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Abstract: Decrease in crop yield and degradation in product quality due to plant diseases such
as rust and blast in pearl millet is the cause of concern for farmers and the agriculture industry.
The stipulation of expert advice for disease identification is also a challenge for the farmers. The
traditional techniques adopted for plant disease detection require more human intervention, are
unhandy for farmers, and have a high cost of deployment, operation, and maintenance. Therefore,
there is a requirement for automating plant disease detection and classification. Deep learning
and IoT-based solutions are proposed in the literature for plant disease detection and classification.
However, there is a huge scope to develop low-cost systems by integrating these techniques for data
collection, feature visualization, and disease detection. This research aims to develop the ‘Automatic
and Intelligent Data Collector and Classifier’ framework by integrating IoT and deep learning. The
framework automatically collects the imagery and parametric data from the pearl millet farmland at
ICAR, Mysore, India. It automatically sends the collected data to the cloud server and the Raspberry
Pi. The ‘Custom-Net’ model designed as a part of this research is deployed on the cloud server. It
collaborates with the Raspberry Pi to precisely predict the blast and rust diseases in pearl millet.
Moreover, the Grad-CAM is employed to visualize the features extracted by the ‘Custom-Net’.
Furthermore, the impact of transfer learning on the ‘Custom-Net’ and state-of-the-art models viz.
Inception ResNet-V2, Inception-V3, ResNet-50, VGG-16, and VGG-19 is shown in this manuscript.
Based on the experimental results, and features visualization by Grad-CAM, it is observed that
the ‘Custom-Net’ extracts the relevant features and the transfer learning improves the extraction of
relevant features. Additionally, the ‘Custom-Net’ model reports a classification accuracy of 98.78%
that is equivalent to state-of-the-art models viz. Inception ResNet-V2, Inception-V3, ResNet-50,
VGG-16, and VGG-19. Although the classification of ‘Custom-Net’ is comparable to state-of-the-art
models, it is effective in reducing the training time by 86.67%. It makes the model more suitable
for automating disease detection. This proves that the proposed model is effective in providing a
low-cost and handy tool for farmers to improve crop yield and product quality.

Keywords: machine learning; interpretable; context-aware; deep learning; IoT

1. Introduction

The traditional systems of farming focus on meeting the dietary requirements of
people and domestic animals. Therefore, the farmers used to grow more nutritious cereals
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such as millets and sorghum rather than high-yielding grains such as rice and wheat. With
the commercialization of agriculture, the farmers have shifted their interest towards high
crop yields that can fulfill their dietary and financial requirements. This shift has increased
the burden of malnutrition, causing undernourishment and micronutrient deficiencies [1].
Therefore, there is a need to implement the precision system of agriculture that improves
the yield and the quality of highly nutritious crops.

The prime minister recognized millets as a treasure of nutrition and commended for a
call to start a millet revolution in India. He has declared millets as the ‘Nutri Cereals’ for
production, consumption, and trade points [2]. In addition, the Union Ministry for Human
Resource Development (MHRD) [3] has requested states to include Millet in Mid-day
meals served in schools. Moreover, a continuous decrease in the yield of common crops
such as wheat, rice, groundnut, and maize [4,5] has attracted farmers to grow pearl millet.
Pearl millet is resilient to climate issues due to its less water demand of 200 to 600 mm,
stability at high temperatures, and drought-prone ability. Therefore, millets with their
‘Nutri Cereals’ capability can be tapped for food security in the future. To meet this rising
demand, the farmers started the use of fertilizers, pesticides, and controlled irrigation. This
has increased the global crop yield of pearl millet over the past 50 years [6,7]. As per the
Project Coordinator, a review report published by the Directorate of Millets Development,
2020, the pearl millet covers 6.93 million hectares of land. The average production of
8.61 million tons was reported during 2018–2020 [5].

The productivity and quality of pearl millet are adversely affected by plant diseases
such as blast and rust [5]. These diseases put a substantial threat to food security and harm
the economy of farmers [8,9]. Therefore, it is mandatory to introduce a system for the
detection of diseases in crop plants.

Context-aware and interpretable machine learning (ML) and deep learning (DL) have
gained remarkable attention in human health monitoring [10–16], crop health monitoring,
and yield prediction [17]. These models are effective to give automatic, accurate, and
quick systems for plant disease detection and classification. Several models of ML and DL
are found effective and precise in disease detection and classification [18]. However, as
per the discussion given in [19,20], the convolutional neural network (CNN) outperforms
the machine learning (ML) models due to their potential in automatic feature extraction.
However, CNN models demand a huge and labeled dataset for training. The collection of
the dataset and correct labeling of a disease in a vast dataset is challenging as it requires
time and effort from the experts.

The frameworks based on the Internet of Things (IoT) have proven their acceptance in
automating data collection, data storage, and processing of collected datasets to make real-
time predictions [10,11,21]. The adequate use of drone, camera, and sensors significantly
reduce the time and cost of labor.

