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Abstract: Globally, breast cancer has remained the most commonly diagnosed cancer and the leading
cause of cancer death among women. Breast cancer is a highly heterogeneous and phenotypically
diverse group of diseases, which require different selection of treatments. Breast cancer stem cells
(BCSCs), a small subset of cancer cells with stem cell-like properties, play essential roles in breast
cancer progression, recurrence, metastasis, chemoresistance and treatments. Epigenetics is defined as
inheritable changes in gene expression without alteration in DNA sequence. Epigenetic regulation
includes DNA methylation and demethylation, as well as histone modifications. Aberrant epigenetic
regulation results in carcinogenesis. In this review, the mechanism of epigenetic regulation involved
in carcinogenesis, therapeutic resistance and metastasis of BCSCs will be discussed, and finally, the
therapies targeting these biomarkers will be presented.
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1. Introduction

Globally, breast cancer has remained the most commonly diagnosed cancer and the
leading cause of cancer death among women [1]. In 2021, 281,550 new cases of breast
cancer were estimated to be diagnosed in women, and 43,600 deaths were predicted from
breast cancer in the USA. Therefore, breast cancer has the second highest cancer-related
death rate, and is among the most commonly diagnosed cancers in US women [2].

Breast cancer is a highly heterogeneous and phenotypically diverse group of diseases,
which require different selection of treatments [3–5]. Accurately being able to distinguish
between the various subtypes of breast cancer is vital as they have different prognoses and
responses to therapy [6]. Gene expression studies have identified six distinct molecular
subtypes for breast cancer, which characterize distinct physiological presentation, gene
expression profile, prognosis and clinical outcomes [7–9]. These subtypes are classified
according to the presence or absence of hormone (estrogen (ER) or progesterone (PR))
receptors (HR+/HR-) and human epidermal growth factor receptor 2 (HER2+/HER2-).
Luminal A (HR+/HER2-) represents a slow-growing and less aggressive subtype, while
luminal B (HR+/HER2+) seems to be more aggressive than luminal A. HER2-positive
(HR-/HER2+) breast cancers, which express excess HER2 and do not express hormone
receptors, grow and spread more aggressively than other breast cancers and are correlated
with poorer prognosis than ER+ breast cancers. Triple-negative or basal-like (HR-/HER2-)
breast cancer, with no expression of ER and PR (ER-, PR-) or HER2 (HER2-), represents the
worst prognosis subtype. Normal-like breast cancer (HR+/HER2-) is similar to luminal
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A disease. Although normal-like breast cancer has a good prognosis, its prognosis is still
slightly worse than that of luminal A. Lastly, claudin-low tumors are characterized by low
genomic instability, mutational burden and proliferation levels [3,4,10,11].

1.1. Breast Cancer Stem Cells (BCSCs)

Cancer stem cells (CSCs) are a subpopulation of tumor cells that are endowed with
self-renewal and multi-lineage differentiation capacities and play a crucial role in initiation,
tumorigenesis, metastasis, chemoresistance and relapse of tumors [12–14]. BCSCs are
characterized by the expression of cell surface markers, such as CD24−/low, CD44+ and
epithelial cell adhesion molecule (EpCAM+) [15,16]. Other surface markers, such as CD133,
CD49f, CD90, nestin, ganglioside GD2, C-X-C chemokine receptor type 4 (CXCR4), C-X-
C motif chemokine ligand 1 (CXCL1), hydroxymethylglutaryl-CoA synthase (HMGCS),
CD166, CD47, aldehyde dehydrogenase 1 (ALDH1) and ATP-binding cassette super-family
G member 2 (ABCG2), have also been identified to be associated with BCSCs [17–19]. It is
now becoming evident that BCSCs can generate different breast cancer subtypes, which
express different surface markers due to limited or aberrant differentiation [20–22].

Compared to normal cells, BCSCs initiate the multiple changes in gene expression
involved in the invasion–metastasis cascade as a result of several mechanisms, including
EMT induction and abnormal miRNA biogenesis [23–25]. EMT is a complex process that
involves many transcription factors, including but not limited to, TWIST, ZEB1, SNAIL,
SLUG, Smad interacting protein 1 (SIP1) and E47, and many signaling pathways, such as
Wnt/β-catenin, Notch, Hedgehog (HH), nuclear factor-κB (NF-κB)/Akt and transforming
growth factor-β (TGF-β)/Smad pathways [26]. Cells undergoing EMT can acquire stem
cell-like properties to become CSCs [27]. Intriguingly, BCSCs with a CD44+/CD24−/low
phenotype also possess EMT characteristics, such as low expression of E-cadherin (CDH1)
and high expression of vimentin, N-cadherin (CDH2), fibronectin and EMT inducers (Twist,
Snail and Slug) [28–30]. Since BCSCs play a critical role in carcinogenesis, proliferation and
metastasis of breast cancer, targeting BCSCs represents an attractive therapeutic strategy
for breast cancer.

1.2. Epigenetic Regulation in Normal Function

It has been proven that epigenetic regulation and non-coding RNAs (ncRNAs) are
master gene regulators of EMT and CSCs for invasiveness and metastasis of cancer
cells [31,32]. Therefore, deciphering the molecular mechanisms that regulate the CSCs’ self-
renewal/differentiation balance is urgently required for developing new treatments [33].
In contrast to genetics, epigenetics is defined as inheritable changes in gene expression
without alteration in DNA sequence [34]. DNA winds around histone protein to form
larger order structural units, nucleosomes, the basic structural units of chromatin. There
are two levels of chromatin organization, “open, euchromatin”, which permits active tran-
scription, or “closed, heterochromatin”, which represses transcription. The homeostasis
between euchromatin and heterochromatin is determined by epigenetic regulations, includ-
ing DNA methylation, post-translational histone modifications and alteration of ncRNA
expression [35,36].

1.2.1. DNA Methylation and Demethylation

DNA methylation is the most important epigenetic regulation for mRNA and mi-
croRNA (miRNA) expression in mammalian cells to ensure normal development and
growth [37]; conversely, it is dysregulated in cancer cells [38,39]. In the process of DNA
methylation, it creates a ‘fifth base’ from cytosine, 5-methylcytosine (5mC), mostly oc-
curring in CpG islands (CGIs), which act as regulatory hotspots found upstream of the
promoter region [40]. There are three types of proteins for DNA methylation and demethyla-
tion, including DNA methyltransferases (DNMTs), ten-eleven translocation (TET) enzymes
and methyl-binding domain (MBD) proteins [41,42]. Three DNMTs controlling methyl
group transfer or CGI methylation consist of DNMT1, responsible for methylation mainte-
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nance, and DNMT3A and DNMT3B, capable of de novo methylation, which play critical
physiological roles in mammalian genome stability, cellular proliferation and development
and cell fate determination [43,44]. Recently, DNMT2 has been identified as a methyltrans-
ferase, but for methylation of tRNA instead [45]. The methylated DNA can be recognized
by binding MBD proteins to recruit histone-modifying complexes, such as histone methyl-
transferases (HMTs), for regulating gene transcription and chromatin remodeling [46,47].
It is estimated that 70% of all CGIs in humans are hypermethylated and are found in
heterochromatin, which represses transcription. In contrast, hypomethylated CGIs are
located in euchromatin, which activates gene expression [48]. Conversely, demethylation is
catalyzed by TET family enzymes, TET1, TET2 and TET3, oxygenase enzymes that convert
5mC to 5-hydroxymethylcytosine (5hmC), 5-formyl cytosine (5fmC) and 5-carboxyl methyl
cytosine (5CamC) [49–52].

1.2.2. Histone Modifications

Covalent post-translational modifications (PTMs) of histone tails, including methyla-
tion, acetylation, phosphorylation, ubiquitination and SUMOylation, play a pivotal role in
modifying gene expression [53]. In contrast to DNA methylation, associating with gene-
silencing, histone methylation, acetylation and phosphorylation can change the secondary
structure of DNA and result in either induction or prevention of access by transcription
factors to gene promoter regions in order to inhibit or activate transcription [53,54].

