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Nonpolarizing oxygen-redox capacity without O-O
dimerization in Na2Mn3O7

Akihisa Tsuchimoto1,5, Xiang-Mei Shi 1,5, Kosuke Kawai1, Benoit Mortemard de Boisse1, Jun Kikkawa2,

Daisuke Asakura 3, Masashi Okubo1,4 & Atsuo Yamada 1,4✉

Reversibility of an electrode reaction is important for energy-efficient rechargeable batteries

with a long battery life. Additional oxygen-redox reactions have become an intensive area of

research to achieve a larger specific capacity of the positive electrode materials. However,

most oxygen-redox electrodes exhibit a large voltage hysteresis >0.5 V upon charge/dis-

charge, and hence possess unacceptably poor energy efficiency. The hysteresis is thought to

originate from the formation of peroxide-like O2
2− dimers during the oxygen-redox reaction.

Therefore, avoiding O-O dimer formation is an essential challenge to overcome. Here, we

focus on Na2-xMn3O7, which we recently identified to exhibit a large reversible oxygen-redox

capacity with an extremely small polarization of 0.04 V. Using spectroscopic and magnetic

measurements, the existence of stable O−• was identified in Na2-xMn3O7. Computations

reveal that O−• is thermodynamically favorable over the peroxide-like O2
2− dimer as a result

of hole stabilization through a (σ+ π) multiorbital Mn-O bond.
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Lithium-ion batteries are presently the de facto standard
power sources for portable electronic devices and electric
vehicles due to their high energy density and efficiency

relying on intercalation chemistry, whereby a host electrode
material reversibly accommodates lithium ions without a large
structural change1–3. As the reaction Gibbs energy for the oxi-
dation of an electrode material (|ΔrGox | ) is almost the same as
that for the reduction (|ΔrGred | ), the charge/discharge processes
of an intercalation electrode usually proceed with minimal energy
loss. For any electrochemical energy storage devices, the use of
reversible redox chemistry (|ΔrGox | ≈ |ΔrGred | ) is a primary
requisite to maximize their energy efficiency.

Lithium-rich transition metal oxides (Li1+xM1-xO2, M= tran-
sition metal) are promising large-capacity positive electrode
materials for lithium-ion batteries, as they exhibit accumulative
redox reactions of M and O4–6. However, the voltage profile of
Li1+xM1-xO2 typically includes a large hysteresis during initial
and subsequent charge/discharge cycles, in part due to structural
changes such as cation migration and surface cation densifica-
tion7–9. Although the oxygen-redox-active sodium counterpart
NaxMyO2 can partly suppress cation migration due to the larger
ionic size difference between Na and M, a large voltage hysteresis
is still observed in many cases10–18. As energy efficiency is crucial
for energy storage devices, the voltage hysteresis of oxygen-redox
electrodes should be addressed for their practical application.

Although the mechanism of the oxygen-redox reaction is still
under debate, it is generally accepted that nonbonding oxygen 2p
states free from M-O σ hybridization are localized just below the
Fermi level to contribute to oxygen oxidation19–24; however, the
chemical state of oxidized oxygen remains controversial. Con-
sidering the large voltage hysteresis (|ΔrGox | ≠ |ΔrGred | ), oxi-
dized oxide ions (O−•) are believed to form stable peroxide-like
O2

2− dimers upon charging. Upon subsequent discharging, the
O2

2− dimer may be initially reduced to O2
4−, and then decom-

posed to O2− (Fig. 1a)16,25–29. Besides such thermodynamic

hysteresis, there is an overlapping kinetic hysteresis arising from
concentration overpotential when transition-metal migration
and/or surface cation densification occur in parallel, making
elucidation of the overall mechanisms difficult 7–9.