Furthermore, the advancements in deep transfer learning bring down the requirement
for the vast dataset [22]. In this approach, the model is initially trained on an extensive
dataset that is not necessarily labelled. At this stage, the model learns about the low-
level features such as texture, pixel intensity, marking of boundaries, etc. The weights of
this trained model are saved and utilized for further training the model with the dataset
comprising labelled samples [22].

The potential of IoT in data collection, data storage, quick processing, and efficacy of
interpretable ML, DL, and transfer learning techniques in object detection, classification,
visualization, and pattern matching even with the small-sized labelled dataset [19,23,24]
motivated the authors to employ the integration of these techniques for developing a
framework for detection of disease in pearl millet.

In this manuscript, the authors propose an IoT and interpretable deep transfer learning-
based framework, ‘Automatic and Intelligent Data Collector and Classifier’ (AIDCC), for
the detection and classification of diseases viz. rust and blast [25] in pearl millet.

The significant contributions of this manuscript are as follows:
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1. Highlighting the need to automate the detection of diseases in the underexplored
crop ‘pearl millet’.

2. Automatic collection of the real-time datasets by the IoT system fixed at the farmlands
of pearl millet.

3. Developing the IoT and deep transfer learning-based framework for detection and
classification of diseases in pearl millet.

4. Presenting the comparative analysis of the proposed framework and the systems
available in the literature to detect and classify plant diseases.

2. Related Works

The extensive study of literature in plant disease detection and classification gives
insights into the techniques employed to collect datasets, pre-processing, disease detection,
classification, and visualization.

In the traditional approaches, the farmers manually detect diseased and healthy
plants [26]. These approaches lack in the tracking of the essential parameters such as soil
type, humidity, temperature, amount of macro and micronutrients in the soil, and nutrient
requirements of the crop plant at different stages of its growth and maturity. Moreover, the
traditional approaches are time-consuming and need a lot of human effort. Furthermore,
the farmers need advice from experts for the correct diagnosis of diseases in crop plants.

The applications of IoT, computer vision, ML, DL, and deep transfer learning have
streamlined the automation of plant disease detection and classification [27,28]. In this
line of research, the authors proposed IoT and ML models for data capturing and disease
prediction [29]. They used the drone for capturing the images over a large area in less time.
They applied the support vector machine (SVM) for the classification of diseases in rice
crops. However, their system did not consider the on-demand capturing of images for
real-time monitoring and prediction.

Furthermore, the authors in [30] utilized the potential of IoT to categorize the healthy
and diseased leaves. They anchored the sensors for monitoring of soil quality, temperature,
and humidity. They used the camera to capture the images of crop plants. The authors
established the interface of sensors and a camera with the Raspberry Pi to store and process
the captured data for real-time predictions. They employed the K-means algorithm for
clustering images followed by masking of pixels to detect whether the leaf is diseased
or healthy.

The authors in [31,32] stated that DL techniques are effective in the early detection of
crop diseases. They recommended the use of these techniques to overcome the limitations
of traditional approaches. The research works presented in [24,27,32–38] and [39–46]
introduced deep learning (DL) models for the detection and classification of plant diseases.
Furthermore, Mohammed Brahimi claimed the supremacy of deep transfer learning over
deep learning [27].

The authors in [39] collected a dataset of 36,258 images from the AI challenger [47].
However, the dataset comprised images of poor visual quality. They employed the ResNet
model on the collected dataset and reported an accuracy of 93.96%.

The works presented by the authors in [19,48,49] highlighted the importance of col-
lecting imagery datasets and employing an appropriate DL model on the collected dataset
for the detection and classification of plant diseases. They also focused on integrating DL
models with the IoT systems comprising sensors, a drone, a camera, etc. They claimed
that these integrated systems effectively minimize human efforts and reduce the time
required for different agricultural practices. These systems are capable of gathering real-
time information from farms and quick processing of the collected datasets to predict
plant diseases.

The research works discussed by C. Shorten and T. M. Khoshgoftaar in [50] and
P. Cao et al., in [51] clarified that employing the augmentation techniques such as geometric
transformations, colour space augmentations, kernel filters, mixing images, random erasing,
feature space augmentation, adversarial training, neural style transfer, and meta-learning
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may prove constructive to improve the performance of the DL models. To carry out further
research, the authors in [52] conducted the experiments using 124 images downloaded
from the Internet. They applied data augmentation techniques such as zoom, rotation, flip,
and rescale to increase the size of the dataset to 711 images. In addition, they reported the
training accuracy of 95% and the validation accuracy of 89%. The low validation accuracy
and impractical implementation using standard memory devices such as mobile phones are
the significant limitations of this research. Moreover, they did not consider the parameters
such as soil type, temperature, humidity, nutrient requirements, etc. while disease detection.
Furthermore, the authors focused only on detecting one disease, ‘downy mildew’ in pearl
millet. Therefore, there is considerable scope for improving the performance and working
on the most common diseases such as blast and rust.