Histone methylation plays important roles in gene transcription, DNA replication and
repair, chromatin organization and developmental and differentiation processes [55–57].
Histone methylation, defined as the transfer of one, two or three methyl groups to lysine
or arginine residues of histone proteins, is regulated by HMTs and histone demethylases
(HDMs) [58]. Transcription silencing is associated with methylation of histone 3 lysine
9, 20 or 27 (H3K9, H3K20 or H3K27), while methylation of histone 3 lysine 4, 36 or 79
(H3K4, H3K36 or H3K79) is involved in transcription activation [59]. Three families of
HMTs have been discovered that are specific for the lysine or arginine residue which
they modify: the set domain-containing protein family, the non-set domain protein family
and the protein arginine methyltransferases (PRMT1) family [57]. A polycomb repressive
complex 2 (PRC2) group protein, Enhancer of zeste homolog 2 (EZH2), methylates H3K27
and is a transcriptional repressor [60]. H3K9 methylation occurring in euchromatin causes
mono- and di-methylation (H3K9me1 and H3K9me2) catalyzed mainly by G9a, and in
heterochromatin, which requires trimethylation (H3K9me3) mostly catalyzed by Suv39H1
and Suv39H2 and results in transcriptional silencing [55,56]. Furthermore, a novel his-
tone lysine methyltransferase, the set and MYND domain-containing protein 3 (SMYD3),
methylates H3K4 [61]. On the other hand, two major families of demethylases have been
identified, lysine-specific demethylase 1 (LSD1) and Jumonji domain-containing HDMs
(JMJD2, JMJD3/UTX and JARIDs). LSD1 specifically demethylates mono- or di-methylated
H3K4 or H3K9 and non-histone proteins, such as p53 and DNMT1, indicating that it plays
a vital role in a number of normal biological functions and in carcinogenesis, as described
in the following section [62]. Similarly, H3K9me3/me2 demethylation is catalyzed by
JMJD2C, also known as histone lysine demethylases 4C (KDM4C) [63]. Additionally,
JMJD2C demethylates the second methylated histone substrate, H3K36me3 [64].

Histone acetylation occurs via the modifying enzymes, histone acetyltransferases
(HATs) or histone deacetylases (HDACs). An acetyl group is added by HATs to ε-amino
groups of lysine residues in the histone N-terminal tails, making euchromatin, which allows
transcription factor binding and results in gene activation. Conversely, HDACs catalyze the
hydrolytic removal of acetyl groups from histone lysine residues, which compact chromatin
into heterochromatin, preventing transcription factor binding to DNA and subsequent
gene expression [65].

In this review, the mechanism of epigenetic regulation involved in carcinogenesis,
therapeutic resistance and metastasis of BCSCs will be discussed, and finally, the therapies
targeting these biomarkers will be presented.
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2. Epigenetic Regulation in Breast Cancer and BCSCs

Approximately 30% of breast cancer is associated with epigenetic modifications,
especially DNA methylation [66]. Recently, epigenetic deregulation, such as aberrant DNA
methylation and histone modification, has been increasingly recognized to be associated
with aberrant gene expression and breast cancer tumorigenesis and metastasis [67,68]. The
mechanism of carcinogenesis involves hypermethylation of tumor-suppressor genes and
hypomethylation of oncogenes [66]. In addition to DNA methylation, alterations of miRNA
expressions have frequently been identified in breast cancer, indicating that miRNAs also
play critical roles in the development of breast cancer [51,69,70]. There is an enormous
number of epigenetic mechanisms that have been discovered in breast cancer, and only the
recent discoveries are elucidated here.

In the formation, maintenance and carcinogenesis of BCSCs, epigenetic modifications
including DNA methylation, histone modifications and ncRNA modulation play important
roles. There is a large amount of data on HMTs and demethylases; however, there is
only a limited amount of data on DNMTs and demethylases in the process of BCSC
programming [71–73]. Recently, ncRNAs have gained great attention as there are emerging
and massive discoveries of ncRNAs involved in BCSC formation. In addition to the
contribution to cell self-renewal and differentiation of BCSCs, these epigenetic regulations
may distinguish BCSCs from embryonic stem cells (ESCs) and other normal stem cells [74].
Like the normal stem cells, BCSCs have specific DNA methylation signatures distinguishing
them from their non-BCSC counterparts [75]. Therefore, all these epigenetic players interact
with each other, with chromatin and with transcription factors. Epigenetic regulation in
BCSCs involves a complex interplay between proteins and ncRNAs, including miRNAs
and long noncoding RNAs (lncRNAs), which are described in more details in the following
sections (Table 1). These biomarkers could be classified into tumor activators and tumor
suppressors. The distribution of tumor activators and suppressors recently identified in
epigenetic regulation of carcinogenesis for BCSC is represented in Figure 1. It is clear to see
that most protein and lncRNA biomarkers are tumor activators, whereas most miRNAs are
tumor suppressors.

Table 1. Biomarkers involved in epigenetic regulation of carcinogenesis for BCSCs.

Biomarkers Function Role in Carcinogenesis References

Oncogenes or tumor activators
Proteins

DNMT1
Catalyzes hypermethylation of the
cytosines and represses
gene transcription.

DNMT1 is highly expressed in CSCs in
mammospheres and tumorospheres, and
DNMT1 deletion suppresses mammary
tumorigenesis. ISL1 is hypermethylated and
downregulated by DNMT1 in breast cancers
and BCSCs.

[76–78]

DNMT1 silencing reduced MSFE in
triple-negative breast cancer (TNBC). [79]

BMI1 (B lymphoma
Mo-MLV insertion
region homolog)

Component of PRC1 that plays a
crucial role in epigenetic regulation of
various physiological processes, such
as cell differentiation, stem cell
self-renewal and gene-silencing,
through histone modifications.

Increases self-renewal capacity of BCSCs and
promotes EMT. [80–82]

EZH2
A PRC2 group protein and a HMT
that methylates H3K27 and functions
as a transcriptional repressor.

Inhibits the expression of tumor suppressor
genes, such as P16 INK4a, E-cadherin,
BRCA1 and the adrenergic receptor β2.
Activates the Notch1 expression and
signaling, leading to stem cell expansion
in TNBC.

[83–85]
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Table 1. Cont.

Biomarkers Function Role in Carcinogenesis References

SETDB1 (SET Domain
Bifurcated Histone
Lysine
Methyltransferase 1)

HMT catalyzes the di- and
tri-methylation of H3K9 to induce
gene-silencing.

Promotes breast cancer metastasis through
the acquisition of stem-cell-like properties
and EMT.

[86–88]

LSD1

Removes methyl groups from
methylated proteins, including H3K4
and non-histone proteins, such as p53
and DNMT1.

Induces gene expression involved in EMT
and elicits the BCSC program. [89,90]

HDAC
Catalyzes the hydrolytic removal of
acetyl groups from histone
lysine residues.

Plays a significant role in the epigenetic
regulation of CSC miRNAs. [65,91]

miRNAs

miR-10b oncomiR Contributes to TGF-β1-induced EMT and
tumor metastasis. [92,93]

miR-23a oncomiR Contributes to TGF-β1-induced EMT and
tumor metastasis. [94]

miR-221 oncomiR

Suppresses CDH1 resulting in E-cadherin
suppression.
Represses the DNMT3B gene, and this leads
to suppression of the NANOG and OCT 3/4
genes and contributes to stemness
maintenance in breast cancer.

[95,96]

miR-221/222 cluster oncomiR Induces the growth, migration, invasion and
propagation of BCSCs. [97,98]

miR-31 oncomiR Increases the BCSC subpopulation and
tumor initiation and metastasis abilities. [99]

miR-520b oncomiR Is upregulated in breast cancer tissue and
BCSCs and promotes the stemness. [100]

lncRNAs

HOTAIR
During embryonic development,
HOTAIR regulates the silencing of the
distant HOXD locus.

Downregulates miRNA-7 associated with
EMT and STAT3 activity. [101–104]

SOX2OT and linc00617 oncogenes The stemness factor SOX2 is upregulated in
BCSCs by SOX2OT and linc00617. [105,106]

lncRNA-Hh Oncogene The self-renewal HH pathway is activated,
which promotes CSC maintenance. [107]

H19 Functions in the epigenetic silencing
of the IGF2 gene.

Promotes metastasis through EMT induction.
Overexpression of H19 enhances
clonogenicity, migration and
mammosphere formation.

[108–113]

LncRNA-HAL Oncogene
HAL silencing increases cell proliferation
and impairs the proportion and function
of CSCs.

[114]

LINC01133 Oncogene Induces the BCSC phenotype. [115]

lncRNA EPIC1 Oncogene Overexpression of EPIC1 is correlated to poor
survival outcomes in luminal B breast cancer. [116]

lncRNA SOX21-AS1 Oncogene
Promotes BCSC properties and
carcinogenesis via inhibiting Sox2 or the
Hippo signaling pathway.

[117,118]

lncRNA THOR Oncogene
Silencing of THOR induces reductions in
mammosphere formation, stemness marker
expression and ALDH1 activity of BCSCs.

[119]

LncCCAT1 Oncogene
Is significantly upregulated in breast cancer
tissue and BCSCs, leading to poor
patient outcomes.

[120]
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Table 1. Cont.

Biomarkers Function Role in Carcinogenesis References

LncRNA LUCAT1 Oncogene
Is expressed in breast cancer tissue and
highly expressed in BCSCs, and regulates
stemness features.

[121]

MALAT1 Has vital biological implications.
Is overexpressed in BCSC MCF7, and its
knockdown decreases the proportion of
BCSC MCF7 and mammosphere formation.

[110,122]

lncRNA FEZF1-AS Oncogene

Knockdown of LncRNA FEZF1-AS reduces
the ability of BCSC to form mammospheres,
the expression of stem cell markers and the
rate of CD44+/CD24− production.

[123]

lncRNA LINC00511 Oncogene
Is highly expressed in breast cancer, which is
correlated with the poor prognosis
of patients.