In striking contrast to the large voltage hysteresis (>0.5 V)
observed for most oxygen-redox electrodes, Na2-xMn3O7 was very
recently discovered to exhibit a highly reversible oxygen-redox
capacity with negligible voltage hysteresis (<0.04 V)30–33. Hence,
Na2Mn3O7 can serve as an excellent counterpart (Fig. 1b,
|ΔrGox | ≈ |ΔrGred | ) for insights into the origin of the typically
large voltage hysteresis observed upon oxygen redox. Na2Mn3O7

possesses a layered structure comprising alternatively stacked Na
and Mn slabs (Fig. 2a inset) with characteristic Mn vacancies (□)
in
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in-plane ordering34. Density functional theory (DFT)
calculations suggested that a localized oxygen 2p orbital along
the Na-O-□ axis contributes to the oxygen-redox capacity31.
While the nonpolarizing oxygen-redox capacity strongly impli-
cates charge compensation from the reversible redox couple of
O2−/O−• (Fig. 1b) without any contribution from O2

2−, no
experimental evidence for the stable existence of O−• has been
identified for any oxygen-redox electrodes. Also important is
unveiling how O−• is stabilized in Na2-xMn3O7.

Herein, evidences confirming the existence of O−• as the
dominant state in the highly reversible oxygen redox of
Na2-xMn3O7 are provided. After magnetic susceptibility mea-
surements to confirm the major contribution of O−•, the ther-
modynamically favorable presence of O−• over peroxide-like
O2

2− in Na2-xMn3O7 is substantiated via DFT calculations, and
finally, the hole stabilization mechanism of O−• is examined.

Results
Nonpolarizing oxygen redox in Na2Mn3O7. Na2Mn3O7 was
synthesized from a solid-state reaction following a reported
procedure30,31. The powder X-ray diffraction pattern for the
resulting compound (Supplementary Fig. 1) is indexed to triclinic

Fig. 1 Polarizing and nonpolarizing oxygen-redox positive electrodes. Schematic illustration of charge/discharge curves and dQ/dV plots (Q: specific
capacity, V: reaction voltage) for a conventional oxygen redox with large polarization (O2−/O2

2−), and b ideal oxygen redox with small polarization
(O2−/O−•). The red sphere denotes oxygen atom.
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P1, confirming the successful synthesis of Na2Mn3O7. The
selected-area electron diffraction (SAED) pattern (Supplementary
Fig. 2a) reveals the ordered arrangement of Mn atoms and
vacancies in the Mn slab (
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superlattice). The charge/
discharge curves at a rate of C/20 show a reversible oxygen-redox
capacity of approximately 70 mAh/g (Supplementary Fig. 3),
which is consistent with a previous report31. Fig. 2a shows the
dQ/dV plot for Na2-xMn3O7 between 3.0 and 4.7 V vs. Na/Na+

during the second charge/discharge cycle. As the nominal valence
state of Mn in Na2Mn3O7 is tetravalent (maximum valence of
octahedral Mn), the redox center in Na2-xMn3O7 is a priori
attributable to oxygen; the Mn L-edge X-ray absorption spectra in
our previous work confirmed the negligible contribution of Mn
redox to the capacity31. Importantly, the dQ/dV peaks of
the charge/discharge processes have an extremely small voltage
hysteresis of merely 0.03–0.04 V, implicating the reversible
redox reaction of oxygen (O2−/O−•) (Fig. 1b) without peroxide-
like O2

2− formation (Fig. 1a).
O K-edge X-ray absorption spectra (Fig. 2b inset) show the

emergence of a new absorption peak at 531.5 eV after the charge
process, which corresponds to the excitation of an O 1 s core

electron to an O 2p hole, as commonly observed for other
oxygen-redox electrodes35–38. To monitor the detailed valence
partial density of states (pDOS) of oxygen, resonant inelastic X-
ray scattering (RIXS) spectra were measured using an incident
photon of 531.5 eV. The emergence of a new emission peak at
523 eV in the RIXS spectrum for charged Na2-xMn3O7 is typical
for charged oxygen-redox electrodes5,24,28,39,40. Although O−•

formation is implicated by the small voltage hysteresis in the
charge/discharge processes (Fig. 2a), the new inelastic scattering
can be explained by either (1) energy loss from a π(Mn-O)→ π*

(Mn-O) transition (O−• formation), or (2) energy loss from a σ
(O-O)→ σ*(O-O) transition (peroxide-like O2

2− formation)40.
While observation of the new RIXS peak at 523 eV confirms the
occurrence of the oxygen-redox reaction itself in Na2-xMn3O7,
but this evidence alone does not definitely identify the reaction
mechanism, or the chemical state of the oxidized oxygen species.