One more research group in [52] exploited the applications of deep transfer learning.
They employed pre-trained VGG-16 [53] to detect downy mildew disease [54] in pearl millet.
Based on the experiments, they claimed that deep transfer learning effectively extracts the
essential features. The extracted features of the pre-trained network are available for reuse.
The pre-trained networks reuse these features and continue learning from the more dataset
available for training. This improves the performance of the model. Transfer learning is
also important for fine-tuning the model according to the size and type of the dataset. The
authors also claimed that transfer learning is helpful to avoid overfitting and to improve
the model’s predictive capacity [24].

To work in synergy with the system proposed in [52], the authors in [23,55] integrated
IoT and DL techniques for disease detection in crops. However, the system could not prove
its practical application due to low accuracy.

The above discussion of the related research works shows that the integration of
DL techniques with IoT provides good opportunities for developing the architectures
to automate the collection of imagery and parametric data, storage of collected dataset,
plant disease detection, generating alerts, and classification of detected diseases. However,
these works lack in sensing the parameters that are the root cause for the plant diseases.
Moreover, the collection of imagery datasets requires substantial human effort and high
cost. Furthermore, the DL models employed for disease detection and classification report
low accuracy and take more time to respond. To the best of our knowledge, there is no
automatic and intelligent system for identifying and classifying blast and rust diseases
in pearl millet. The potential of integration of IoT and deep transfer learning is still
underexploited in the field of agriculture.

Therefore, there is a huge scope for improving the performance of the existing systems
and providing a new architecture for the automatic collection of the dataset, detection, and
classification of diseases in pearl millet.

3. Materials and Methods

In this section, the authors present the details of the proposed framework, dataset
prepared, training mechanism, and evaluation metrics used to evaluate the performance of
the models.

3.1. Proposed Framework

In this manuscript, the authors propose the ‘Automatic and Intelligent Data Collector
and Classifier’ (AIDCC) for the collection of data, detection, and classification of rust, and
blast diseases in pearl millet. The framework is an integration of three components, as
demonstrated in Figure 1.
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Figure 1. The framework of ‘Automatic and Intelligent Data Collector and Classifier’.

Component 1: It comprises the digital drone, camera, global positioning system (GPS),
and sensors. A digital drone is a crewless aerial vehicle used to monitor the farmlands [56].
Here, the drone is equipped with a Panasonic GH3 camera ‘DJI S1000’ that can focus in the
range from 25 to 30 m, offers video resolution of 1920 × 1080, and a CMOS sensor of 16 MP.
The camera of the drone clicks the images and transfers them automatically and instantly
to the Raspberry Pi and/or cloud storage. It also captures the variation in RGB scaling of
plants to spot the major disease areas in the farm. The drone is specified for a flying range
of 7 km. The patrolling of the farm using a drone is useful in obtaining the coordinates of
the field used by GPS. It saves time and the cost of labor.

In addition to the drone, we used the NIKON D750 digital camera for clicking the
pictures. The digital camera is used to capture the desired region such as leaves rather than
the complete plant or multiple plants together. Similar to the drone camera, it transfers the
captured images directly to the cloud server.

The GPS module embedded with sensors, drones, and Raspberry Pi is helpful to
monitor the location of the diseased plants. It is also important to find the region of
farmland where fertilizers and/or water are required. The sensors are anchored with
the proposed framework to monitor the changes in soil, temperature, and humidity. For
example, the variations in temperature and moisture of soil indicate the susceptibility of
pearl millet towards the blast and rust diseases [25]. Moreover, the oospores present in
the soil are the primary source to infect the underground parts of plants [54]. Therefore,
the sensors anchored for continuous monitoring of the soil can detect the presence of
oospores in the soil and help in predicting the disease at an early stage. Furthermore, the
hyperspectral sensors are fixed with drone cameras for monitoring the environmental and
physical conditions.

To identify the suitable sensors for the AIDCC, the authors referred to the system pro-
posed in [57]. They used four sensors viz. GY-30, soil sensor, DHT22, and BMP180 sensors
to measure the humidity in the soil, temperature, and light intensity. The authors embed-
ded the DS3231 sensor for transferring the information from the mounted sensors to the
processor of Raspberry Pi (RPI). Taking clues from the work proposed by N. Materne and
M. Inoue in [58] and A. Thorat et al. in [30], we fitted two DHT11 sensors to measure
the temperature and humidity in order to spot the rust and blast diseases at an early
stage. These sensors are connected to the Raspberry Pi (RPI) for transmitting the captured
information to the cloud server. This information is disseminated as an alert or notification
to the farmers on their mobile phones. The role of sensors from information gathering to
sending notifications to farmers for a pearl millet farmland is demonstrated in Figure 2.
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Figure 2. Role of sensors in the pearl millet farmland.