[124]

Tumor suppressors
miRNAs

miR-200c A tumor suppressor

Targeting the self-renewal gene Bmi-1
represses tumorigenicity of human BCSCs
in vivo, and also targets Pin1 to regulate
stemness of human primary BCSCs.

[125,126]

miR-200a, miR-200b
and miR-15 Tumor suppressors

Overexpression of miR-200a, miR-200b and
miR-15 decreased BMI1 and Ub-H2A protein
expression in the CD44+ CSC population of
MDA-MB-231 cells.

[127]

miR-200b A tumor suppressor Inactivates FERMT2 and results in the
inhibition of EMT and metastasis. [128]

let-7 A tumor suppressor Plays a significant role in BCSC, which is
controlled via DNA methylation. [129,130]

miR-30a A tumor suppressor Suppresses the ZEB2 expression and
controls aggressiveness. [131]

miR-590-5p A tumor suppressor
Inhibits stemness by targeting the SOX2 gene
and leads to a decrease in the
BCSC population.

[132]

miR-140 A tumor suppressor
Inhibits stemness by targeting the SOX2 gene
and leads to a decrease in the
BCSC population.

[133]

miR-146a A tumor suppressor Plays a role in mediating the induction and
maintenance of BCSCs during EMT. [134–136]

miR-600 A tumor suppressor Reduces BCSC self-renewal through the
inhibition of Wnt. [137]

miR-128-3p A tumor suppressor Inhibits cell proliferation, migration, invasion
and self-renewal of BCSCs. [138]

miR-137 A tumor suppressor Inhibits stemness and chemoresistance. [139]

miR-873 A tumor suppressor
Inactivates PI3K/AKT and ERK1/2 signaling
and attenuates the stemness and
chemoresistance abilities of BCSCs.

[140]

lncRNAs

lncRNA FGF13-AS1 A tumor suppressor
Is downregulated in breast cancer and
inhibits glycolysis and stemness properties of
breast cancer cells.

[141]
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2.1. DNMT1

A number of studies have revealed that DNMT1 promotes EMT in TNBC via four main
mechanisms [142]. Firstly, EZH2 recruits DNMT1 to form an EZH2-H3K27me3-DNMT1
complex in order to hyper-methylate the promoter of wwc1, the EMT suppressor gene,
and inhibits its expression in TNBC MDA-MB-231 cells, and the subsequent migration of
TNBC cells occurs [143]. Secondly, E-cadherin is suppressed by transcriptional repressors
delta-crystallin enhancer binding factor 1 (δEF1) and SIP1. It was demonstrated that the
E-cadherin promoter region was hypermethylated, and synergistic inhibition of δEF1 and
SIP1 by decitabine treatment de-repressed the E-cadherin expression [144]. Thirdly, DNMT1
is involved in the tumor microenvironment by inducing the oncogenic IL-6/STAT3/NF-κB
pathway and promoting the expression of the RNA binding protein, AUF1, in cancer-
associated fibroblasts (CAFs) [145]. Lastly, the expression of DNMT1 is suppressed by
miR-152 [146] and miR-340 [147], which inhibits the migration of TNBC cells.

Moreover, DNMT1 is indispensable for ESC maintenance, and it was also found to be
highly expressed in BCSCs of MMTV-Neu mice, and the DNMT1 deletion protected mice
(Dnmt1fl/fl-MMTV-Neu-Tg mice) from mammary tumorigenesis by suppressing BCSCs.
Additionally, genome-scale methylation studies identified that the gene of insulin gene
enhancer protein, ISL1, was hypermethylated and downregulated by DNMT1 in breast
cancer and BCSCs, and inhibition of DNMT1 or ISL1 overexpression in triple-negative
breast cancer (TNBC) cells (CAL51) suppressed CSC populations [78]. It was further
revealed that lower ISL1 transcript expression was significantly correlated with poorer
survival in breast cancer patients (p < 0.05); however, it was not demonstrated whether
DNMT1 expression was inversely correlated in breast cancer patients [142].

Snail, as a transcription factor and EMT inducer, was also shown to interact with
DNMT1, DNMT3A and DNMT3B, and mediated DNA methylation for the promoter of E-
cadherin. Clearly, inhibiting Snail-mediated epigenetic regulation resulted in re-expression
of E-cadherin and the reversal of EMT. This indicates that Snail is responsible for recruiting
these epigenetic enzymes to the promoter of E-cadherin, and thus it is involved in the EMT
process [148].

2.2. TET1

TET1 was proven to be overexpressed in TNBC patients and associated with a worse
overall survival. It contributes to aberrant hypomethylation by TET1 and activation of
cancer-specific oncogenic pathways, including PI3K, EGFR and PDGF [149]. The prominent
demethylation at the enhancers of ERα, FOCA1 and GATA, well-studied transcriptional
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factors, has been detected in ER+, luminal A and luminal B types, compared to normal
breast tissue [150]. Consistently, it was demonstrated that HDM retinoblastoma-binding
protein 2 (RBP2) at the enhancers of ERα may cause tamoxifen resistance in ER+ breast
cancers [151]. Hypomethylation in promoters of oncogenes, such as ADAM12, TIMP-1
and the lncRNA HUMT, resulted in elevated expression in TNBC and was associated with
poor prognoses [152–154]. In contrast, when promoters of tumor suppressor genes are
abnormally hypomethylated, they lead to tumorigenesis and invasiveness in TNBCs [142].

Interestingly, a novel H2O2-regulated pathway linking obesity and BCSCs was recently
identified. The TET1, TAR DNA-binding protein (TARDBP), arginine-rich splicing factor
2 (SRSF2) and NANOG genes are all overexpressed in TNBC, especially in TNBC from
obese women. Catalase is downregulated in TNBC, which upregulates redox signaling
by H2O2, driving a gene expression cascade from TET1 through TARDBP and SRSF2.
Subsequently, methyl-CpG-binding domain protein 2, variant 2 (MBD2_v2), is activated,
and finally maintains CSC self-renewal. Furthermore, obesity increases levels of pro-
inflammatory signaling factors, such as cytokines, which increase the H2O2 level in breast
cancer cells [155].

2.3. HMTs

Deregulation of histone methylation represents another kind of epigenetic event
associated with breast cancer invasiveness [25]. For example, G9a specifically methylates
p53, a tumor suppressor, at Lys373, and inactivates it. Thus, it has been shown to promote
cancer aggressiveness, and its overexpression was correlated with poor prognosis [156,157].
PRMT1 has been demonstrated to promote the EMT program of breast cancer cells by
activating ZEB1 [158] and to confer resistance to cetuximab in TNBC cell lines [159], and its
overexpression was correlated with cancer malignancy and poor prognosis by methylating
and inactivating C/EBPα [160].

2.3.1. Polycomb Group (PcG) Protein

The PcG proteins are transcriptional repressors that act through histone modifications
and regulate many developmental and physiological processes, such as cell differentiation
and stem cell self-renewal [161]. PcG of proteins, such as BMI1 (B lymphoma Mo-MLV
insertion region homolog), a component of the PRC1, and EZH2 (PRC2), are upregulated in
breast cancer and BCSCs [80,125,162]. BMI1 is involved in epigenetic regulation of cancer
cell proliferation, metastasis, CSC and chemoresistance [80,163]. It was demonstrated that
the BMI1 upregulation in 5-fluoro uracil-resistant breast cancer cell lines, such as MDA-MB-
231 (mesenchymal stem-like TNBC) and MDA-MB-453 (TNBC) [164]. BMI1 overexpression
increased breast cancer sphere formation and promoted EMT, with increased expression of
stemness-related genes through activation of Nanog expression via the NF-κB pathway [81].
Recently, downregulation of BMI1 in mouse BCSC line FMMC 419II by the inhibitor, PTC
209, and a stable transfection with a BMI1 shRNA plasmid, correlated with reduced
mammosphere formation and a decrease in tumor mass. These results indicate that the
inhibition of BMI1 expression in BCSCs might eliminate tumors and relapse [82].

Likewise, increased EZH2 levels have been shown in BCSCs, confirming the role of
EZH2 in maintenance of the CSC population [83]. Furthermore, EZH2 was demonstrated
to inhibit several tumor suppressor genes, such as E-cadherin, P16 INK4a, BRCA1 and the
adrenergic receptor β2 [84]. Conversely, EZH2 was proven to activate NOTCH, resulting
in expansion of BCSCs in TNBC [85], consistent with the previous reports that have shown
that Notch signaling plays a pivotal role in maintaining the BCSC population [165,166]. In
addition, histone modifiers, such as BMI-1 and EZH2, and ncRNAs, such as let7, miR-93,
miR-100 and Homeobox transcript antisense RNA (HOTAIR), have all been shown to play
roles in the regulation of CSC phenotypes [167].
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2.3.2. SETDB1

SETDB1, a HMT, catalyzes the di- and tri-methylation of histone H3K9 to induce
gene-silencing [86,87]. Knockdown of SETDB1 results in downregulation of breast cancer
formation, migration and invasion, and alteration of EMT/MET makers. The regulatory
mechanism involves SMAD7, whose expression is regulated by SETDB1, as SETDB1
knockdown upregulated SMAD7 and suppressed metastasis of breast cancer cells [88].
Moreover, SETDB1 contributes to the EMT process by interacting with the SMAD-7/TGF-
β regulatory pathway, which influences SNAI1 (Snail1), an EMT-inducing transcription
factor that is associated with metastasis [168–170]. However, the interaction of SETDB1
and EMT-inducing transcription factors in BCSC requires further investigation.