Magnetic elucidation of O−. To identify the oxidized species, we
measured the magnetic susceptibility χð Þ of Na2-xMn3O7 with
respect to its sensitivity to local coordination structures and
electronic configurations. Figure 3a shows the temperature
dependence of χ�1 during the second charge/discharge cycle. The
χ�1 vs. T plot follows the Curie-Weiss law (χ ¼ C

T�Θ, C = Curie
constant, Θ = Weiss temperature) at high temperature (> 200 K),
providing the spin-state information of Mn and O in
Na2-xMn3O7. Because the ordered arrangement of Mn atoms
and vacancies in the Mn slab is maintained after the charge
process, as confirmed from the SAED pattern (Supplementary
Fig. 2b), in-plane and out-of-plane Mn migrations do not occur
in Na2-xMn3O7. Therefore, the magnetic property changes are
ascribed solely to the spin-state changes of Mn and O. Figure 3b
shows the values of C and Θ as a function of x in Na2-xMn3O7.
Before the charge process, the value of C (5.77 cm3 K mol−1)
agrees with the calculated value (5.63 cm3 K mol−1 for g = 2.0)
for three Mn4+ (S = 3/2) in Na2Mn3O7. The negative Θ of
−192 K indicates an in-plane antiferromagnetic interaction
between Mn4+ cations41, which contradicts the prediction of
ferromagnetic superexchange from the Goodenough-Kanamori
rule42. This magnetic behavior is ascribed to the deviation of Mn-
O-Mn bond angles from 90°, which most likely induces the
antiferromagnetic superexchange; an antiferromagnetic d-d direct
exchange interaction may also exist, as reported for Li2MnO3

43.
The value of C monotonically decreases to 4.22 cm3 K mol−1

upon charge, which is close to the calculated value (4.75 cm3 K
mol−1 for g = 2.0) under a simple assumption that Mn4+-O−•

behaves as S = SMn+ SO = 1 (Zhang-Rice triplet)44–46. Note that
the Zhang-Rice triplet in Na2-xMn3O7 arises from π-type direct
exchange while the Zhang-Rice singlet originally proposed for
superconducting cupper oxides is generated via σ-type direct
exchange44. Diamagnetic peroxide-like O2

2− formation, which
should yield a constant C, is clearly ruled out by the observed
decrease in C, as speculated from the very small hysteresis in the
dQ/dV plot. The increase in Θ upon charge suggests the
increment of ferromagnetic superexchange interaction between
Mn spins through bridging O−• over the effects of antiferromag-
netic superexchange or d-d direct exchange. After discharge, both
C and Θ return to their initial values, supporting the reversibility
of the charge/discharge processes without structural or electronic
degradations. Overall, the magnetic measurements support
the reversible oxygen-redox reaction of O2−/O−• (Fig. 1b) in
Na2-xMn3O7.

O−• vs. O2
2−. Why does Na2-xMn3O7 specifically exhibit the

reversible oxygen-redox reaction of O2−/O−•? To answer this
question, we compared the thermodynamic stability of O−• and

Fig. 2 Non-polarizing oxygen-redox positive electrode Na2Mn3O7. a dQ/
dV plot (Q: specific capacity, V: reaction voltage) of Na2-xMn3O7 at C/20
during the second charge/discharge cycle between 3.0–4.7 V vs. Na/Na+.
Inset shows the crystal structure of Na2Mn3O7 (yellow sphere: sodium,
purple sphere: manganese, red sphere: oxygen). b O K-edge resonant
inelastic X-ray scattering (RIXS) spectra for Na2-xMn3O7 before the second
charge (3.0 V, black line), after the second charge (4.7 V, red line), and
after the second discharge (3.0 V, blue line) with excitation energy of 531.5
eV. Inset shows corresponding O K-edge X-ray absorption spectra (XAS).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20643-w ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:631 | https://doi.org/10.1038/s41467-020-20643-w |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


peroxide-like O2
2− in Na2-xMn3O7 using DFT calculations. Fig-

ure 4a shows the calculated magnetic moments of Mn and O in
optimized structures without peroxide-like O2

