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Abstract: The present work introduces an analysis framework to comprehend the dynamics of a 3D
plasma model, which has been proposed to describe the pellet injection in tokamaks. The analysis
of the system reveals the existence of a complex transition from transient chaos to steady periodic
behavior. Additionally, without adding any kind of forcing term or controllers, we demonstrate that
the system can be changed to become a multi-stable model by injecting more power input. In this
regard, we observe that increasing the power input can fluctuate the numerical solution of the system
from coexisting symmetric chaotic attractors to the coexistence of infinitely many quasi-periodic
attractors. Besides that, complexity analyses based on Sample entropy are conducted, and they
show that boosting power input spreads the trajectory to occupy a larger range in the phase space,
thus enhancing the time series to be more complex and random. Therefore, our analysis could be
important to further understand the dynamics of such models, and it can demonstrate the possibility
of applying this system for generating pseudorandom sequences.

Keywords: transient chaotic behavior; multistability; sample entropy; randomness

1. Introduction

Further investigations in nonlinear dynamical systems have contributed to the de-
velopment and understanding of numerous scientific phenomena. In particular, chaotic
models as nonlinear systems have been derived from rules for describing complex behav-
iors. For instance, the Lorenz model is the 3D chaotic system proposed to represent the
atmospheric convection [1], and the logistic map is the 1D discrete-time chaotic model
proposed to describe the population growth [2].

Although chaotic systems are deterministic, which indicates that the whole future
path of the system is uniquely governed by its initial condition, it is impossible to pre-
dict its long-term behavior [3,4]. These interesting systems have attracted considerable
interest, especially in the area of telecommunication, security, laser, engineering, and
many others [5–9]. Moreover, chaotic behavior can be observed in many disciplines of
science such as physics, chemistry, biology, economy, and nature [10–13]. Particularly, it
has been reported several plasma models exhibiting chaos. Some examples are as follows.
The authors of [14] discovered the developed and weak chaotic motions in a magnetized
dusty plasma model. The authors of [15] studied a new Lorenz-like system describing the
interaction of three resonantly coupled waves in plasma. The authors of [16] presented
the mechanical analysis and proposed a supremum bound of a plasma chaotic attractor.
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The authors of [17] interpreted the dynamics of a mechanism plasma chaotic system. The
authors of [18] proposed a method for finding hidden chaotic attractors in the plasma
chaotic system.

The analysis of equilibrium points of chaotic systems has contributed to better under-
stand their dynamics [19,20] and for determining their attractor type [21]. In general, there
are two major types of chaotic attractors: the first type is called self-excited, and the second
type is called hidden. The self-excited attractors can be found in chaotic systems that have
a basin of attraction intersected with an unstable equilibrium [22]. Meanwhile, hidden
attractors can be found in systems with a line of equilibria [23], curves of equilibria [24], no
equilibria [25], or infinite number of equilibria [26].

The investigations of hidden and self-excited chaotic attractors have revealed un-
expected results known as coexisting attractors or multistability, which has given the
chaotic systems another dimension [27,28]. A gas laser model is the first system that
shows multistability [29]; since that time many models with coexisting attractors have
been presented [30–34]. From the application point of view, multistability provides large
flexibility in the performance of nonlinear dynamical systems without changing system
parameters [35,36]. Therefore, it can be used to induce switching between desirable attrac-
tors [27]. However, the multistability behavior can be harmful, especially in the design
of a commercial device with particular properties where it is substantial to stabilize the
required state in the existence of noise [37]. Additionally, the fluctuation of a chaotic system
from chaos to the periodic state could break the chaos-based cryptosystems [30].

In this paper, we investigate the dynamics of a plasma perturbation, which consists
of three coupled ordinary differential equations that contain three parameters [38]. The
stability of equilibria reveals that the emergence of a chaotic attractor by the system is
self-excited. Moreover, complex nonlinear behavior of transition from transient chaos to
steady periodic can be observed by times series and phase space. To show the chaotic
regions, which show no transient chaos, we use maximum Lyapunov exponents based
on the contour plot. However, the system shows other complex behaviors of coexisting
multiple symmetric attractors, which can be generated without adding forcing terms or
controllers by increasing the power input. On this matter, boosting power input not only
generates extreme multistability, but also can enhance the complexity and randomness of
the system time series.

