new crop varieties. In this review, we first
briefly discuss achievements through radiation breeding in recent
decades as well as some concerns on the process and mechanism
of classical radiation, accelerated particle and space radiation
mutagenesis. This review will deepen our knowledge and provide
a theoretical foundation for improving the efficiency of future
crop radiation mutation breeding and promoting improvement
under the challenge of other newly emerging breeding methods.

DEVELOPMENT AND MECHANISM OF
CLASSICAL RADIATION MUTATION
BREEDING

Past and Present of Classical Radiation
Mutation Breeding
Radiation was suggested as a mutagen sinceMuller demonstrated
that exposure to X-rays can cause genetic mutations in 1928 (9).
After Stadler first published papers on mutations induced by
irradiation inmaize and barley (10, 11), radiation has been widely
applied to develop new cultivars used for crop production and
as genetic resources. Compared to other breeding methods, such
as cross-breeding and chemical mutagenesis, radiation mutation
breeding has incomparable advantages, with a wide mutation
spectrum and high mutation efficiency (12). To date, 3,365
mutant varieties have been registered in the Mutant Variety
Database of the International Atomic Energy Agency (IAEA),
and more than 1,000 new varieties have been used and promoted
worldwide. Here, we analyse the varieties bred by mutation in the

FIGURE 1 | Numbers of mutant varieties registered in IAEA during 1960–2020

(data from IAEA Mutant Variety Database).

past 60 years from 1960 to 2020 (13). Figure 1 shows that most
of the registered varieties bred by various mutation approaches
were concentrated before 2010, with a peak in the 1980s. Seventy
percentage of the overall registered varieties were produced by
classical gamma rays and X-rays irradiation, which laid a crucial
foundation for the agriculture development. However, great
challenges have been brought to traditional breeding methods
with the development of advanced mutation technology, such as
targeted gene editing represented by CRISPR (clustered regularly
interspaced short palindromic repeat) technology in recent years
(14), which might explain the steep decline in the number of
varieties registered in Mutant Variety Database of IAEA after
2010. Of course, it is possible that many new varieties might have
been bred by traditional radiation during this period without
being registered. Nevertheless, the downward trend suggests
that after years of continuous breeding, variation traits have
been basically saturated from a macroscopic view, especially
in some important crop varieties, and it is difficult to obtain
new breakthrough variation traits under current knowledge
on radiation mutation. Therefore, more research should be
performed to elucidate the mechanism of radiation mutagenesis.

The Mutagenesis Mechanism Under
Classical Radiation Mutation Breeding
Radiation-Induced DNA Damage
The process of radiation mutation breeding begins with
interactions between radiation and DNA, including direct
structural and functional changes toDNAmolecules via radiation
energy and indirect damage by free radicals generated through
interactions between water molecules and ionizing radiation
(15). To maintain genomic integrity, cells have evolved a set
of repair mechanisms to address DNA damage. Indeed, the
repair method is invoked according to the type of DNA damage
incurred (16). DNA damage can be divided into two categories:
single-strand break (SSB) and double-strand break (DSB). The
SSB repair pathways are mainly base excision repair (BER),
nucleotide excision repair (NER) and mismatch repair (MMR).
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FIGURE 2 | Two sources of the mutant in progeny, left shows that the mutant

originated from direct transmission from irradiated seeds, right shows that the

mutant was formed through genomic instability.

In contrast, DSBs are mainly repaired by non-homologous end-
joining (NHEJ) and homologous recombination (HR) (16, 17).
However, DNA damage is not equivalent to mutation. If DNA
damage is repaired correctly, no mutation will remain. Gene
mutation is the result of “errors” in the process of DNA damage
repair. Some of these errors are accidental, such as replication
errors caused by some single-strand breaks not being detected
before DNA replication, unstable DNA single strands in the
process of repair, and the participation of low-fidelity polymerase,
among others; the mutation type is basically a point mutation
with base substitution (18). For severe DSBs, deletion and
translocation of fragments are introduced in the repair process
(19). If these mutations are retained in subsequent cell division
and inherited by progeny, they become the source of mutant
traits, as shown in Figure 2.