2− (Supplementary
Fig. 4a). For the experimentally accessible desodiation range (0 ≤
x ≤ 1 in Na2-xMn3O7), a magnetic moment gradually emerges on
the O atoms upon desodiation, which indicates O−• formation.
The slight decrease in the average magnetic moment of Mn is
explained by the initiation of metal-to-ligand charge transfer (π
back-donation) from the formation of a ligand hole (O−•)40. The
calculated voltage profile under the O−• formation model (Fig. 5
and Supplementary Fig. 5) accurately reproduces the experi-
mentally observed voltage plateaus (4.30 and 4.53 V), further
supporting O−• formation in Na2-xMn3O7.

The formation energy of peroxide-like O2
2− in Na2-xMn3O7

was calculated for various O-O pairs, where calculated O-O bond
lengths for the lowest energy structures are in the peroxide O2

2−

range of 1.46-1.47 Å (Supplementary Fig. 4b)47. The average
magnetic moment of the O-O dimers is small (-0.094(6) μB), also
suggesting the formation of peroxide-like O2

2− rather than
superoxide-like O2

− when O-O dimerization occurs. The

formation energy of O2
2− (Fig. 4b) was calculated as the

difference between the total energies of Na2-xMn3O7 with O−•

and with O2
2− as a function of the average magnetic moment of

O (i.e., the degree of O oxidation). During the experimentally
accessible charge process (0 ≤ x ≤ 1 in Na2-xMn3O7), the forma-
tion energy of O2

2− is positive relative to that of O−•, indicating
that Na2-xMn3O7 with O−• is thermodynamically favorable
compared to Na2-xMn3O7 with O2

2−. Presumably, a hole on
O−• in Na2-xMn3O7 is stabilized through a (σ+ π) multiorbital
Mn-O bond40, as demonstrated using a crystal orbital overlap
populations (COOP) analysis in our previous works31. Note that,
in parallel with a localized feature, the oxygen hole has an
itinerant feature through the (σ+ π) multiorbital interaction.
Indeed, the experimentally observed value of C for Na1Mn3O7

(4.22 cm3 K mol-1) is slightly lower than that calculated for a
localized model (4.75 cm3 K mol−1) (Fig. 3b).

Figure 4a also indicates that further oxygen oxidation leads to
negative O2

2− formation energy (O2
2− favorable): the oxygen

oxidation lowers the energy level of O 2p well below that of Mn
t2g, which renders Mn-O interaction weak48. In the balance of
competing stabilization mechanisms via (σ+ π) multiorbital Mn-
O bond versus peroxide O-O bond, the adequate oxygen-redox
capacity (approximately 70 mAh/g, Supplementary Fig. 3) keeps

Fig. 3 Magnetic elucidation of the existence of O− in Na2-xMn3O7. a The
inverse of a magnetic susceptibility (χ) as a function of temperature, and b
Curie constant (C) and Weiss temperature (Θ) for Na2-xMn3O7 during the
second cycle. Filled and empty circles correspond to data points for the
charge and discharge processes, respectively.

Fig. 4 Theoretical derivation of stable existence of O−• in Na2-xMn3O7.
a Calculated magnetic moments of Mn and O as a function of x in
Na2-xMn3O7, and b calculated formation energy of peroxide-like O2

2− as a
function of the average magnetic moment (i.e., degree of oxidation) of O in
Na2-xMn3O7. For the plots of the magnetic moments, black crosses are a
magnetic moment of each atom, while blue and red circles are average
magnetic moments. For the plot of the formation energy, black crosses
represent the formation energy of various O-O pairs, while red circles
represent the lowest value at each desodiated state. Gray shaded area is
experimentally inaccessible due to too high desodiation potential (see
Supplementary Fig. S5).
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the (σ+ π) multiorbital stabilization dominant, making O−•

stable in Na2-xMn3O7. It should also be emphasized that the
calculated voltage profile for the sodiation of Na2-xMn3O7 with
O2