The remainder of this paper is organized as follows. Section 2 investigates the stability
of the equilibria of the plasma perturbation model and determines its chaotic regions.
Section 3 shows the ability of the plasma system for generating various multistability
behaviors by increasing its power input. Section 4 illustrates the effect of increasing power
input on the complexity of the system. In Section 5, we demonstrate the randomness of
the system and show its high sensitivity to the initial conditions. Section 6 provides the
conclusion of the paper.

2. The Mathematical Model

This paper concentrates on a low-dimensional model [38], that describes the dynamics
of pellet injection in tokamaks. Mathematically, it is given by

d2

dt2
n

ξn =(p′n − 1) · ξn − δ · d
dtn

ξn,

d
dtn

p′n =η · (h− p′n −
χanom

χ0
· ξ2

n · p′n),
(1)

where p′n is the normalized plasma pressure gradient, ξn is the normalized magnetic field,
and χ is the thermal diffusivity.
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However, the corresponding 3D dynamical model can be found as follows,
dx1

dt
= x2x3 − (x2 + dx1),

dx2

dt
= x1,

dx3

dt
= eh− e(x2

2 + 1)x3,

(2)

which was obtained by introducing the variables x2 =
√

χanom
χ0
· ξn and x3 = p′n. The

constant parameters in the system (2) are defined as follows: d represents the dissipa-
tion/relaxation of perturbation, e represents the characteristic relation between the two
heat diffusion coefficients, and h is the power input into the system.

We now give the basic features of the system (2) to interpret its complex behavior.
First, the system (2) is symmetric about x3−axis, and this is due to that it is remained
unaltered under the transformation (x1, x2, x3) −→ (−x1,−x2, x3). Second, it is dissipa-
tive only when the state space contraction, which is defined by (d + e + ex2

2), is greater
than zero. Finally, three different equilibrium points—P1(0, 0, h), P2(0,

√
h− 1, 1), and

P3(0,−
√

h− 1, 1)—can be obtained by considering the left hand sides of the three equa-
tions in the system (2) equal to zero.

For studying the stability of the system (2) at the equilibrium point P1, we first obtain
the corresponding eigenvalues, which are given by

λ1 = −e, λ2,3 =
−d
2
± 1

2

√
d2 + 4h− 4. (3)

A continuous dynamical system is unstable when its eigenvalues have positive real parts.
Obviously, λ1 is positive only when the parameter e is less than zero. Meanwhile, λ2,3 have
positive real parts if h > 1. Moreover, the characteristic equation at P2,3 is given by

λ3 + (d + eh)λ2 + dehλ + 2e(h− 1) = 0. (4)

Suppose that the parameters d, e, h are greater than zero. Then, the eigenvalues at P2,3 have
negative real parts when

d + eh > 0, (5)

2eh− 2e > 0, (6)

d2h + edh2 > 2(h− 1). (7)

Thus, the equilibrium points P2,3 are unstable when one of the above inequalities does not
hold. In other words, the system (2) at P2,3 is unstable if and only if

2(h− 1)
dh · (eh + d)

> 1. (8)
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2.1. Self-Excited Chaotic Attractor and Complex Transient Chaos

When the parameters values set as d = 0.5, e = 0.1, h = 2, Figure 1a–c depicts the time
series, largest Lyapunov Exponents, and the phase space of the system (2), respectively.
For the numerical simulation of the system (2), we use Matlab 2019a program to plot the
time series, the phase spaces, and largest Lyapunov Exponents, in which the standard
Runge–Kutta fourth-order scheme was utilized via Matlab to obtain the system solution
and then plot the time series and the phase spaces, whereas Wolf algorithm [39] was
utilized to calculate the largest Lyapunov Exponent in Matlab. However, it can be seen
that the system exhibits chaotic attractor for a long duration time when the starting point
is from a neighborhood of the equilibrium point P1. As all equilibria of the system (2),
including P1, are unstable for d = 0.5, e = 0.1, h = 2, the generated chaotic attractor in
Figure 1 is self-excited.

Figure 1. Self-excited chaotic attractor with d = 0.5, e = 0.1, h = 2 and for the initial conditions
(0.0001, 0.0001, h): (a) the time series; (b) largest Lyapunov Exponents; (c) the phase space.