Radiation-Induced Genomic Instability
In addition to the direct inheritance of DNA damage caused
by radiation to progeny, there is another method of inheritance
that can result in mutant traits in offspring, as shown
in Figure 2. As mentioned above, the genetic stability of
the genome is key to maintaining normal cell proliferation
and differentiation. Normal cells have efficient DNA damage
monitoring and response mechanisms to deal with the pressure
on the genome caused by internal and external stress, and
maintain genome damage and repair in a relatively balanced
state. When this balance is broken, however, cells enter a DNA
mutation susceptibility state called genomic instability, which
can be caused by genetic mutation or epigenetic modification

(20). Radiation-induced genomic instability is a concept that
describes delayed and persistent genetic alterations in progeny
of the irradiated cells, which was first detected in in vitro
cell system experiments in the 1950s (21). Subsequent studies
have found that gamma rays, neutrons, protons and α particles
can induce genomic instability in cells, which manifests as
an increase in various types of mutations, such as single-
nucleotide mutations, an increase or decrease in genomic
copy number, gene amplification, rearrangement and deletion
(22, 23). Using a homologous recombination reporter system,
radiation-induced genomic instability has also been confirmed
in plant systems, with increased frequencies of homologous
recombination persisting in subsequent generations (24–26).

DEVELOPMENT AND MECHANISM OF
PARTICLE RADIATION MUTATION
BREEDING

The New Generation Particle Radiation
Mutagenesis Technology
Unlike classical gamma rays and X-rays, which are essentially
electromagnetic waves, the emerging mutagens represented
by accelerated heavy-ions or protons are essentially charged
particles. Compared with classical radiation, accelerated particle
irradiation can deposit more energy along the ion track and can
maintain a higher mutation frequency and mutation spectrum at
a relatively low dose (4). This is because accelerated particles with
high linear energy transfer (LET) cause high-density ionization
along the ion track, causing a large amount of damage to DNA
in a small area, which is termed clustered DNA damage (27–29).
Such clustered DNA damage is difficult to repair effectively and
correctly, leading to the generation of free DNA fragments, which
contribute to the formation of chromosome rearrangements
and large deletions (30–32). These rearrangements and large
deletions can generate more combinations of gene mutation
sites, thereby breaking the linkage inheritance of traits, and it is
expected that more mutants with excellent traits will be obtained.

The technology of particle radiation mutagenesis based on
advanced particle accelerators originated in Japan in the 1990s
(4). Although there are many particle accelerator facilities in
the world, most of them are used for nuclear physics research,
and there are few irradiation facilities that can be used for crop
breeding. Particle accelerators can be divided into medium- and
high-energy (MeV or GeV level) particle accelerators and low-
energy (KeV level) particle accelerators according to the energy
of the accelerated particles. In general, medium- and high-energy
particles are considered to penetrate the target material, whereas
low-energy particle cannot penetrate the target material, which is
commonly referred to as ion implantation. To date, the medium-
and high-energy particle accelerator facilities used for particle
radiation mutation breeding include RIBF of the Institute of
Physical and Chemical Research (RIKEN, Japan), TIARA of
the National Institutes for Quantum Science and Technology
(QST, Japan), W-MAST of the Wakasa Wan Energy Research
Center (WERC, Japan), LNS of the National Institute for
Nuclear Physics (INFN, Italy), HIRFL of the Institute of Modern
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TABLE 1 | Particle accelerator facilities that can be used for radiation breeding.

Medium- and High-energy facility Institute Ion species Energy (MeV) LET (keV/µm) Range in water (mm)

RIBF RIKEN, Japan C, N, Ne, Ar, Fe 1,620–5,040 23–640 4–40

TIARA QST, Japan He, C, Ne 100–350 9–441 6–16

W-MAST WERC, Japan H, C 200∼500.4 0.5–52 5–256

LNS INFN, Italy C 960 31 17

HIRFL CAS-IMP, China C, Ar 960–2,760 31–327 5–17

CYCIAE100 CIAE, China H 100 0.7 76

Physics, Chinese Academy of Sciences (CAS-IMP, China), and
CYCIAE100 of the Chinese Institute of Atomic Energy (CIAE,
China) (Table 1). In the field of low-energy particle mutagenesis,
the most representative research facilities are the IBBe-Device
of the Hefei Institute of Physical Science, Chinese Academy of
Sciences (CAS-HIPS, China), IBBT of Chiang Mai University
(CMU, Thailand)..