2.4. LSD1

LSD1 is overexpressed in several types of cancers, including basal-like breast cancer,
and is linked to poor prognosis and aggressiveness [171]. The stemness properties of
breast cancer proportionately increase with the LSD1 expression [89]. Furthermore, LSD1
induced gene expression involved in EMT and elicited the BCSC program. Phosphorylation
of LSD1 at serine-111 (LSD1-s111p) by chromatin anchored protein kinase C-θ (PKC-θ),
activated its demethylase activity and promoted EMT [90]. Additionally, miR-708 directly
targeted and downregulated the encoding gene of the important epigenetic regulator LSD1.
Overexpression of miR-708 in breast cancer cell line MDA-MB-231 inhibits cell proliferation
and invasion, while LSD1 overexpression enhances these processes [172]. In addition,
LSD1 is involved in the CXCR4-LASP1 axis, which plays an important role in breast cancer
metastasis. CXCR4 signaling raises the nuclear levels of A20 and LSD1. Nuclear-shuttled
LASP1 and upregulated LSD1 levels may physically shield Snail1 and prevent access of
GSK-3β to Snail, which then represses E-cadherin [173]. Therefore, targeting LSD1 may
offer a novel therapeutic strategy to inhibit breast cancer progression and dissemination.

2.5. HATs

Likewise, breast cancer development and progression can be activated or inhibited by
HATs. Therefore, hyper-acetylation of oncogenes results in cancer progress [72]. MYST3,
HAT, was overexpressed in ER+ breast cancer, associated with worse clinical outcomes.
MYST3 may activate ERα gene expression by direct binding to ERα promoter, promoting
histone acetylation at this locus and altering the chromatin structure. Thus, it was revealed
that MYST3 plays a significant role in ER+ breast cancer development, indicating that
MYST3 may be a novel target for ER+ breast cancer [174].

2.6. HDACs

HDACs also play critical roles in tumorigenesis, including epigenetic regulation
of numerous genes for tumor initiation, progression, angiogenesis and metastasis [175].
Histone acetylation also plays a significant role in the epigenetic regulation of CSC miRNAs.
MiR-34a, an important tumor suppressor, is suppressed in BCSCs, whereas activation of
miR-34a is able to suppress the tumorigenic activity of CSCs. Deacetylation of HSP70
K246 by HDAC1 and HDAC7 enhances cancer cell survival and drug resistance. However,
HDAC1 and HDAC7 are targeted and suppressed by miR-34a. Thus, the levels of HDAC1
and HDAC7 are correlated with tumor characteristics, such as grade and stage [91]. More
recently, it was demonstrated that CUL4B-Ring E3 ligase (CRL4B) complex interacts with
a number of HDAC-containing corepressor complexes, such as MTA1/NuRD, SIN3A,
CoREST and NcoR/SMRT complexes. CRL4B/NuRD (MTA1) complexes could be recruited
by transcription factors including Snail and ZEB2 and occupy the E-cadherin and AXIN2
promoters to induce tumorigenesis and breast cancer cell invasion [176].

2.7. ncRNAs

ncRNAs are emerging as important regulators in gene expression and tumorigene-
sis [177,178]. There are two categories of ncRNAs according to the size and structural or
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regulatory characteristics. lncRNAs are ncRNAs > 200 nucleotides, while ncRNAs < 200
nt include miRNAs, small nucleolar RNAs (snoRNAs) and piwi RNAs (piRNAs) [178].
ncRNAs play important roles in regulating gene expression by interacting with epige-
netic modifiers, and their dysregulation appears to associate with epigenetic alterations in
cancer [179] (Table 1).

2.7.1. miRNAs

The investigations on miRNAs are emerging and prevalent. miRNAs are short, single-
stranded ncRNAs (18~22 nucleotides in length) that negatively regulate mRNAs post-
translationally by binding to the 3′-UTR region of mRNA [180,181]. There is a growing list
of miRNA genes abnormally methylated in cancer, resulting in dysfunction in normal bio-
logical processes and carcinogenesis [179]. There are two categories for cancer-associated
miRNAs: the oncogenic miRNAs (oncomiRs) are usually highly expressed, and they con-
tribute to cancer development and progression and could be useful for diagnosis, prognosis
and treatment [69,70,182], and the tumor-suppressive miRNAs (miRsupps), which inhibit
tumorigenesis by regulating cell proliferation, apoptosis, invasion, metastasis and therapeu-
tic resistance in BCSCs [25,183] (Figure 2). For example, miR-31 is overexpressed in breast
cancer and is directly activated by the NF-κB signaling pathway. Downregulating miR-31
leads to a reduced BCSC subpopulation and diminishes the abilities of tumor initiation and
metastasis. Furthermore, miR-31 was shown to mainly upregulate Wnt/β-catenin activity
by suppressing Xin1, Gsk3β and Dkk1, and to inhibit TGF-β signaling through Smad3 and
Smad4 [99].
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tumorigenesis of BCSC.

Investigation of methylation of five miRNAs associated with the invasiveness and
metastasis of breast cancer revealed that miR-132, miR-137 and miR-1258 were hyper-
methylated and associated with clinical features [69]. Profile analysis of methylation of
miRNA and differentially methylated regions (DMRs) showed that miR-31, miR-135b and
miR-138-1 were associated with methylation in early and late postpartum groups of breast
cancer [184]. Downregulation of miR-205 expression was mediated by Erb-B2 receptor tyro-
sine kinase 2 (ErbB2) signaling via the Ras/Raf/MEK/ERK pathway and hypermethylation
of the miR205 promoters. This led to increased ErbB2 tumorigenicity [185].
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In investigating the epigenetic regulation and mechanisms involved in BCSC, NIMA-
related kinase 2 (NEK2) has been identified as a novel target of miR-128-3p, and is upregu-
lated in breast cancer. The overexpression of miR-128-3p was demonstrated to inhibit cell
proliferation, invasion, migration and self-renewal of BCSCs and resulting tumorigenicity.
It was further demonstrated that downregulation of NEK2 promotes the inhibition of the
Wnt pathway. Thus, NEK2 represents a novel target for breast cancer treatment [138].
Similarly, miR-600 is a tumor suppressor. Overexpression of miR-600 suppressed BCSC
self-renewal by suppressing stearoyl desaturase 1 (SCD1) and subsequently inhibiting Wnt.
This leads to decreased in vivo tumorigenicity and good prognosis. Its silencing promotes
BCSC expansion, and Wnt signaling activation promotes self-renewal [137].

Interestingly, there is extensive overlap between miRNAs with both the EMT process,
an important mechanism for carcinogenesis of BCSCs, and with BCSC phenotype, and
most of them are epigenetically regulated, since they are located in or around CGIs [13,186].
Numerous miRNAs contribute to BCSC formation by regulating the EMT process. It was
demonstrated that miR-146a, a tumor suppressor, plays a role in regulating the induction
and maintenance of BCSCs during EMT, and this identified a novel mechanism for breast
cancer development [134,135]. Mechanistically, miR-146 binds and degrades the 3′UTR
of LIN28, and LIN8 binds to the let-7 pre-miRNA and blocks production of mature let-7.
Therefore, miR-146a upregulated the Let-7c level by degrading LIN28. Furthermore, let-7
controls Wnt signaling pathway activity and could be enhanced by the miR-146 inhibition of
H19, resulting in a positive feedback regulation loop with let-7. This miR-146a/Lin28/Wnt
signaling axis prevents symmetric cell division and inhibits the BCSC expansion [136].
Furthermore, the reduced expression of let-7 (tumor suppressor) enhances the self-renewal
capacity in BCSCs [187]. Additionally, it was demonstrated that let-7c reduces self-renewal
of ERα+ BCSCs and decreases ERα expression through directly binding to the 3′UTR,
inhibiting estrogen-induced activation of Wnt signaling [129,130].

Previous studies have found that miR-10b and miR-23a were upregulated by TGF-β1
and that overexpression of these two miRNAs resulted in EMT, proliferation, invasion and
metastasis of breast cancer. Additionally, miR-23a suppressed the CDH1 gene, which in turn
activated Wnt/β-catenin signaling. These results suggest that both miR-10b and miR-23a
promote TGF-β1-induced EMT and tumor metastasis in breast cancer [92,94]. Furthermore,
miR-10b induces the metastasis and migration of BCSCs; therefore, overexpression of
miR-10b in MCF-7 cells enhanced self-renewal and the expression of stemness and EMT
markers. It was further identified that phosphatase and tensin homolog (PTEN), a key
regulator of the PI3K/AKT pathway, is a potential target of miR-10b. miR10b suppression
upregulated PTEN and downregulated AKT. These data clearly demonstrated that miR-10b
upregulates the self-renewal and migration of BCSC by inhibiting the PTEN/PI3K/AKT
pathway [93].