Component 2: This component comprises the Raspberry Pi and cloud storage. It
receives the parametric and imagery dataset collected by component 1. Raspberry Pi can
store up to 100 images due to its limited storage capacity. Therefore, the photos are sent to
the cloud server, if their number exceeds 100, as demonstrated in Figure 1.

Component 3: In this component, the DL based classifier classifies the data stored
at the cloud server and Raspberry Pi into the rust and blast classes. Component 3 works
synchronously with the Raspberry Pi for facilitating real-time predictions and notifying
the farmers about the diseases or other variations observed in the farmland.

3.2. Dataset Preparation

For the dataset collection, the hardware components such as drones, digital cameras,
and sensors as shown in component 1 of Figure 1, were fixed at the farmland of the Indian
Council of Agricultural Research-All India Coordinated Research Project (ICAR (AICRP-
Mysore center). The pearl millet plants infected with blast and rust diseases were grown
purposefully to monitor the symptoms and impacts of these diseases. The characteristics
of diseased leaves of pearl millet are shown in Table 1.

Table 1. Characteristics and symptoms of diseased leaves of pearl millet.

Name of Disease Causing Agent Stage of Infection Shape of Infected Region Colour of Infected Region

Downy mildew Sclerospora graminicola Seedling. Foliar and green ear Green and whitish

Blast Magnaporthe grisea Seedling and tillering
stage

Elliptical or
diamond-shaped

Pale green to greyish green,
later turning yellow to grey

with age

Rust Puccinia substriata var.
indica. Before flowering Pistules type small spots Reddish-orange

The images of pearl millet plants infected by blast and rust diseases were captured
in close observation of the plant pathology expert involved in this research. The authors
considered 55- to 60-day-old plants for capturing the images since the blast and rust
diseases were easily distinguishable at this age of plants. Moreover, the pathology experts
claimed that the degree of severity of rust and blast diseases has reached more than 80% in
the plants of this age. In these plants, the pathology experts easily identified rust and blast
diseases in pearl millet based on their visible symptoms. For example, the leaves of plants
infected with blast turned greyish, and water-soaked lesions appear on the foliage [59].
These lesions vary in size from −2 to 20 mm. The lesions also vary in shape from roundish,
elliptical, diamond shaped to elongated. These lesions may enlarge and become necrotic
with an increase in the severity of the disease. On the other hand, the leaves of plants
infected with rust contain pinhead chlorotic flecks. These flecks turn into reddish-orange
as the disease severity increases. Moreover, the round to elliptical pustules appear on



Sensors 2021, 21, 5386 7 of 23

both surfaces of leaves [59]. The observable differences in the patterns of both diseases are
important for the precise training of the DL model.

The authors captured 1964 images of leaves of pearl millet infected with blast and
1336 images infected with rust. They divided the prepared dataset into training and testing
datasets in the ratio of 70% and 30% of the total dataset, respectively. The number of images
in these datasets is shown in Table 2, and the sample images of blast and rust diseases are
shown in Figure 3.

Table 2. Number of images in training and testing datasets of blast and rust.

Name of Disease Total Number of Images Number of Images in the Training Dataset Number of Images in Testing Dataset

Blast 1964 1375 567

Rust 1336 935 423

Total 3300 2310 990

Figure 3. Sample images of pearl millet infected with blast and rust.

3.3. The Architecture of the ‘Custom-Net’ Model

The architecture of the ‘Custom-Net’ model designed to predict the samples infected
with blast and rust diseases is shown in Figure 4. It comprises four convolution layers, and
a max-pooling layer follows each convolution layer. Furthermore, the last max-pooling
layer is followed by the activation, flatten, and dense layer.

Figure 4. The architecture of the ‘Custom-Net’ model.

Training of ‘Custom-Net’ and State-of-the-Art Deep Learning Models

Based on the set of experiments conducted and the experimental results reported in
the related works [51,60,61], the authors employed the Adam optimizer to deal with the
problems of sparse gradients that may be generated on the noisy dataset. This optimizer
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adopts the best properties of AdaGrad and RMSProp optimization algorithms and favors
the better training of the model. Moreover, the authors employed the softmax activation
function and categorical cross-entropy loss function for precise training of the proposed
network. In addition, they set the learning rate of 0.0001 to optimize the learning of
the model and obtain its optimum performance. Furthermore, the authors continuously
monitored the model’s performance and observed that it reports the optimum performance
for the batch size of 16 samples.

The authors employed pre-trained and non-pre-trained versions of ‘Custom-Net’ and
state-of-the-art models. The model is named as pre-trained if it is trained on the ‘ImageNet
dataset’ [62], its weights are saved and it is further trained on the dataset collected in this
research. The pre-trained model learns the low-level features such as boundary and edge
marking from the ‘ImageNet dataset’. It further learns the high-level features such as
pattern differences in leaves infected with blast and rust diseases, from the dataset used
in this manuscript. In contrast, the model is named as non-pre-trained if it is initialized
with random weights and directly trained with the dataset collected in this research. The
non-pre-trained model learns both the high level as well as low-level features from the
dataset used in this manuscript.