In the early stage of the development of particle radiation
mutagenesis, the technology was used for the improvement
of ornamental plants, and most of the new cultivars created
were exported all over the world, demonstrating its excellent
cultivar improvement ability (33). Since the early twenty-first
century, research on the variety improvement and mutagenesis
mechanism of food crops has been successively carried out
(5). More than 30 years of experience in particle radiation
mutagenesis shows that the frequency of new traits in crops
induced by this technology is relatively high, that the mutation
trait is relatively stable and that the breeding period is greatly
shortened. Mutants of food crops and ornamental plants with
excellent traits generated by this technology can directly launch
new cultivars or as parental materials for cross-breeding,
contributing to solutions for food and environmental problems.
Therefore, particle radiation mutagenesis technology has broad
economic benefits and important social significance, and it is a
breeding method worthy of promotion.

Application and Mutagenesis Mechanism
of High-Energy Particle Mutation Breeding
High-energy particle mutation breeding has a history of nearly
30 years thus far. The earliest high-energy particle radiation
mutagenesis was used to improve the phenotype of ornamental
plants, including sterility and flower color and shape. Since
2002, new flower cultivars, including the new sterile cultivar
verbena and new color or shape cultivars chrysanthemum,
dahlia and rose, have been developed (34). High-energy particles
have also been widely used in the development of agricultural
products with excellent traits, such as dwarfed buckwheat, barley
and pepper (34), tearless and non-pungent onion (35), lettuce
with low browning characteristics (36), rice with a stay-green
phenotype (37). High-energy particle radiation mutagenesis
technology also plays an important role in the field of biofuels,
such as the successful mutagenesis of lipid-rich Parachlorella
kessleri (38) and Euglena gracilis (39).

The successful mutagenesis of the abovementioned variants
promoted the development of basic research related to particle

radiation mutagenesis. To make particle radiation mutagenesis
technology more efficient, it is necessary to find the most suitable
physical radiation parameters, such as radiation dose and LET,
which are important parameters to be considered in particle
radiation mutagenesis. The survival rate of both model plants
and model microbes decreases with increasing dose, and the
radiation physical parametersmost suitable formutagenesis must
balance survival and mutation. For example, a study by Kazama
et al. using the model plant Arabidopsis thaliana showed that
a 300–400Gy irradiation dose and a 30 keV/µm LET carbon
ion beam can generate the maximum number of mutants (40).
Further mechanistic studies at the genomic level in both model
plants and model microbes showed that a smaller LET is better
at inducing small deletions but that larger LET radiation would
lead to large deletions (41–43). In addition, through whole-
genome sequencing, Kazama et al. found that relatively high LET
Ar ions can cause more complicated rearrangement errors in
Arabidopsis thaliana than C-ion irradiation technology (44). In
general, mutations are generated on the basis of the damage being
repaired incorrectly, and the nature of DNA damage caused by
high-energy particle radiation is mainly a large number of SSBs
and DSBs. SSBs are easily repaired in a short period of time,
whereas DSBs constitute damage that has the greatest impact on
DNA and usually requires more time to repair (45). DSB damage
is mainly repaired competitively through HR or NHEJ pathways
(46, 47), as shown in Figure 3. The HR is highly accurate while
the NHEJ is error prone. For example, a study by Ma et al. using
the model microbe Neurospora crassa reported that compared
with the NHEJ-deficient strain, the HR-deficient strain results in
higher mutation frequency after high-energy particle irradiation
(48). Another study based on rice transcriptome sequencing
suggested that alternative NHEJ (aNHEJ) may be involved in the
DNA repair of complex damage induced by high-LET irradiation
(49). These studies revealed that NHEJ has a greater contribution
to mutagenesis, and NHEJ enhancement and/or HR suppression
strategies may significantly increase the mutagenic efficiency of
high-energy particle irradiation.