2− shows a voltage hysteresis of 0.3–0.5 V relative to the charge
process of Na2-xMn3O7 with O−• (Fig. 5), which clearly
contradicts the experimental observations. O2

2− formation is
therefore inhibited in Na2-xMn3O7, leading to an O2−/O−• based
reversible and nonpolarizing oxygen-redox capacity. Excessive
oxidation of oxygen (e.g., x ≥ 1 in Na2-xMn3O7), which drives O−•

to dimerization, is an absolute taboo for a nonpolarizing oxygen-
redox capacity48,49. Based on this criterion, the oxygen-redox
reaction should be employed as an auxiliary charge-compensation
mechanism under a prudent control rather than as a main
charge-compensation mechanism.

Discussion
As recently demonstrated using O2-type layered oxides23,50, the
suppression of cation migration is essential to mitigate the
degradation of oxygen-redox cathodes. However, although cation
migration should accelerate O-O dimer formation16,20,51, the
suppression of cation migration alone is not enough to explain
nonpolarizing oxygen-redox reaction. For example, P2- and P3-
Na2/3MgxMn1-xO2 deliver large extra oxygen-redox capacities
greater than 100 mAh/g with large polarization, where O-O
dimers could be formed without cation migration15,52. This sce-
nario, O-O dimerization without cation migration, is indeed

predicted by the DFT calculations (Fig. 4). Correlation between
cation migration and O-O dimerization involving thermo-
dynamic and kinetic issues, and its influence on the voltage
hysteresis is debatable, calling for further studies.

In summary, multiple experimental and computational pieces
of evidence were identified to confirm the O2−/O−• based rever-
sible and nonpolarizing oxygen-redox reaction in Na2-xMn3O7.
The competitive O2

2− formation is energetically unfavorable when
low-concentration O−• (i.e., < Na1Mn3(O−•)1O6) is highly stabi-
lized by a (σ+ π) multiorbital Mn-O bond. To the best of our
knowledge, this is the first experimental confirmation of the
existence of O−• in an oxygen-redox electrode. Considering the
importance of energy efficiency, the exclusive use of O2−/O−• as
a redox couple is a primary requisite to utilize oxygen-redox
electrodes in practical battery applications, identifying a crucial
criterion for the development of efficient nonpolarizing oxygen-
redox electrodes.

Methods
Electrochemistry. Na2Mn3O7 was synthesized by sintering the stoichiometric
mixture of NaNO3 and MnCO3 at 600 °C under O2 flow for 4 h30,31. Electro-
chemical measurements were conducted using CR2032-type coin cells. Positive
electrodes consisted of 80 wt% Na2Mn3O7, 10 wt% acetylene black, and 10 wt%
polyvinylidene difluoride (PVDF), which were coated on Al foil using N-
methylpyrrolidone (NMP) as the solvent. Sodium was used as the negative elec-
trode, with 1.0 M NaPF6 in ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1
v/v%) as the electrolyte. The cells were cycled at a charge/discharge rate of C/20.

X-ray absorption/emission. Ex situ X-ray absorption spectroscopy (XAS) and
resonant inelastic X-ray scattering (RIXS) measurements were performed on
samples without exposure to air at BL07LSU of SPring‐8. A bulk‐sensitive partial
fluorescence yield (PFY) mode was employed for O K‐edge XAS. Extended X-ray
absorption fine structure was conducted at the BL-9C Beamline of the Photon
Factroy, KEK, Japan. SAED patterns were recorded using an electron microscope
(Titan Cubed, FEI Co.) operated at 80 kV after transferring the samples without
exposure to air.