On the other hand, transient chaos usually appears when the initial conditions are
chosen near the boundary of the basin of attraction or when the system is very close
to a bifurcation point. Thus, by choosing the parameters values as d = 0.5, e = 0.1,
h = 1.179, which make the system is close enough to a bifurcation point, we observe that
the system (2) exhibits a complex chaotic transient, as shown in Figure 2. In this figure,
we have plotted the time series and the corresponding phase portraits for a specific set of
the system parameters and with two different sets of initial conditions, which have been
chosen near the boundary of the basin of attraction. As can be seen, for each set of the initial
conditions, all variables of the system (x1, x2, x3) show a chaotic behavior in short duration
time, and subsequently those variables show asymptotic orbit for the rest of the time.
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Figure 2. Chaotic transient of the system (2) with d = 0.5, e = 0.1, h = 1.179 and for two different
sets of initial conditions.

2.2. Chaotic Regions of the Plasma Model

Chaos is usually identified by one of the fundamental algorithms, which is Lyapunov
exponent. The Lyapunov exponent is a quantitative measure employed to estimate the
divergence or convergence of adjacent trajectories in a system. Here, we calculate the
largest Lyapunov exponent when two parameters are varying simultaneously, which can
provide a wider vision of the chaotic regions of the system. Therefore, three different sets
of system parameters are selected to depict the largest Lyapunov exponent with a step size
of 0.02, as shown in Figure 3. Based on this figure, it can be observed that the system (2)
exhibits three different behaviors, which can be determined as follows.

(a)
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Figure 3. The largest Lyapunov exponent of the system (2) for the initial conditions (2, 1,−1): (a) e = 0.1; (b) d = 0.5;
(c) h = 2.3.

• Figure 3a illustrates that the chaotic behavior appears in the brown, yellow, and green
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colors regions. Meanwhile, the quasi-periodic and periodic behaviors appear in cyan
and blue colors regions, respectively.

• Figure 3b,c shows that the chaotic behavior of the system (2) appears in the brown color
region, and the quasi-periodic behavior appears in the green color region. Meanwhile,
the cyan and blue colors regions indicate to the periodic behavior of the system.

3. The Plasma Model with Coexisting Symmetric Attractors

In this section, we study the dynamical behaviors of the plasma model (2) by injection
more power input to the system. This can be done by adding a constant parameter A to
the third equation and fixing the diffusion parameters e. As a result, the modified system
is defined as follows, 

dx1

dt
= x2x3 − (x2 + dx1),

dx2

dt
= x1,

dx3

dt
= (eh + A)− e(x2

2x3 + x3),

(9)

where A is a positive parameter. Obviously, adding A to the third equation of the system (2)
can keep the symmetry of the system about x3−axis intact. Moreover, the system (9) has
the same number of equilibria as in the system (2). These equilibria are given by

P
′
1

(
0, 0,

eh + A
e

)
,

P
′
2

(
0,

√
eh + A

e
− 1, 1

)
,

P
′
3

(
0, −

√
eh + A

e
− 1, 1

)
.

The stability of P
′
1, P

′
2, P

′
3 is determined by the following proposition.

Proposition 1. The following statements hold if the parameters d, h, e, A are greater than zero.

(1) P
′
1 is saddle point if eh+A

e > 1.

(2) P
′
2,3 are unstable equilibria if A+e(h−1)

d(A+eh+d)·(A+eh) >
1
2 .

3.1. The Coexistence of a Symmetric Pair of Attractors

A chaotic system, which exhibits different attractors for a particular set of system
parameters, is considered as highly sensitive to its initial conditions. Therefore, this section
discover the presence of coexisting attractors after the injection of more power input to
the system.

By selecting A as control parameter for the range 0.19 ≤ A ≤ 0.3, the largest Lyapunov
exponents and multistable bifurcation diagram of the system (9) are, respectively, plotted in
Figure 4a,b when the step size is equal to 0.0001. By observing such the two figures, the sys-
tem is simulated with two different initial conditions simultaneously, in which the blue and
red orbits begin with the initial conditions (1, 1,−1) and (2, 1,−1), respectively. Obviously,
the system exhibits single chaotic attractors when A ∈ [0.19, 0.196] ∪ (0.2, 0.2135), and sin-
gle quasi-periodic attractors when A ∈ (0.196, 0.2] ∪ (0.24, 0.3]. Meanwhile, the coexistence
of two chaotic attractors has appeared when A ∈ [0.2135, 0.222], and the coexistence of two
quasi-periodic attractors has occurred when A ∈ (0.222, 0.24].