Furthermore, the new trait mutants obtained by particle
radiation mutagenesis are suitable for gene function mining,
gene mapping, and even the creation of elite alleles. Several
mutants of Arabidopsis thaliana, wheat, buckwheat, and rice
have been isolated following particle irradiation based on gene
mutations formed through error-prone DSB repair pathways
such as canonical NHEJ and aNHEJ. These mutants can help us
to understand the function of affected genes; for example, FRL1
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FIGURE 3 | DSB repair pathways induced by high-energy particle radiation.

impacts sepal development (50), VRN1 influences flowering (51),
S-ELF3 is associated with a dwarf phenotype (52), CSV1 is related
to chloroplast development (53), and LIN1 controls rice grain
length (54). In addition, the Y chromosome genes of Silene
latifolia have been physically mapped using sex chromosome
mutants induced by particle irradiation (55). A recent study
showed that particle radiation has the ability to create neutral
alleles at the rice S1 locus, making it possible to cross distantly
related species and broadening crop breeding (56).

Application and Mutagenesis Mechanism
of Low-Energy Particle Mutation Breeding
The biological effect of particle irradiation has always been an
important part of radiobiology. However, for a long time, low-
energy particles (10–200 KeV) have been underestimated due
to their extremely short penetration depth in matter, which
leads to the hypothesis that it is impossible to induce high-level
biological effects via their interaction with organisms. In the early
1980s, Yu et al. first confirmed the genetic effect of low-energy
particle implantation on rice (57, 58). After years of application
in breeding, low-energy particle has been proven to be a high-
efficiency mutagenic source for genetic modification, leading
to great achievements (59, 60) and promoting the formation
of a new interdiscipline of low-energy particle biology (61).
Nevertheless, the debate regarding the mutagenesis mechanism
of low-energy particle implantation remains. In the 1990s, Yu
et al. proposed the four-factor theory of energy absorption,
mass deposition, momentum transfer and charge neutralization,
whereby energetic ions are transferred into organisms to cause
serious etching to cells and physical damage to biological
macromolecules (61). Combining the following ion channel
and soft X-ray theory provided an explanation of the physical
interaction process. Then, the mutagenesis mechanism of low-
energy particle implantation was further elucidated from the
biological process. Considering that the theoretical range for low-
energy particles in water is <1µm, which could hardly penetrate

the seed coat, the possibility of inducing biological genetic effects
might be due to the radiation-induced bystander effect (RIBE).
RIBEs are the phenomenon in which non-irradiated cells exhibit
biological effects as a result of signals received from nearby
irradiated cells (62). To test this hypothesis, the shoot apical
meristem (SAM) and root apical meristem (RAM) of Arabidopsis
seeds were shielded, and only the middle of each seed was
irradiated. After 30 KeV 40Ar irradiation, various postembryonic
development endpoints of SAM and RAM were inhibited (63).
In another study, different parts of Arabidopsis R3L66 seeds
(SAM-, RAM-, cotyledon-, and radicle-oriented) were irradiated,
and significant increases in genetic changes (HR frequency
and HR-related gene expression) were observed in the non-
irradiated aerial parts of the irradiated plants (26). These results
confirmed that long-distance bystander effects occur in plants.
The temporal and spatial characteristics as well as the molecular
mechanism of radiation bystander signals in plants have also been
elucidated (64–67), and such mechanistic studies have provided
strong evidence for clarifying the biological effects induced
by low-energy particle irradiation. Currently, big data analysis
technology is used to associate the radiation parameters of low-
energy particles with the trait variation induced. It is expected
that adjusting radiation parameters, such as the type of irradiated
particles, dose or energy, will overcome the randomness of
mutation and promote further development in the field of low-
energy particle mutation breeding.