Now, to showcase the impact of transfer learning on the shallow neural network,
the authors pre-trained the ‘Custom-Net’ on the publicly available ‘ImageNet dataset’
comprising more than 14 million images [62] followed by the training on the dataset
collected as a part of this research. In addition, they also trained the model only on the
collected dataset without using the concept of transfer learning. They compared the results
of the pre-trained and non-pre-trained versions of ‘Custom-Net’ to demonstrate the impact
of transfer learning on feature extraction and classification. Moreover, they also plotted
the output matrix obtained after each layer of the ‘Custom-Net’ as shown in Figure 5.
This is important to visualize how the ‘Custom-Net’ extracts the relevant features and
ignores the irrelevant features at its different layers. It is evident from Figure 5 that there
are no clear boundaries visible at the initial convolution layers. However, the feature
map is reduced, and boundaries are more precise at the later convolution layers and their
following max-pooling layers. It is apparent from the last matrix shown in Figure 5 that
the model learned to identify even the complex patterns hidden in the image.

Moreover, it is clear from the matrices shown in Figure 5 that the model starts learning
the pixel-level features at the initial layers. Gradually, it starts discarding the features
picked from the background and considers only the relevant features for decision-making
once it is trained. They also recorded that each epoch takes 4 s and the model completes
its training in 20 epochs. The quick training of the model shows its efficacy in feature
extraction.

Now, for comparing the efficacy of the proposed ‘Custom-Net’ model, the authors
employed the pre-trained as well as non-pre-trained versions of the state-of-the-art models
viz. VGG-16, VGG-19 [53], ResNet-50 [39], Inception-V3 [42], and Inception ResNet-V2 [41]
to predict the samples infected with blast and rust diseases.
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Figure 5. Output matrix of selected layers of ‘Custom-Net’ model.

3.4. Evaluation Metrics

To evaluate the performance of the classifiers accompanied by the ‘Automatic and
Intelligent Data Collector and Classifier’, the authors used the confusion matrix as pre-
sented in [53], average accuracy, precision, recall, and training time. The definitions of
these metrics are given below:

Confusion Matrix: This represents the number of correctly and incorrectly classified
samples into each labelled class. Here, TB denotes the number of correctly classified
samples of blast disease, FB denotes the number of incorrectly classified samples of blast
disease, TR is the number of correctly classified samples of rust disease, and FR is the
number of incorrectly classified samples of rust disease. The sample confusion matrix is
shown in Table 3. Based on the labels presented in the confusion matrix, the authors define
the evaluation matrices, namely sensitivity, accuracy, precision, recall, F1 score.

1. Average accuracy: It is the measure of the degree of correctness of the classification. It
can be calculated using the formula given in Equation (1).

Accuracy =
TB + TR

TR + FB + FR + TB
(1)

2. Precision: This is the measure of classifying the samples of the blast correctly to the
blast class. The formula to calculate the precision is given in Equation (2).

Precision =
TB

TB + FB
(2)
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3. Recall: This is the measure of correct identification of samples of the blast class from
the total number of samples of that class. The formula to calculate the precision is
given in Equation (3).

Recall =
TB

TB + FR
(3)

Table 3. Sample Confusion matrix.

Actual Label

Pr
ed

ic
te

d
La

be
l Blast Rust

Blast TB FB

Rust FR TR

4. Results

In this section, the authors present the results obtained by evaluating the performance
of the trained ‘Custom-Net’ model on the test dataset comprising 990 images of blast and
rust diseases in pearl millet.

4.1. Confusion Matrix for Classification

The confusion matrix of the pre-trained ‘Custom-Net’ model on the training and
testing datasets are shown in Table 4a,b, respectively. Similarly, the confusion matrix of
the non-pre-trained ‘Custom-Net’ model on the training and testing datasets are shown
in Table 5a,b, respectively. It is clear from Tables 4a and 5a that the pre-trained, as well as
non-pre-trained models, do not misclassify any sample from the training dataset. Whereas,
it is evident from Table 4b that the pre-trained ‘Custom-Net’ model misclassifies 34 samples
from the test dataset containing 567 images of plant leaves infected with blast disease.
Furthermore, it is clear from Table 4b that the ‘Custom-Net’ model misclassifies 69 images
from the test dataset comprising 423 images of plant leaves infected with rust disease.
However, at the same time, it can be observed in Table 5b that the non-pre-trained ‘Custom-
Net’ model misclassifies only 4 and 8 samples from the testing dataset comprising images
of leaves infected with blast and rust diseases, respectively.

Table 4. Confusion matrix of pre-trained ‘Custom-Net’ model.