It is crucial here to plot the basins of attraction to provide foresight about the behavior
of the system with a wide range of initial conditions. Therefore, the basins of attraction
of the system in two different scenarios are plotted: the parameters region where two
chaotic attractors coexist, and the region of the parameter where two quasi-periodic at-
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tractors coexist, as illustrated in Figure 5a,b, respectively. For both scenarios, the basins of
attractions agree with the bifurcation diagram in which the system exhibits two symmetric
coexisting attractors. This can be further illustrated by depicting the corresponding phase
portraits, as shown in Figure 6. It can be seen that the system with A = 0.22 shows the
coexistence of symmetric wings of strange attractors in which these attractors have formed
a shape that resembles a butterfly, as shown in Figure 6a,b. Besides that, the coexistence
of symmetric wings of double-period periodic attractors can be observed with A = 0.24,
as shown in Figure 6c,d. However, Table 1 lists the Kaplan–Yorke dimension (DKY) and
Lyapunov exponents (LE) of the attractors that are shown in Figure 6. Here, we use the
Wolf algorithm [39] to calculate the Lyapunov exponents with t = 104.

0.2 0.22 0.24 0.26 0.28 0.3

A

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

M
L

E

(a)

(1, 1, -1)

(2, 1, -1)

Figure 4. Dynamics of the system (9) with d = 0.5, e = 0.1, h = 2.3 and two sets of initial conditions (1, 1,−1) (blue) and
(2, 1,−1) (red): (a) the largest Lyapunov Exponent; (b) the coexisting bifurcation model.

Figure 5. Cross section for z = −1 of the basins of attraction on x1–x2 plane with d = 0.5, e = 0.1, h =

2.3: (a) the coexistence of two chaotic attractors for A = 0.22; (b) the coexistence of two quasi-periodic
attractors for A = 0.24.



Entropy 2021, 23, 48 8 of 15

-4 -2 0 2 4

x
1
 

0

0.5

1

1.5

2

2.5
x

3

(a)

-6 -4 -2 0 2 4 6

x
2
 

0

0.5

1

1.5

2

2.5

x
3
 

(b)

-3 -2 -1 0 1 2 3

x
1
 

0

0.5

1

1.5

2

x
3

(c)

-5 0 5

x
2
 

0

0.5

1

1.5

2

x
3

(d)

Figure 6. Symmetric coexisting attractors with d = 0.5, e = 0.1, h = 2.3 and two sets of initial conditions (1, 1,−1) (blue)
and (2, 1,−1) (red): (a,b) the coexistence of two chaotic attractors when A = 0.22; (c,d) the coexistence of two periodic
attractors for A = 0.24.

Table 1. The Lyapunov exponents (LE) and Kaplan–Yorke dimension (DKY) of the attractors shown
in Figure 6.

Figures Initial Conditions LE DKY

Figure 6a,b (1, 1,−1) (blue) (0.0258, 0,−1.1248) 2.0229
(2, 1,−1) (red) (0.0270, 0,−1.1285) 2.0239

Figure 6c,d (1, 1,−1) (blue) (0,−0.0176,−1.1158) 1.9842
(2, 1,−1) (red) (0,−0.0177,−1.1161) 1.9841

3.2. The Coexistence of Many Symmetric Quasi-Periodic Attractors

To examine the effect of increasing the power input for the system, Figure 7 depicts
the coexisting bifurcation diagram with respect to parameter A. In this figure, we set the
parameters d = 0.5, e = 0.1, h = 1.95 and 0.39 ≤ A ≤ 0.43. Meanwhile, the system is
simulated with several sets of initial values, which are selected as (K, 1,−1). When K is
set to −6,−3,−1, 0, 2, 4, 5, the coexistence of seven quasi-periodic attractors is observed
mainly within the range A ∈ [0.39, 0.41]. This interesting nonlinear phenomenon can be
further illustrated by plotting different projections of the system phase portraits, as shown
in Figure 8.
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Figure 7. Coexisting bifurcation model with the parameters d = 0.5, e = 0.1, h = 1.95 and for the
initial conditions (K, 1,−1), where K equals to −6 (cyan), −3 (green), −1 (blue), 0 (red), 2 (yellow), 4
(black), 5 (purple).