RESEARCH ON SPACE BREEDING OF
PLANTS

Continuous Low-Dose and Combined
Irradiation of Different Radiation Sources
in a Space Environment May Be Important
Factors Inducing Genetic Variation
Compared with on Earth, radiation and microgravity are two
important factors that affect living organisms in space (68).
Radiation is mainly produced by solar cosmic rays (SCRs) and
galactic cosmic rays (GCRs). The radiation in low-Earth orbit
also includes particles captured by the Earth’s radiation belt,
such as high-energy protons, heavy-ions, electrons, neutrons,
and gamma rays (69). Among them, high atomic number and
high energy particles in the heavy ion component, typically
referred to as HZE particles, which are able to penetrate the
spacecraft cabin and produce many secondary particles (70) in
the spacecraft cabin, including gamma rays, electrons, protons,
neutrons, and other heavy ions with different LET values. Long-
term space flight test results show that the overall average
absorbed dose rate in a low-Earth orbit spacecraft cabin is
generally 0.1 to 0.5 mGy/d (71).

Although the space radiation dose rate and total absorbed
dose are very low, the peak energy of HZE particles can
reach 103 MeV, and LET can reach more than 100 keV/µm,
which has strong penetrability and ionization ability. Studies
have shown that clustered DNA damage and DSBs induced
by high-LET radiation are often difficult to accurately repair,
especially in heterochromatin areas, and may even be irreparable
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(72). In addition, cells exhibit hyper-radiosensitivity (HRS) (73)
and inverse dose rate effects (IDREs) (74). Therefore, long-
term continuous exposure to low-dose composite radiation
from different radiation sources in the space environment may
produce considerable mutagenic effects. After short-term space
flight, the mutation frequency of specific genes in yeast and
Caenorhabditis elegans is 2 to 3 times higher than that of the
ground control (75). The measurement results of rice seeds
by the nuclear track radiation detection device carried by
“Shenzhou 3” spaceship showed that 7 seeds directly bombarded
by HZE particles introduced 10–15% molecular polymorphisms
vs. contemporary control plants (76). Sun et al. also reported
that space radiation induces epigenetic changes in plants and
produces high-frequency mutations (77).

The microgravity of the space environment is another
potential mutagenic factor. Anikeeva et al. found that
microgravity can interfere with the DNA damage repair
system, hinder or inhibit the repair of DNA damage, increase
the sensitivity of plants to other mutagenic factors, and have a
synergistic effect with radiation to aggravate biological mutations
and increase the mutation rate (78). However, some studies have
shown that the microgravity environment will not interfere with
the biological effects of radiation (79). At present, it remains
controversial whether there is a joint effect between radiation
and microgravity (80).

A Series of New Plant Varieties Derived
From Space Mutation Have Been Released
and Widely Applied in China
Many germplasm resources have been created using space
breeding technology, and a large number of new plant varieties
have been released in China. For example, in 1987, the Institute
of Genetics of the Chinese Academy of Sciences cooperated with
Guangxi Agricultural University to breed a new indica-japonica
intersubspecific hybrid rice variety with strong hybridization,
high seed-setting rate and full-filled grains (81). Xie et al. bred
the restoration lines “Hang 1” and “Hang 2” by using space-based
mutagenesis technology and developed a series of superhybrid
rice varieties for large-scale production and application (82).
Wang et al. obtained space-induced materials such as “Hanghui
1173”, “Hanghui 1179”, and highly rice blast-resistant “H4”
and bred more than 50 rice varieties, including “Huahang 1”
(83). In addition, stable and excellent varieties of wheat and
sorghum developed by researchers from the Chinese Academy
of Sciences and Chinese Academy of Agricultural Sciences
have been obtained, such as wheat “Luyuan 502” (84). The
Horticulture Branch of theHeilongjiang Academy of Agricultural
Sciences and the Chinese Academy of Sciences have sent green
pepper and tomato seeds on returnable satellites many times
and selected high-yield, disease-resistant and good-quality space
varieties “Yufan 1” and “Yufan 2” (85). The new space danshen
variety “TiandanNo. 1” cultivated by the Tasly group has a single-
plant quality three times that of ordinary danshen, and its active
ingredient content is significantly higher than that of the control
(86). Yuan et al. studied the variation frequency of mutated
offspring derived from Robinia pseudoacacia seeds carried by the

“Shijian 8” recoverable satellite and cultivated the new variety
“hangci 4,” which showed a non-thorn trait (87).