(a) Training dataset

Actual Label

Predicted Label

Blast Rust

Blast 1375 (TB) 0(FB)

Rust 0(FR) 935 (TR)

(b) Testing dataset

Actual Label

Predicted Label

Blast Rust

Blast 533 (TB) 34(FB)

Rust 69(FR) 354(TR)
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Table 5. Confusion matrix of non-pre-trained ‘Custom-Net’ model.

(a) Training dataset

Actual Label

Predicted Label

Blast Rust

Blast 1375 0

Rust 0 935

(b) Testing dataset

Actual Label

Predicted Label

Blast Rust

Blast 563 (TB) 4(FB)

Rust 8(FR) 415(TR)

Furthermore, it is claimed in [63] that the area under the curve (AUC) and receiver
operating characteristic (ROC) (AUC-ROC) curves are the most effective tools for visualiz-
ing the classification performance of a model. In this manuscript, these curves are used
to check the capability of the model to distinguish the rust and blast disease classes. The
AUC-ROC curves for different classifiers on the training and testing datasets are shown in
Figure 6.

Figure 6. AUC-ROC curves of six classifiers on the training and testing datasets.
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Furthermore, the authors also present the classification performance of the ‘Custom-
Net’ model and state-of-the-art DL models, as shown in Table 6. It is evident from the
results shown in Table 6 that except VGG-16 and VGG-19 models, the pre-trained and
non-pre-trained versions of all the DL models employed in this manuscript report the
equivalent values of accuracy, precision, recall, and F1 score.

Table 6. Classification performance of different deep learning models.

Metrics

Non-Pre-Trained Models Pre-Trained Models

VGG-16 VGG-19 ResNet-
50

Inception-
V3

Inception
ResNetV2

‘Custom-
Net’ VGG-16 VGG-19 ResNet-

50
Inception-

V3
Inception
ResNetV2

‘Custom-
Net’

Model

Accuracy
(%) 57.27 57.27 98.68 99.39 99.49 99.78 99.89 99.49 99.79 99.59 98.98 98.15

Precision
(%) 100 100 99.29 99.11 99.64 99.29 99.82 99.29 99.64 98.64 99.58 99.10

Recall
(%) 57.27 57.27 98.42 99.82 99.47 98.59 100 99.82 100 99.64 99.64 98.39

F1 score
(%) 72.83 72.83 98.85 99.46 99.55 98.94 99.91 99.55 99.82 99.64 99.11 98.69

4.2. Average Accuracy

Figure 7 shows that the values of average accuracy, reported by the non-pre-trained
and pre-trained versions of the ‘Custom-Net’ and state-of-the-art DL models viz. Inception
ResNet-V2, Inception-V3, ResNet-50, VGG-16, and VGG-19, are comparable except for the
non-pre-trained versions of VGG-16 and VGG-19.

Figure 7. Average accuracy of different deep learning models.

The Non-pre-trained version of the ‘Custom-Net’ model reported an average accuracy
of 98.78%, whereas its pre-trained version reported an average accuracy of 98.15%.

Similarly, the non-pre-trained versions of Inception ResNet-V2, Inception-V3, and
ResNet-50 reported the average accuracies of 99.49%, 99.39%, and 98.68%, respectively. It
is also apparent from Figure 7 that the pre-trained versions of ResNet-V2, Inception-V3,
ResNet-50, VGG-16, and VGG-19 also reported the comparable values of average accuracies
of 98.98%, 99.59%, 99.79%, 99.49, and 99.89%, respectively. However, in strong contrast, the
non-pre-trained versions VGG-16 and VGG-19 reported a low average accuracy of 57.27%.
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4.3. Precision

It is evident from Figure 8 that the ‘Custom-Net’ model reported the highest precision
of 99.29%. Moreover, there is a slight difference of 0.19% in the precision of its pre-trained
and non-pre-trained versions. It is also clear from Figure 8 that the VGG-16 and VGG-19
models reported the highest precision of 100%. There is a minor variation of 0.18% and
0.71% in the precision of the pre-trained and non-pre-trained versions of VGG-16 and VGG-
19, respectively. The other deep learning models viz. Inception ResNet-v2, Inception-v3,
and ResNet-50 reported the highest precision of 99.64%, 99.11%, and 99.29%, respectively.

Figure 8. Precision of different deep learning models.

4.4. Recall

The results shown in Figure 9 indicate that the ‘Custom-Net’ model reported a recall
of 98.59%. A minor variation of 0.20% has been observed in the values of recall of its
pre-trained and non-pre-trained versions. Additionally, the results also show that VGG-16
and ResNet-50 reported the highest recall of 100%. Moreover, there is a significant variation
of 42.73% and 42.55% in the recall of pre-trained and non-pre-trained versions of VGG-16
and VGG-19, respectively. The Inception ResNet-V2, and Inception-V3 reported the highest
values of 99.64% and 99.82%, respectively. Furthermore, there is a minor difference of
0.17% and 0.18% in the recall of the pre-trained and non-pre-trained versions of Inception
ResNet-V2 and Inception-V3.