Figure 8. The phase portraits for the parameters e = 0.1, d = 0.5, h = 1.95, a = 0.4 and with (K, 1,−1), where K equals to
−6 (cyan), −3 (green), −1 (blue), 0 (red), 2 (yellow), 4 (black), 5 (purple): (a) x1–x2 plane; (b) x1–x3 plane; (c) x2–x3 plane.

4. Sample Entropy Algorithm

This section studies the complexity performance of systems (2) and (9) by one of
fundamental algorithms, which is Sample Entropy (SamEn) [40]. SamEn is derived from ap-
proximate entropy by Richman et al. to estimate how much extra information is required to
predict the (t + 1)th output of a trajectory using its previous (t) outputs. Larger SamEn val-
ues reflect a lower degree of regularity, which means that higher complexity performance.

The SamEn algorithm for a given time series {x(i), i = 0, 1, 2, . . . , N − 1} is outlined
as follows.

1. Reconstruction: the time series can be reconstructed as follows

Xi = {xi, xi+τ , ..., xi+(m−1)τ}, Xi ∈ Rm (10)

where m is embedding dimension, and τ is time delay.
2. Counting the vector pairs: For a given tolerance parameter r, let Bi be the number of

vectors Xj such that

d[Xi, Xj] ≤ r, i 6= j (11)

here, d[Xi, Xj] is the distance between Xi and Xj, which is defined as

d[Xi, Xj] = max{|x(i + k)− x(j + k)| :

0 ≤ k ≤ m− 1}. (12)
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3. Calculating θm(r): According to the obtained number of vector pairs, we can get

Cm
i (r) = Bi

N−(m−1)τ , (13)

then calculate θm(r) by

θm(r) =
∑

N−(m−1)τ
i=1 lnCm

i (r)
[N−(m−1)τ] . (14)

4. Calculating SamEn: Repeating the above steps we can get θm+1(r), then SamEn is
given by

SamEn(m, r, N) = θm(r)− θm+1(r). (15)

For m = 2 and r = 0.2× Standard Deviation, we depict the complexity analysis
results of the system (9) using Matlab 2019a program with two different sets of the system
parameters, as shown in Figure 9a,b. There are two parameters simultaneously varying
with the step size equal to 0.01, in which one of them is always A. Choosing A as a varying
parameter can demonstrate the effect of increasing the power input on the complexity of
the system. As can be seen in Figure 9, the complexity of the system is enhanced with the
increase of A. In other words, boosting power input to the system can decrease its degree
of regularity.

To perceive the effect of decreasing the degree of regularity on the dynamics of the
system, Figure 10 plots the phase portraits comparisons with two values of the parameter
A. In this figure, the trajectories with lower complexity (red color) are generated by the
system (9) for A = 0. In other words, these trajectories are the numerical solutions of the
system (2), whereas the trajectories with higher complexity (blue color) are generated by
system (9) for A = 0.105. Thus, it can be observed that enhancing the complexity of the
system (2) could change its nature from order to chaos or even expand its chaotic oscillations
to occupy a wider region in the phase space, as shown in Figure 10a–f, respectively.
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Figure 9. Complexity results of the system (9) with the initial conditions (1, 1,−1): (a) e = 0.1 and h = 2; (b) d = 0.55 and
h = 2.
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Figure 10. The phase portraits comparisons for A = 0 (red), and A = 0.105 (blue): (a–c) d = 1, e = 0.1, and h = 2; (d–f)
d = 0.55, e = 0.14, and h = 2.

5. Performance Evaluations

This section evaluates the sensitivity and randomness of the chaotic sequences gener-
ated by the system (9) by cross-correlation coefficient and NIST-800-22 test.

5.1. Cross-Correlation Coefficient

As can be seen in Section 3, in the multistability regions, system (9) is sensitive to
the initial conditions. However, it is important to examine the sensitivity performance
of the system in the single stability regions, which are more desirable in cryptography
applications [30]. Therefore, this subsection deals with the two cases that have appeared in
Figure 10.