THE COMBINATION OF THE
NEXT-GENERATION EFFECTIVE PARTICLE
RADIATION AND A HIGH-THROUGHPUT
SCREENING METHOD WILL FURTHER
IMPROVE THE EFFICIENCY OF RADIATION
BREEDING

Direct or indirect DNA damage caused by ionizing radiation
is the most important factor in the introduction of genetic
variation. Therefore, constantly developing radiation sources
with higher ionization capacity and then controlling the precise
release of ionization energy at biogenetically active sites of
organisms, such as the shoot apical meristem (SAM) cells
of seed embryos (88), through physical parameter adjustment
can induce high-density DNA damage at the genome-wide
level and introduce more genetic variation. Modern particle
radiation technology that can efficiently induce DNA damage
is the basis for the future development of radiation breeding.
In addition, single-cell radiation treatment can avoid the
chimaerism phenomenon of multicellular tissue after radiation,
so gamete cells are potential radiation objects. Furthermore,
the identification and screening of genetic variation induced by
radiation is key in breeding protocols. Identification methods
of genetic variation include phenotypic identification (89),
cytological identification (90), and molecular identification (91).
In recent years, the development of modern high-throughput
instruments and their combination with molecular labeling
technology have resulted in a variety of efficient, accurate,
and systematic breeding techniques, which can be used for
high-throughput identification of genotypes and phenotypes of
mutagenized populations for multiple consecutive generations.
Multispectral machine vision technology and image processing
technology improve the efficiency and dimension of phenotype
identification and help breeders find potential mutations more
quickly (92). The effective combination of the abovementioned
technologies and drones will break the bottleneck of phenotype
identification and realize high-throughput scanning of yield and
stress resistance. For starch, protein, oil and other chemical
materials highly related to crop quality, near-infrared technology
can realize non-destructive identification at the single seed level
and pre-planting screening of seed populations, so identification
could be advanced by one genetic generation (93). The screening
of specific genomic sequences is the key to mining elite
alleles. The combination of a mixed sample strategy, high-
throughput targeted sequencing and DNA labeling technology
can significantly reduce the identification cost of targeted
sequences and greatly improve the efficiency of DNA variation
identification (94). Furthermore, the germplasm identified by
phenotype and genotype should be closely combined with
classical and modern biotechnology breeding procedures to
improve the utilization efficiency of germplasm. The mutant
germplasm identified can be directly cultivated into new varieties
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or used as important parental material to indirectly produce
new varieties, improving mutagenesis breeding efficiency and
offering new germplasm (95). Wang Ping proposed a method
combining three factors: the mutagenesis materials as the core,
molecular marker screening as an aid, and field identification
as a supplement. Based on the above method, a series of new
rice varieties were cultivated (96). How to efficiently pyramid
and utilize multiple superior mutation sites is an important
challenge. The rapid development of genome editing technology
provides a new way to solve this problem (97). Breeders
can obtain enhanced germplasms harboring multiple elite
mutation sites by recombining mutation fragments or accurately
replacement mutation sites through genome editing technology.
We summarize the next-generation effective modern particle and
high-throughput screening combined breeding system, as shown
in Figure 4.