In addition, there are several studies investigating the role of individual miR-200 cluster
members in EMT. For example, the expression of Kindlin-2, a regulator of integrin func-
tioning, was closely associated with the metastatic phenotype of breast cancer, and was
directly targeted and inhibited by miR-200b, leading to the inhibition of EMT and metas-
tasis [128,188]. Recently, it was revealed that p53 upregulates the miR-30a expression
by binding to the MIR30A promoter in TNBC, and miR-30a suppresses the ZEB2 expres-
sion. Decreased miR-30a expression was associated with p53 deficiency, LNM and poor
prognosis. These results indicate that tumor aggressiveness is regulated by the novel
p53/miR-30a/ZEB2 axis, subsequently inhibiting the miR-200c expression [131]. Similarly,
miR-590-5p and miR-140 acted as tumor suppressors and inhibited breast cancer stemness
by targeting the SOX2 gene, and both led to reducing the BCSC population [132,133]. In
contrast to miR-200, miR-221 is an oncomiR, and its overexpression contributes to stemness
maintenance in breast cancer by directly targeting CDH1, resulting in E-cadherin inhibition.
This study revealed a novel mechanism in which E-cadherin is post-transcriptionally inhib-
ited by the Slug-promoted miR-221 overexpression [95]. It was also found that miR-221 was
upregulated in BCSCs. miR-221 targets and suppresses the DNMT3B gene, leading to
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extensive changes in the DNA methylation of several promoter regions, such as NANOG
and OCT 3/4, stem cell pluripotency regulators [96]. The miR-221/222 cluster functions as
an oncogene since it induces the growth, migration, invasion and propagation of BCSCs.
Mechanistically, the tumor suppressor PTEN was demonstrated as a target of miR-221/222,
and downregulation of PTEN induces AKT phosphorylation [97]. It was further revealed
that ectopic expression of miR221/222 or PTEN knockdown involved the overexpression
of the AKT/NF-κB p65/COX-2 pathway in BCSCs [98].

In addition, it has been reported that DNA methylation plays an important role in
deregulation of miR-124, miR-125b, miR-203 and miR-375, which are involved in EMT
and breast cancer progression [189,190]. Damiano et al. proved that DNA methylation is
important for epigenetic regulation of the miR-200c/ZEB1 axis [191], which is consistent
with the previous findings that ZEB1 and ZEB2 can inhibit the transcription of the miR-200
cluster and induce EMT and aggressiveness in breast cancer [192,193]. Polyl-isomerase Pin1
was identified as another target of miR-200c involved in BCSC expansion, invasiveness
and tumorigenicity [126].

DNMT1 has also been involved in TNBC CSCs through epigenetic regulation. The
tumor-suppressor miR-137 had significantly lower expression in TNBC tissues (p < 0.05)
compared with adjacent normal tissues. miR-137 suppressed BCL11A expression by directly
targeting its 3′UTR, leading to inhibition of tumorospheres’ BCSC population. BCL11A
could interact with DNMT1, and silencing of either BCL11A or DNMT1 suppresses stem-
ness and tumorigenesis of TNBC cells through inhibiting ISL1 [194]. In addition, miR-137
reduces the FSTL1 expression. FSTL1 promotes oncogenesis in breast cancer by inducing
stemness and chemoresistance via activating Wnt/β-catenin signaling through integrin
β3. These results revealed a miR-137/FSTL1/integrin β3/Wnt/β-catenin signaling axis in
regulating stemness and chemoresistance [139].

Upregulated levels of tumor-suppressive miRNAs, miR-200a, miR-200b, miR-15a,
miR-429 and miR-203, lead to downregulation of the PRC1 group of proteins, such as BMI1,
RING1A, RING1B and Ub-H2A. Notably, increased expression of miR-200a, miR-200b
and miR-15 also results in decreased BMI1 and Ub-H2A protein expression in the CD44+
BCSC population of MDA-MB-231 cells. Upregulated levels of BMI1 regulate miRNAs,
promoting mesenchymal to epithelial transition (MET), in which N-Cadherin, Vimentin,
β-Catenin, Zeb and Snail are regulated, and ultimately leading to inhibition in proliferation,
migration and invasion [127]. This indicates the chemo-sensitizing activity of the miRNAs
in addition to the tumor-suppressive activity [195].

More recently, it was discovered that the overexpression of PD-L1 promotes chemore-
sistance and enhances stemness-like properties of BCSCs via activation of PI3K/AKT
and ERK1/2 signaling pathways. miR-873 suppressed PD-L1 via inhibiting downstream
PI3K/AKT and ERK1/2 signaling, leading to suppressing stemness and chemoresistance
of BCSCs [140]. miR-520b, an oncogene, is upregulated in breast cancer tissue and BCSCs
and promotes the stemness that predicts poor prognosis in patients. miR-520b upregu-
lates Hippo/YAP signaling via targeting LATS2 to promote breast cancer stemness and
maintenance [100].

These results indicate that miRNAs play critical roles in BCSC formation, thus repre-
senting promising targets for cancer treatment.

2.7.2. lncRNAs

In addition to miRNAs, lncRNAs (200 nucleotides) have emerged as new players
in stem cell signaling through multiple mechanisms, mainly via transcriptional, post-
transcriptional and epigenetic regulation of genes and proteins, and both play pivotal roles
in tumorigenesis, pluripotency, apoptosis, chemoresistance, angiogenesis, self-renewal and
metastasis in BCSC subpopulations [183,196,197]. Unlike miRNAs and mRNAs, lncRNAs
have low expression in breast [198].

Dysregulation of lncRNAs was demonstrated to play a pivotal role in tumorigene-
sis [179]. Interestingly, lncRNAs could act as sponges of miRNAs in BCSC. Hence, lncRNAs
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could also regulate the expression levels of the targets of miRNA, and this results in a
complex interplay among lncRNAs, miRNAs and proteins [183]. MANCR (mitotically as-
sociated noncoding RNA) is upregulated in breast cancer, and downregulation of MANCR
reduces TNBC cell proliferation [199].

Notably, it has been shown that a higher rate of hypomethylation is observed in
many lncRNAs in breast cancer, in contrast to the well-known phenomenon of the CGI
hypermethylation phenotype (CIMP) in tumors [150]. The hypomethylation of lncRNA
EPIC1 (epigenetically induced lncRNA1) upregulates its expression, and overexpression
of EPIC1 is correlated to poor survival outcomes in luminal B breast cancer, and was
further revealed to promote tumorigenesis through interacting with MYC to increase the
occupation of MYC target genes [116]. Although a lot of efforts have been made to identify
oncogenic drivers for breast cancer, the lncRNA sequences and epigenetic factors remain
largely unexplored by comparison [6].

Recently, there have been numerous lncRNAs identified to be involved in BCSC
formation, and most of them are oncogenic. lncRNA-HAL is elevated in the quiescent
stem cell population of MCF-7-MCTS. lncRNA-HAL is associated with cell proliferation,
migration and cell survival; subsequently, lncRNA-HAL silencing impairs the proportion
and function of BCSCs [114]. It was also demonstrated that lncRNA-LINC01133 stimu-
lates the BCSC phenotype and growth characteristics in TNBC. Additionally, it has been
shown that lncRNA-LINC01133 is a direct mediator of the upregulation of the miR-199a-
FOXP2 signaling pathway and a critical regulator of Kruppel-Like Factor 4 (KLF4), the
pluripotency-determining gene [115]. Similarly, Nuclear lncRNA metastasis-associated
lung adenocarcinoma transcript 1 (MALAT1) is elevated in BCSC MCF7, and its knockdown
inhibits proliferation, mammosphere formation, invasion and migration of BCSC MCF7.
Mechanistically, MALAT-1 regulates Sox-2, the stemness factor [122]. lncRNA FEZF1-AS1
is also upregulated in breast cancer tissue and is correlated with poor prognosis in patients.
FEZF1-AS1 downregulation inhibits mammosphere formation, the expression of stem cell
markers and the rate of CD44+/CD24− production. Subsequently, cell proliferation, migra-
tion and invasion are significantly inhibited. Further mechanistic analysis demonstrated
that FEZF1-AS1 modulates BCSC and Nanog expression through sponging miR-30a [123].
Likewise, lncRNA LINC00511 is highly expressed in breast cancer and is associated with
poor prognosis of patients. Mechanistically, LINC00511 acts as a miR-185-3p sponge and
binds to E2F1, upregulating Nanog. As a result, the LINC00511/miR-185-3p/E2F1/Nanog
axis promotes stemness and tumorigenesis of BCSCs [124].