Calculations. All structures were calculated using DFT, as implemented in the
Vienna Ab Initio Simulation Package (VASP)53,54. The projector-augmented wave
pseudopotential and a plane-wave basis set with an energy cut-off of 520 eV were
used55. The generalized gradient approximation (GGA) with the Perdew-Burke-
Ernzerhof functional describes the exchange-correlation energy56,57. To remove the
self-interaction error, the Hubbard U correction was applied to the d electrons of
Mn atoms (Ueff = 3.9 eV)58,59. The k-point was sampled on a 3 × 3 × 5 grid for all
calculations. The Grimme scheme (DFT-D3) was applied to include van der Waals
corrections60. Crystal structures were visualized with VESTA software 61.

We constructed a 2 × 2 × 1 supercell (Na16-iMn24O56) to calculate a series of
charged-structures of Na2-xMn3O7 (0 < x ≤ 2). All possible cation orderings (Na+)
were searched in the Supercell program, with the exclusion of symmetrical
duplicates62. Considering the large number of configurations in the initial search
(e.g., 1670 for Na8Mn24O56), we conducted a multi-step calculation of total energies
to determine the stable cation ordering for each structure. First, we simply
calculated the total energies without geometry optimization and selected the 100
lowest-energy configurations for each charged-structure. Second, we optimized
both the lattice and atomic positions of the selected configurations under a force
convergence of 0.03 eV Å−1, where the energy cut-off and number of k points were
reduced to 400 eV and 1 × 1 × 3, respectively. At this point, we screened out the 20
lowest-energy configurations for each structure. Finally, we reconducted the
geometry optimization with a more reliable energy cut-off (520 eV) and k-point
mesh (3 × 3 × 5) under a force convergence of 0.01 eV Å−1, identifying all the
lowest-energy structures in the charge process.

The convex hull was constructed to identify the stable phases among the
determined structures, with the formation energies (at 0 K) calculated as:

Ef ðNa2�xMn3O7Þ ¼ EðNa2�xMn3O7Þ � 2�x
2 EðNa2Mn3O7Þ � x

2EðMn3O7Þ ð1Þ
where E(Na2-xMn3O7) is the total energy of Na2-xMn3O7 at 0 ≤ x ≤ 2. The voltage
profile was then evaluated63, with the average voltage of the reaction between two
adjacent stable phases calculated as:

Uðx1; x2Þ ¼ � E Na2�x1
Mn3O7ð Þ�E Na2�x2

Mn3O7ð Þ� x2�x1ð ÞμNa
x2�x1ð ÞF ð2Þ

where μNa is the chemical potential of Na metal and F is the Faraday constant. The
representative structures are shown in Supplementary Fig. 4a.

The formation of peroxide-like O2
2− in Na2-xMn3O7 was calculated by creating

a short O-O bond in Na16-iMn24O56, as shown in Supplementary Figure 4b. After
the atomic positions were fully relaxed, no other significant structural change was

Fig. 5 Predicted voltage hysteresis of Na2-xMn3O7 with hypothetical
peroxide-like O2

2− dimers. DFT calculated convex hull and voltage profile
of Na2-xMn3O7 with O−• and with O2

2−. The formation energies of both
pristine structures and peroxide phases were calculated relative to pristine
Na2Mn3O7 and NaMn3O7 phases. Black and red crosses in the convex hull
are formation energies of Na2-xMn3O7 with O−• and with O2

2−,
respectively. Black and red circles are the lowest states at various
desodiated states. The black solid line of the voltage profile represents the
charge/discharge curves without O2

2− formation, while the red solid line
represents the discharge curve for hypothetical Na2-xMn3O7 with O2

2−.
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found except for the O-O dimer. The formation energy of O2
2− was calculated by:

Ef ðO2�
2 ; xÞ ¼ EðO2�

2 ; xÞ � EðNa2�xMn3O7Þ ð3Þ
where E(O2

2−, x) is the total energy of Na2-xMn3O7 with peroxide-like O2
2-. The

voltage profile of the discharge process for Na2-xMn3O7 with peroxide-like O2
2-

was calculated based on the same cation orderings considered in the charge
process.

Data availability
The whole datasets are available from the corresponding author on reasonable request.
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