DISCUSSION

During the past 60 years, radiation mutation breeding together
with other mutation breeding methods has been widely used
to improve several crops and determine gene functions, even
though it is facing a bottleneck in the development process,
and the booming gene-editing technology has also brought great
challenges. Nonetheless, with the increasing human population,
decreasing in arable farmland area and deterioration of climate
and the environment (drought, extreme temperature), there
are strong requirements for stress-tolerant crop breeding.
Under such circumstances, we should emphasize the mutual

development and joint use of multiple breeding approaches
to further shorten the crop breeding cycle and improve
breeding efficiency (98). A large number of breeding traits
are complex quantitative traits, and gene editing or molecular
breeding techniques based on a few genes are not ideal for the
improvement of quantitative traits. Therefore, it is necessary
to strengthen research on mutation breeding. However, similar
to other breeding techniques, radiation mutation breeding
has limitations, such as beneficial mutant frequency being
relatively low and the direction and nature of variation being
difficult to predict. Indeed, producing more useful varieties and
elucidating radiation mutagenesis mechanisms remain scientific
problems worthy of attention. Overall, our understanding
of the mutagenesis mechanism of radiation breeding is still
insufficient, and in-depth research needs to be conducted,
including regarding the origin of mutations in progeny plants.
As indicated above, genomic instability also leads to mutations,
constituting a double-edged sword for crop breeding: it can not
only increase the variation rate of progeny but also result in the
instability of mutant traits. Thus, the role of genomic instability
in plant mutagenesis needs to be uncovered. Relying on the
development of advanced radiation devices and combining high-
throughput gene sequencing and other advanced molecular
biotechnology, it is expected that the mutagenic effect of
radiation might eventually be predictable, allowing research to
develop toward directional mutagenesis.

The establishment of an accelerated particle radiation device
provides a fundamental guarantee for the application of modern
radiation mutation breeding, and its diversified parameter

FIGURE 4 | Next-generation effective modern particle radiation and high-throughput screening combined breeding system.
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combinations might allow for directional mutagenesis in plant
breeding. As a new generation of radiation mutagenesis
sources, particle radiation represented by heavy-ions has further
improved mutation frequency and the mutation spectrum
compared with classical radiation mutagenesis, such as gamma
rays and X-rays. This new generation breeding technology can
generate more combinations of gene mutation sites, thereby
breaking the linkage inheritance of traits, and it is expected
that more mutants with excellent traits can be obtained,
offering a breakthrough in the creation of new crop cultivars.
Although particle radiation mutagenesis has been widely used
in crop breeding and molecular genetic mechanism research,
the mutagenesis mechanism is very complicated, and the
mutagenesis effects of different radiation physical parameters
of particles varied. Therefore, the key to the efficient creation
of mutants is to select the appropriate types of accelerated
particles and their radiation physical parameters. Several
screening strategies for optimizing radiation parameters at the
phenotypic and molecular levels have emerged (40, 99, 100).
These studies provide valuable experience and new ideas
for the formulation of optimal radiation conditions in the
future particle radiation mutation breeding process. With
the continuous development of sequencing technology, the
combination of accelerated particle radiation with whole-genome
resequencing, transcriptome sequencing, and other technologies
can be employed to deeply explore changes in the genome and
transcriptome levels in crops after accelerated particle irradiation
and to further clarify the mutagenic mechanism of particle
radiation. Furthermore, the further upgrade of particle radiation
mutagenesis technology is of great significance to improve the
efficiency of mutagenesis breeding.

Space radiation further expands the scope of radiation
breeding, and the study of mutagenic effects in the space
environment involves multiple disciplines, such as space biology,

genetics, mutagenesis, and breeding. Althoughmany studies have
confirmed the mutagenic effects of the space environment and
a series of varieties have been selected through space mutation,
there is still a lack of research on the molecular characteristics,
molecular spectrum and genetic mechanisms of mutations
induced by the space environment. The following aspects are
worthy of in-depth discussion: (1) analysis of the synergistic
mutagenic effects of microgravity and space radiation; (2)
single-factor analysis and ground simulation of space radiation
mutagenic factors; (3) single-cell mutation mapping of space
radiation-induced mutation and genetic network construction;
and (4) high-efficiency identification of space-induced variation
and development of rapid fixation technology. The development
of single-cell sequencing, high-throughput sequencing, and high-
throughput detection technologies provides favorable conditions
for studying the effects of space environmental mutagenesis and
accelerating the utilization of genetic variation at the whole-
genome level.
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