4.5. F1 Score

The experimental results demonstrated in Figure 10 show that the ‘Custom-Net’ model
achieved the highest F1 score of 98.94%. It reported a small variation of 0.25% in the F1
score of its pre-trained and non-pre-trained versions. The results shown in Figure 10 also
indicate that VGG-16, VGG-19, ResNet-15, Inception-V3, and Inception ResNet-V2, give
the highest F1 score values as 99.91%, 99.85%, 99.11%, and 99.64%, respectively. It is also
clear from the figure that the VGG-16 and VGG-19 give the highest difference of 27.08%
and 26.72%, respectively. There is a minor variation in the F1 score of pre-trained and
non-pre-trained versions of ResNet-15, Inception-V3, and Inception ResNet-sV2 models.
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Figure 9. Recall of different deep learning models.

Figure 10. F1 score of different deep learning models.

4.6. Computation Cost

To validate the scope of adopting the proposed ‘Custom-Net’ model and state-of-the-
art deep learning models viz. Inception ResNet-V2, Inception-V3, ResNet-50, VGG-16,
and VGG-19 for classifying diseased leaves, the authors demonstrated the training time
and the number of trainable parameters in Figures 11 and 12, respectively. It is noticeable
from Figure 12 that the Inception ResNet-V2 model has the maximum number of trainable
parameters, whereas the ‘Custom-Net’ model has the minimum number of trainable
parameters. Furthermore, it is clear from the training time shown in Figure 11 that the
‘Custom-Net’ model requires a minimum time of only 80 s for training through 20 epochs.
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Figure 11. Training time of different deep learning models.

Figure 12. Training parameters of different deep learning models.

4.7. Grad-CAM

Now, the authors plotted the Grad-CAM to visualize the features involved in the
classification. The visualization of features involved in classification for the pre-trained
and non-pre-trained versions of Inception ResNet-V2, Inception-V3, ResNet-50, VGG-16,
and VGG-19 are shown in Figures 13 and 14, respectively.



Sensors 2021, 21, 5386 16 of 23

Figure 13. Grad-CAM to visualize the features of pre-trained models.
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Figure 14. Grad-CAM to visualize the features of non-pre-trained models.

5. Discussion

In this section, the authors present the inferences deduced from the experimen-
tal results obtained by employing the ‘Custom-Net’, Inception ResNet-v2, Inception-v3,
ResNet-50, VGG-16, and VGG-19 models.

It is apparent from Figure 6 that the pre-trained version of VGG-16 gives the highest
average accuracy. Whereas, the non-pre-trained versions of VGG-16 and VGG-19 reported
the minimum value of average accuracy. The pre-training of these models lead to a
significant increase of 42.62% in the average accuracy. This proves that these deep networks
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require a vast dataset for training. Therefore, transfer learning becomes vital for the
training of these networks if the dataset size is small. By adopting the advantages of
transfer learning, these networks learn the low-level and basic features of the dataset, such
as boundary recognition and shape identification. Now, the networks use the weights
acquired during pre-training and further learn the recognition of high-level features such
as sub-boundaries or details about the image segments.

In contrast, with the models viz. Inception ResNet-v2, Inception-v3s, and ResNet-50,
a minor impact of transfer learning was reported on the average accuracy. Similarly, a low
impact of 0.63% is observed when the ‘Custom-Net’ model adopted the pre-training and
transfer learning.

It is inferred from the above discussion that the shallow neural networks learn the
low-level as well high-level features by training on the small dataset size. At the same time,
deep networks either require large datasets for training or transfer learning.

Furthermore, the trends of the precision, recall, and F1 measures of the above-stated
models are demonstrated in Figures 7–9. It is evident from Figure 7 that the non-pre-
trained VGG-16 and VGG-19 models reported the highest precision of 100%. In contrast,
the non-pre-trained Inception-V3 model gave the lowest precision of 99.11%. The other
non-pre-trained models viz. Inception ResNet-v2, ResNet-50, and ‘Custom-Net’ reported
0.36%, 0.71, and 0.71% lower precision than the VGG-16 and VGG-19 models. The small
variation in the precision of all the non-pre-trained versions of the above-stated models
implies that these models are efficient in recognizing the relevant instances of each class
from the input test dataset.

The discussion proves that both the pre-trained and non-pre-trained models are
efficient in recognizing the relevant instances of each class from the input test dataset.
Moreover, the pre-training helps discriminate the relevant and irrelevant features.

A further analysis of the results shown in Figure 8 reveals that the pre-trained VGG-16
and ResNet-50 models reported a 100% recall. The other pre-trained models Inception
ResNet-v2, Inception-v3, VGG-19, and ‘Custom-Net’ reported the 0.61%, 0.36%, 0.18, and
1.61% lower values of recall, respectively.