LncCCAT1 (colon cancer-associated transcript-1) is significantly overexpressed in
breast cancer tissue and BCSCs, associating with poor patient outcomes. It was mech-
anistically demonstrated that LncCCAT1 can interact with miR-204/211, miR-148a/152
and Annexin A2, upregulating T-cell factor 4 or translocating β-catenin to the nucleus
Annexin A2, leading to activating the Wnt pathway and inducing the proliferation, stem-
ness, invasion and migration of BCSCs [120]. It was also reported that LncRNA LUCAT1
(lung cancer-associated transcript 1) is highly expressed in BCSCs. LUCAT1 activates
stemness features in breast cancer through the Wnt/β-catenin signaling pathway. The
overexpression of LUCAT1 is correlated with tumor size, LNM, poor prognosis and shorter
survival. Additionally, LUCAT1 and the transcription factor TCF7L2 are targets of miR-
5582-3p, thus LUCAT1 functions as a miR-5582-3p sponge, promoting the Wnt/β-catenin
axis [121]. Finally, lncRNA THOR was elevated in TNBC. Intriguingly, silencing THOR
induces decreased mammosphere formation, stemness marker expression and ALDH1
activity of BCSC. Mechanically, THOR binds directly and upregulates β-catenin in order to
promote BCSC stemness [119].

Conversely, lncRNA FGF13-AS1 was downregulated in breast cancer. FGF13-AS1 as
a tumor suppressor suppresses breast cancer cell proliferation, invasion and migration
by impairing glycolysis and stemness characteristics. Through decreasing the half-life of
c-Myc mRNA and inhibition of the binding between insulin-like growth factor 2 (IGF2BPs)
and c-Myc mRNA, Myc inactivates FGF13-AS1 [141].
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Like miRNAs, lncRNAs maintain CSCs properties by inducing EMT and self-renewal
signaling pathways [33]. SOX2 is elevated in BCSCs by lncRNAs, such as SOX2 overlapping
transcript (SOX2OT) [105] and linc00617 [106]. Moreover, the self-renewal HH-GLI1 signal-
ing pathway is activated by lncRNA-Hh, leading to increased SOX and OCT4 levels and
promoting CSCs maintenance. GAS1, an enhancer of HH signaling, is directly targeted by
lncRNA-Hh. This increases the Sox2 and Oct4 expression and promotes the acquisition of
stemness traits [107]. Furthermore, the lncRNA SOX21-AS1 is upregulated in breast cancer
tissue and is correlated with poor prognosis. Notably, SOX21-AS1 knockdown was proven
to diminish proliferation, invasion and stem factor, i.e., Nanog, LIN28, Oct4 and SOX2, of
BCSCs. This study indicates that SOX21-AS1 regulates properties and carcinogenesis of
BCSC via targeting SOX2 [117]. It was further confirmed that the lncRNA SOX21-AS1 is
overexpressed in BCSCs of MCF-7 and MDA-MB-231, enhancing stemness of BCSC as well
as proliferation, invasion and migration in CSC-MCF-7 cells via suppressing the Hippo
signaling pathway [118]. LINC00617 is elevated in breast cancer samples and functions as
an important regulator of EMT, enhancing the progression and metastasis via upregulating
Sox2 [106].

Despite the enormous findings on lncRNAs, there are many lncRNAs that remain
to be identified with further studies to investigate their roles in BCSCs. Like miRNAs,
lncRNAs are promising therapeutic targets due to their oncogenic functions.

3. Therapeutic Implications

Since epigenetic modifications are reversible, and aberrations in DNA methylation and
histone modification are often associated with tumorigenesis, they appear to be potential
therapeutic targets for cancer patients [34,72]. The proteins and ncRNAs involved in epige-
netic regulation in breast cancer cells and BCSCs described above represent potential and
promising therapeutic targets, and the development of therapies are under investigation or
in clinical trials (Table 2). These investigations revealed new strategies for personalized
medicine [25].

Table 2. The therapeutic implications targeting epigenetic regulation for breast cancer.

Targets Mechanism of Treatment Treatment Status References

DNMT
Lead to hypomethylation and gene
de-repression, resulting in
preventing EMT.

DNMT inhibitors: 5-AzaC
(Vidaza) and
5-aza-20-deoxycytidine
5-AzaDC (decitabine)

The single use of
5-AzaDC or HDACi has
been approved by the
FDA for hematologic
malignancies.

[200–202]

Guadecitabine (SGI-110) Phase 2 clinical trial [202]

JMJD2 Attenuates the growth of breast
cancer cells.

NCDM-32B, a
JMJD2 inhibitor

Tested on the breast
cancer cells [203]

EZH2
Demonstrated a strong anti-cancer
effect by inhibiting breast tumor
growth and metastasis.

ZLD1039, an
EZH2 inhibitor

Tested on
xenograft-bearing mice [204]

G9a

Induces apoptosis and impairs cell
migration, cell cycle and
anchorage-dependent growth in
breast cancer cells.

BIX-01294, a G9a inhibitor Tested on cells [205]

HDAC

Induces PTEN membrane
translocation through PTEN
acetylation at K163 by inhibiting
HDAC6, and this PTEN activation
leads to inhibition of tumor growth.

HDACi, such as
Trichostatin A (TSA) or
suberoylanilide
hydroxamic acid (SAHA)

Tested on xenograft
tumor model [206]

Inhibits HDAC1 and HDAC7, that
may therefore modify the epigenetic
markers that characterize CSCs.

HDACi, TSA, a
pan HDACi

Tested on the
mouse model [207]

Inhibits HDAC3. A pan-HDAC inhibitor
(HDACi), AR-42

Tested on the
mouse model [208]
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Table 2. Cont.

Targets Mechanism of Treatment Treatment Status References

LSD1

Alter promoter activity of multiple
genes in breast cancer cells.

LSD1 inhibitors: bizine, the
tranylcypromine
derivatives NCL1 and
GSK2879552, biguanide,
bisguanidine polyamine
analogs and GSK287

Under clinical evaluation
for cancer treatment [209,210]

Alter promoter activity of multiple
genes in breast cancer cells.

polyamine analog
inhibitors of LSD1, 2d
or PG11144

Tested on cells [211]

Partially inhibited CSC formation. LSD1 inhibitor pargyline Tested on mouse model [90]
Reduced tumor growth of
patient-derived CSCs. LSD1 inhibitor QC6352 Tested on the xenograft

model [212]

Induces significant growth arrest
and apoptosis

A dual HDM
inhibitor (MC3324)

Tested on both xenograft
mice and chicken
embryo models

[213]

Could reduce colony formation and
a decrease in SOX2 expression

LSD1 inhibitor
iadademstat (ORY-100)

Tested on the
patient-derived
xenograft model

[214]

Targeting BCSCs in vitro and in vivo KDM1A inhibitor NCD38 Tested on in orthotopic
xenograft models [215]

miR-34
Epigenetic restoration of miR-34
could sensitize cancer cells to drugs
and suppress stem cell features.

miR-34-based drug MRX34 Passed phase I
clinical studies [216]

miR-148a
Inhibits the BCSC properties via
miR-148a-mediated inhibition of the
TGF-β-SMAD2 signaling pathway.

CaA Tested on mouse
xenograft model [217]

glabridin Tested on mouse
xenograft models [218]

let-7

The suppressive effects exerted by
let-7 on stem-like cells involved
let-7c/ER/Wnt signaling.

Tamoxifen (ER modulator) Tested on xenografted
tumor model [219]

Efficient liposomal delivery system
for the combination of miRNA and
siRNA to target the BCSCs.

Herceptin-conjugated
cationic immuno-liposome
with hyaluronic acid and
protamine

Tested on cells [220]

miR-26b Suppresses BCSC metastasis via the
miR-26b/YAF2 axis.

TV-circRGPD6
nanoparticle

Tested on orthotopic
xenograft models [221]

Combination therapy

DNMT and
HDAC

Reprogram aggressive
TNBC cells that have undergone
EMT into a less aggressive
phenotype.
Suppressed TNBC cell proliferation,
colony formation, motility and
stemness of the cancer cells in vitro
and in vivo.

DNMTi, guadecitabine, in
combination with
HDACi, entinostat

XtMCF cells in
CB17/SCID mice [222]

DNMT and
PARP

Enhanced tight binding of
talazoparib to DNA and increased
DSB formation and cytotoxicity.

DNMTi combined with
PARPi, talazoparib

Tested on xenograft
tumors [223]

DNMT and
PARP

DNMTi increased PARP trapping
and reprogramed the DNA damage
response to cause HRD, sensitizing
BRCA-proficient cancer cells to
PARPi.

DNMTi and PARPi Will be tested in a phase
I/II TNBC clinical trial [224]

EZH2 and
PARP

Combination showed increased
sensitivity to PARP inhibition.

Combined PARP inhibition
and EZH2 inhibition

Tested on xenograft
model [225]
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Table 2. Cont.

Targets Mechanism of Treatment Treatment Status References

LSD1 and
HDAC

LSD1 interacts with HDACs to
control breast cancer cell growth.