The sensitivity of system (2) and (9) can be estimated by the cross-correlation coefficient
(CCF), which is given by

CCF(αt, βt) =
∑N

t=1(αt − A(α))(βt − A(β))√
∑N

t=1(αt − A(α))2 ∑N
t=1(β− A(β))2

, (16)

where A(α) represents the mean value of the time series αt, meanwhile A(β) represents
the mean value of the time series βt. When the CCF(αt, βt) result is close to 0, then it can
be indicated that these two time series are diverging.

When d = 0.5, e = 0.1, h = 2, the sensitivity of systems (2) and (9) is illustrated in
Figure 11a,b, respectively. In these two figures, the CCF is calculated between the original
time series (S1), and the modified one (S2) which is created by contaminating one of the
initial conditions of the system via a tiny error E = 5× 10−5. Moreover, the sensitivity of
the systems (2), and (9) are respectively depicted in Figure 11c,d, where the parameters are
set as d = 1, e = 0.1, h = 2, and A = 0.105. The system (9) has a higher sensitivity to its
initial conditions.
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Figure 11. The cross-correlation coefficient (CCF) analysis of the systems (2) and (9) with (K + E, 1,−1), where the step size
of K is equal to 0.01: (a,b) the CCF of the systems (2) and (9) for d = 0.5, e = 0.1, h = 2, A = 0.105, respectively; (c,d) the
CCF of the systems (2) and (9) for the parameters d = 1, e = 0.1, h = 2, A = 0.105, respectively.

5.2. Chaos-Based Cryptographic Pseudo-Random Number Generator (PRNG)

A chaotic system with complex nonlinear behaviors is an appropriate source for
producing PRNG. Generally, the randomness of the generated PRNG by chaotic systems
is dependent on the characteristic properties of these systems such as the sensitivity of
initial state, ergodicity, and unpredictability. As system (9) is extremely sensitive to its
initial conditions and has high complexity performance, this system could be suitable for
chaos-based PRNG.

To further examine the ability of the system (9) for generating valid PRNG, we propose
a simple strategy, which directly uses the chaotic sequences as pseudorandom numbers.
For the state variables of system (9), {X(i), Y(i), Z(i)|i = 1, 2, 3 . . . }, we convert each of
their values to 32-bit binary stream using IEEE 754 float standard, as shown in Figure 12.
Subsequently, the digital numbers in each binary stream are extracted from 22nd to 32nd
(for X(i), and Y(i)), and from 23nd to 32nd (for Z(i)) to compose PRNG of 32-bits.

The validity of the generated PRNG by the system (9) can be checked using NIST-800-
22 [41]. In NIST-800-22, there are 16 different statistical tests. However, a random sequence
can pass the test if the corresponding p-value is greater than the experimental significance
level of α. In our experiment, we generate a binary sequence of 108 bits, which means
that the obtained p-value should be greater than α−1 in each test. Figure 13 illustrates the
NIST SP800-22 test results of PRNG that generates by the system (9). As can be seen, all
the p-values are greater than α−1, which demonstrates the high randomness of the PRNGs
using the system (9).
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Figure 12. The flowchart of the proposed strategy for producing PRNG by the system (9).
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Figure 13. The p-values of the binary sequence generated by PRNG of the system (9): (a) Frequency, Block-Frequency,
Cumulative Sums (Forward), Cumulative Sums (Reverse), Runs, Longest Run of Ones, Binary Matrix Rank, and Discrete
Fourier Transform, respectively; (b) Non-overlapping Template, Overlapping Template, Universal Statistical, Linear
Complexity, Approximate Entropy, Serial, Random Excursions, and Random Excursions Variant, respectively.

6. Conclusions

The dynamics of the 3D plasma perturbations model, which was proposed by Con-
stantinescu et al. to describe the pellet injection, was investigated by time series, Lyapunov
exponents, bifurcation diagrams, and basins of attraction. Besides that, the stability of its
equilibria has been analyzed. The mathematical analysis has shown that the system has
three equilibria in which there is always an unstable equilibrium point, which indicates
that the attractors type of this system is self-excited. To discover the chaotic regions that
show no transient chaos, the two-dimensional MLE has been applied. Furthermore, we
have conducted comprehensive research on the dynamics, complexity, and randomness
of the system after boosting power input. Simulation results have demonstrated that the
system could produce multiple coexisting attractors, high complexity, and randomness.
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