Combined treatment of
LSD1 inhibitor, pargyline
and HDACi, SAHA

Tested on cells [226]

LSD1 Reduced stem cell potential and
increased chemo-sensitivity.

LSD1 inhibitor combined
with doxorubicin

Tested on
xenograft model [227]

LSD1 and
PD-1

Suppressed tumor growth and
pulmonary metastasis.

LSD1 inhibition in
combination with anti-PD1
antibodies

Tested on
xenograft tumors [228]

lysine-specific
histone
demethylase-
1A/HDAC,
PARP and
PD-1/PD-L1

Targeting BCSC and overcoming
resistance and recurrence.

Lysine-specific histone
demethylase-1A inhibitors
or HDACi and
PARPi/anti-PD-1/PD-L1

- [229]

HDAC and
PD-L1

Inhibits tumor growth and increases
survival.

HDACi and immune
checkpoint inhibitors

Tested on breast cancer
mouse model [230]

HDAC and
JAK/BRD4

JAK/BRD4 inhibition sensitizes
TNBC cells to HDAC inhibitions.

The combination of HDACi
and JAK/BRD4 inhibitors Tested on mouse models [231]

HDAC

The objective response rates were
comparable to those achieved with
the previously approved ixabepilon
monotherapy or combination with
capecitabine.

Combination of the
cytostatic drug ixabepilon
with HDACi
vorinostat

A phase Ib study [232]

HDAC Enhanced toxicity and increasing
autophage induction.

The combination therapy
of HDACi YCW1 with
ionizing radiation. This led
to induction of cell death in
TBNC cell lines in vitro
and in mouse models.

Tested on orthotopic
mouse model [233]

3.1. Methylation-Based Therapy

DNMT1 inhibitors (DNMTi) can be classified into two categories, nucleoside analogues
and non-nucleoside analogues. Nucleoside analogues incorporate into DNA as cytosine
mimics and promote proteasomal degradation for DNMTs, leading to DNA hypomethy-
lation. On the other hand, non-nucleoside analogues do not mimic cytosine for DNA
incorporation, but they bind directly and inhibit specific target proteins instead [234,235].

DNMTi, the nucleoside analogues 5-azacytidine (5-AzaC (Vidaza)) and 5-aza-20-
deoxycytidine 5-AzaDC (decitabine), have been FDA-approved for treating hematological
malignancies, including acute myeloid leukemia (AML) and myelodysplastic syndrome
(MDS) [200]. 5-AzaC was demonstrated to lead to hypomethylation and gene de-repression,
resulting in preventing EMT in vitro [201]. Experimental data have revealed the antitumor
effect of both azacitidine and decitabine against TNBC cells. The protein levels of DN-
MTs were associated with response to decitabine in chemotherapy-sensitive and -resistant
TNBC cells examined in TNBC patient-derived xenograft organoids, and all three DN-
MTs, DNMT1, DNMT3A and DNMT3B, were degraded by decitabine treatment both
in vitro and in vivo. Furthermore, blocking DNMTs’ degradation promoted resistance
to decitabine, identifying that DNMT levels in TNBC patient-derived xenograft mouse
models are response biomarkers to decitabine [236]. However, their clinical efficacy in
breast cancers has remained controversial because the combination therapy involving
azacitidine in breast cancer has not yielded satisfactory results [142]. Notably, a phase II
clinical trial including the combination of 5-AzaC and HDACi, entinostat, did not show
significant clinical efficacies, since none of the 13 TNBC patients achieved partial response
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and the primary endpoint was not met [237]. Since breast cancer is highly heterogeneous,
certain treatments might only benefit specific cancer subgroups, and patients should be
stratified for specific therapies.

Guadecitabine (SGI-110), a dinucleotide of decitabine and hypomethylating agent,
is a second-generation DNMTi. Guadecitabine is more resistant than azacitidine or
guadecitabine to degradation by cytidine-deaminase (CDA), and has greater incorporation
into DNA of dividing cancer cells [202]. There are growing evidences revealing anti-
tumor immunogenicity of guadecitabine through activating cytotoxic T cells (CTLs) [142].
Myeloid-derived suppressor cells (MDSCs) are increased in TNBC patients compared
with non-TNBC patients [238], leading to the inhibition of anti-tumor T cell immunity
in the TNBC tumor microenvironment [239,240], and activation of growth, metastasis
and CSC populations in TNBC [238]. Recently, it was demonstrated that guadecitabine
reduced MDSCs in vivo (4T1 cells in BALB/cJ mice), and decreased the tumor burden via
CTL-mediated anti-tumor response [142].

3.2. Demethylation-Based Therapy

Since epigenetic changes are reversible, the HDM JMJD2C represents a promising
therapeutic target for different cancers [203]. Ye et al. examined the therapeutic efficacy
of a novel JMJD2 inhibitor, NCDM-32B. Indeed, NCDM-32B treatment attenuated the cell
viability and anchorage-independent growth in breast cancer, and the mechanism involved
several vital signaling pathways that activate cell proliferation and transformation [203].

3.3. Chromatin Modifier Therapy

Histone lysine methylases are highly promising therapeutic targets due to the speci-
ficity of the targets. The main histone lysine methylase inhibitors approved by the FDA
target EZH2, G9a/GLP, disruptor of telomeric silencing 1-like (DOT-1L) and SUV39h1 [241].
Despite the promising results, 3-Deazaneplanocin (DZNep), an inhibitor of EZ2H and
H3K9me3, has a short plasma half-life, has nonspecific suppression of histone methyla-
tion and is toxic in animal models [242]. Therefore, several EZH2 inhibitors have been
developed in order to improve antitumor activity and decrease toxicity [242]. ZLD1039,
an EZH2 inhibitor, also exhibited a strong anti-cancer effect by suppressing breast cancer
growth and metastasis [204].

Ho et al. showed the use of the G9a-specific inhibitor, BIX-01294, to effectively abrogate
G9a’s actions in a breast cancer model. This resulted in inducing apoptosis and impairing
cell migration, cell cycle and anchorage-dependent growth in breast cancer cells. However,
unexpectedly, G9a inhibition also led to the promotion of pro-tumorigenic pathways, such
as the hypoxia-induced pathway (HIF), even in normoxic conditions that may facilitate
the tumor-suppressive effects of BIX-01294 [205]. This stressed the importance of HMTs
worthwhile for further investigation, such as SETDB1, in drug development. Moreover,
there are currently no HMTs in clinical trials for treating breast cancer; therefore, this
highlights the urgent need for developing drugs targeting HMT [168].

There are a number of LSD1 inhibitors that have been developed and examined for
their effects in cancers. These contain bizine, the tranylcypromine derivatives NCL1 and
GSK2879552, biguanide and bisguanidine polyamine analogs [209]. GSK287 is an orally
bioavailable, irreversible LSD1 inhibitor, currently under clinical evaluation for cancer
treatment [210]. The polyamine analog inhibitors of LSD1, 2d or PG11144, alter promoter
activity of multiple genes in breast cancer cells and are proposed to have considerable
therapeutic modality [211]. Importantly, the LSD1 inhibitor pargyline partially inhibited
CSC formation. Furthermore, inhibiting LSD1 suppressed EMT and stemness-like resis-
tance signatures combined with chemotherapy. Combination of LSD1 and chemotherapy
suppressed tumor growth in vivo compared to chemotherapy alone [90]. It was also
demonstrated that the LSD1 inhibitor, QC6352, suppressed tumor growth, sphere forma-
tion and proliferation of patient-derived BCSCs in a newly developed orthotopic xenograft
model [212]. In addition, the application of a dual HDM inhibitor (MC3324) in cell culture
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induces significant growth arrest and apoptosis and shows the same hormone modulatory
effects in downregulating ERα as an established hormone therapy. Likewise, MC3324
displays tumor-selective potential in both xenograft mice and chicken embryo models,
with no toxicity and good oral efficacy [213]. There are a number of LSD1 inhibitors recently
developed, such as iadademstat (ORY-1001) and KDM1A inhibitor NCD38, targeting BC-
SCs in vitro and in vivo [214,215,227], and they offer therapeutic potential. These findings
showed that the LSD1 inhibitor, iadademstat (ORY-100), could inhibit colony formation
and SOX2 expression, especially in multi-drug-resistant human luminal B tumors [214].

HDACi enhance cellular protein acetylation by inhibiting HDAC activity. There
are five classes of HDACi: hydroxamic acids (pan-HDACIs, SAHA, vorinostat), benza-
mides (specific class I HDACIs, entinostat (MS-275)), cyclic tetrapeptides (specific class I
HDACIs, romidepsin), short-chain fatty acids (class I and II HDACi, valproic acid) and
sirtuin inhibitors (pan-HDACIs, including SIRT1 and SIRT2, nicotinamide) [175]. There
are a number of pre-clinical in vivo and in vitro studies support the efficacy of HDACi,
such as TSA, Romidepsin (FK-288), Vorionstat (SAHA) and Panobinostat, and they sen-
sitize the mesenchymal-like TNBC cell line and are useful in treating advanced breast
cancers [195,243]. HDACi such as TSA or SAHA promote PTEN membrane translocation
through PTEN acetylation at K163 via inhibiting HDAC6. This K163 acetylation suppressed
the interaction of the PTEN C-tail with the remaining part of PTEN, leading to PTEN
membrane translocation. This PTEN activation leads to inhibition of cell proliferation,
invasion, migration and tumor growth. Hence, non-selective HDAC or HDAC6-specific
inhibitors may be more clinically suitable for treating tumors without PTEN mutations or
deletions [206].

Targeting BCSCs is a promising therapeutic strategy. For example, Witt et al. [207]
have proven that compared with non-stem tumor cells, HDAC1 and HDAC7 are overex-
pressed in BCSCs. Further, currently available HDACi such as TSA, a pan HDACi, inhibit
HDAC1 and HDAC7, that may therefore modify the epigenetic markers that characterize
CSCs. On the other hand, Hsieh et al. [208] revealed that HDAC3 was mechanistically
linked to BCSC homeostasis by enhancing β-catenin expression through the Akt/glycogen
synthase kinase 3β (GSK3β) signaling pathway. They applied a pan-HDACi, AR-42, as a
HDAC3-selective inhibitor, and showed high potency and isoform selectivity in inhibiting
HDAC3. Importantly, they exhibited in vitro and/or in vivo efficacy in inhibiting the CSC
subpopulation of TNBC cells via downregulating β-catenin. Additionally, other preclinical
models have demonstrated the efficacy of HDACi against BCSCs [208,244].

3.4. miRNA-Based Therapy

As elucidated above, ncRNAs play pivotal roles in carcinogenesis, especially in BCSC
initiation, maintenance and proliferation; therefore, applying them as the drug targets
poses a big challenge for therapeutic drugs. There are emerging investigations for lncRNAs.
However, both experimental and clinical modulation of lncRNA-based treatment are not
yet available. There are two strategies for miRNA-based therapy, inhibiting oncomiRs by
using miRNA antagonists and restoring miRsupps by miRNA replacement therapy [245].
The main factor for effective miRNA therapy is finding an accurate delivery system to
make sure miRNAs reach the specific site.

miR-34 is the miRsupps; thus, epigenetic restoration of miR-34 could sensitize cancer
cells to drugs and inhibit BCSCs. The miR-34-based drug MRX34 passed the phase I clinical
trial [216]. Furthermore, caffeic acid, a hydroxycinnamic acid (3,4-dihydroxycinnamic acid,
CaA), enhanced the expression of miR-148a by inducing DNA methylation. Subsequently,
miR-148a suppressed the TGF-β-SMAD2 signaling pathway and the BCSC properties [217].
Similarly, glabridin, a phytochemical from the root of Glycyrrhiza glabra, enhanced the
expression of miR-148a via DNA demethylation. miR-148a then inhibited SMAD2, and in
turn attenuated the BCSC properties [218]. TV-circRGPD6 inhibits BCSC metastasis via the
miR-26b/YAF2 axis. Therefore, this represents a novel therapeutic strategy to treat breast
cancer [221]. As described above, let-7a targets BCSC via inhibiting ERα and involving
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let-7c/ER/Wnt signaling [219]. Another study also applied let-7a as a therapeutic agent
for targeting BCSCs when they are formulated in Herceptin-conjugated cationic immuno-
liposome (mi/siRNA-loaded PEGylated liposome conjugated with Herceptin (Her-PEG-
Lipo-mi/siRNA)) with hyaluronic acid and protamine. This efficient liposomal delivery
system for the combination of miRNA and siRNA to target BCSC can be exploited as an
efficacious therapeutic modality for breast cancer [220].

3.5. Combination Therapy

Considering the crosstalk between signaling pathways in breast cancer cells and BC-
SCs, combination therapy is necessary in order to overcome the drug resistance. Poly(ADP-
ribose) polymerase inhibitors (PARPi) are effective anticancer drugs, producing good initial
clinical responses, especially in homologous recombination DNA repair-deficient cancers.
However, resistance always occurs, possibly due to compensatory pathways, genes and
effector proteins overlap. Interestingly, epigenetic medication might synergize with PARPi
in several ways [229]. It was reported that DNMTi combined with the PARPi, talazoparib,
promoted tight binding of talazoparib to DNA and increased double-strand breaks’ (DSB)
formation and cytotoxicity in TNBC stem cell-like cell lines due to increased amounts of
PARP1 at locations of DNA damage [223]. Recently, it was discovered that DNMTi increases
poly(ADP ribose) polymerase (PARP) trapping and reprograms the DNA damage response
to cause homologous recombination deficiency (HRD), sensitizing BRCA-proficient cancer
cells to PARPi. Mechanistically, DNMTi combined with PARPi promotes broad innate
immune signaling, driven in part by stimulator of interferon genes (STING), to generate
HRD. This combination strategy will be tested in a phase I/II TNBC clinical trial [224].
Yamaguchi et al. [225] showed that EZH2 inhibition contributes to PARPi sensitivity in
breast cancer cells. Thus, combining PARP and EZH2 inhibition represents a promising
therapeutic strategy in breast cancer.

Combinations of epigenetic drugs and immunotherapy are gaining attention. In
the combination of HDACi and immune checkpoint inhibitors, HDACi upregulates PD-
L1 in TNBC cells. This leads to a significant inhibition in tumor growth and increased
survival, associated with elevated T cell tumor infiltration and decreased CD4(+) Foxp3(+) T
cells [230]. The combination therapy incorporating epigenetic drugs such as lysine-specific
histone demethylase-1A inhibitors or HDACi with PARPi/anti-PD-1/PD-L1 represents a
novel, potentially synergistic strategy for targeting BCSCs and overcoming resistance and
recurrence [229]. A phase II study has just started to evaluate the clinical efficacy of the
combination therapy of vorinostat, pembrolizumab and tamoxifen in ER+ metastatic breast
cancer [246].

A recent study revealed that the second-generation DNMTI, guadecitabine, in combi-
nation with the HDACi, entinostat, could convert highly aggressive TNBC cells that have
undergone EMT into a less aggressive phenotype. Moreover, the combination therapy
suppressed TNBC cell proliferation, colony formation, motility and stemness of the cancer
cells in vitro, and with anti-tumor effects in patient-derived xenograft mouse models [222].

Additionally, the combination therapy of HDACi YCW1 with ionizing radiation en-
hanced toxicity and increased autophage induction. This led to induction of cell death
in TBNC cell lines in vitro and in mouse models [233]. In the combination of HDACi
and JAK/BRD4 inhibitors, JAK/BRD4 inhibition sensitizes TNBC cells to HDAC inhibi-
tions [231]. As a pan-JAK1/2 inhibitor (Ruxolitinib) is already in clinical use for treatment
of myelofibrosis [247], this combination therapy could be a promising therapeutic strategy.
A phase Ib clinical trial investigated the combination of the chemotherapeutic drug ixabepi-
lon with vorinostat for metastatic breast cancer patients. The objective response rates were
comparable to those achieved with the previously approved ixabepilon monotherapy or
the combination with capecitabine. Most promising was the fact that there were fewer side
effects [232].

There are several studies focused on combining LSD1 inhibitors with other therapies.
It was demonstrated that HDACs regulates LSD1 to control breast cancer cell growth.
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Combined therapy of TNBC cells with the LSD1 inhibitor, pargyline, and the HDACi,
SAHA, leads to inhibition of cell growth [226]. It has been shown that LSD1 inhibition
reduced CSC potential, as well as sensitizing human breast cancer cells to chemotherapy
when combined with chemotherapeutic agents such as doxorubicin [227]. LSD1 inhibition
in combining with PD-1 antibodies significantly inhibited tumor growth and pulmonary
metastasis in a TNBC mouse model [228].

4. Conclusions and Future Directions

There is a growing list of proteins and ncRNAs identified in epigenetic regulation that
may represent useful biomarkers for diagnosis and/or prognosis for breast cancer. The
major challenges in cancer therapy are tumor recurrence and resistance to conventional
therapies, such as chemotherapy and radiotherapy, and CSCs are the major players in
these events. Therefore, comprehensive elucidation of regulatory mechanisms in BCSCs
will definitely help to develop more effective precision medicine. There is emerging data
on dysregulation of ncRNAs, and ncRNA hyper/hypomethylation contributes to cancer
stemness. There are currently not many miRNA-based therapies for breast cancer; therefore,
these represent a great opportunity in developing novel therapeutic strategies for breast
cancer. Additionally, ncRNAs have the advantage of multi-target characteristics, which
should minimize the possibility of drug resistance. However, the major hurdle for miRNA-
based therapies lies in the lack of a specific delivery system, a problem shared with all
forms of gene therapy in cancer. In spite of the enormous amounts of biomarkers identified
in epigenetic regulation of breast cancer and BCSCs, currently, there are only a few drugs
available, and even less entering clinical trials. Therefore, in the future, the development of
novel drugs or combination regimens are urgently required.
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