It is evident from the comparison of non-pre-trained models that the Inception-v3
reported the highest value of 99.82% recall. The other models viz. Inception ResNet-v2,
ResNet-50, and ‘Custom-Net’ also reported the equivalent values of recall, as shown in
Figure 8. Moreover, there is a minor difference of 0.17% and 0.18% in the recall of the pre-
trained and non-pre-trained versions of Inception ResNet-V2 and Inception-V3. Therefore,
the comparable values of recall for all the above-stated models indicate that all the models
are efficient in correctly identifying the blast disease from the leaves of pearl millet.

However, the VGG-16 and VGG-19 models gave the lowest values of 57.27% recall.
Moreover, there is a significant variation of 42.73% and 42.55% in the recall of pre-trained
and non-pre-trained versions of VGG-16 and VGG-19, respectively.

This proves that transfer learning is important for the deeply layered models such
as VGG-16 and VGG-19, in order to minimize the number of misclassification of leaves
infected by blast disease to the rust class.

Moreover, it is evident from the F1 score shown in Figure 9 that the pre-trained VGG-
16 model reported the highest F1 score of 99.91%. Furthermore, the other models viz.
Inception ResNet-v2, Inception-v3, VGG-19, and ‘Custom-Net’ reported the equivalent
values of the F1 score.

Simultaneously, it is also observed that the models, viz. ‘Custom-Net’, ResNet-50,
Inception-V3, and Inception ResNet-V2 reported the slight variations of 0.25%, 0.44, 0.18%,
and 1.03%, respectively in the F1 score of their pre-trained and non-pre-trained versions.
However, the VGG-16 and VGG-19 gave the highest difference of 27.08% and 26.72%,
respectively. This proves that transfer learning is important for relevant feature extraction
and minimizing the number of misclassifications in VGG-16 and VGG-19 models. However,
there is an insignificant impact on the performance of the other above-stated state-of-the-art
models. Moreover, the comparable values of the F1 score of all the models reflect that these
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models are efficient in correctly identifying the samples of the blast as well as rust diseases
from the test dataset.

Furthermore, it is coherent from the Grad-CAM plotted in Figures 10 and 11 that the
pre-trained ‘Custom-Net’ model is effective in recognizing the acceptable boundaries from
the leaves infected with blast and rust. Therefore, it makes the classification based on the
relevant features rather than noise. In contrast, its non-pre-trained version is efficient in
identifying all the relevant features. Still, it also picks some features from the background
that may increase the number of misclassifications.

Similarly, the pre-trained versions of the above-stated state-of-the-art models also
perform as a better feature extraction than their non-pre-trained versions. This proves that
transfer learning helps the model in the extraction of more relevant features, recognizing
acceptable boundaries, and preventing the involvement of noise in decision-making.

However, the ‘Custom-Net’ model shows comparable values of average accuracy,
precision, recall, and F1 score with the state-of-the-art models, but there is a significant
decrease in the number of trainable parameters and training time. It is noticeable from
Figure 11 that the ‘Custom-Net’ model has the minimum number of trainable parameters.
Moreover, it is evident from the training time presented in Figure 12 that the ‘Custom-Net’
model requires a minimum time of 4 s per epoch. It completes its training in merely 80 s
through 20 epochs. The analysis of training time shows that it requires 84%, 86.6%, 81.81%,
81.81%, and 91.67% lower training time than VGG-16, VGG-19, ResNet-15, Inception-V3,
and Inception ResNet-V2 models, respectively. Its efficacy in achieving the classification
accuracy comparable to the state-of-the-art models and low training time proves its usability
for real-life systems. Furthermore, it is effective in quick decision-making to classify the
blast and rust diseased samples in real-time. Table 7 presents the comparative analysis of
the approaches available in literature and the approach proposed in this manuscript.

Table 7. Comparison of the proposed approach and the approaches available in literature.

Reference Year Crop Diseases Number of
Images, Source

Tools Used for
Dataset Collection Model(s) Applied Evaluation Metrics

Our work 2021 Pearl millet Rust, blast 3300, ICAR
Mysore

X8-RC Drone
camera
NIKON D750
Digital camera
DHT11 sensor
Raspberry Pi

‘Custom-Net’
VGG-16
VGG-19
ResNet-50
Inception-v3
Inception
ResNet-v2

Accuracy = 98.78%
Precision = 99.29%
Recall = 98.59%
F1 score = 98.64%
Training time = 80 s
Number of training
parameters = 78,978

[28] 2020 Tomato
Early blight
Late blight
Healthy

5923 Plant
Village Dataset,
Internet images,
and leaf images
captured from
Tansa Farm,
Bhiwandi

Sensor

Support vector
machines
Random Forest
(RF) K-means
VGG-16
VGG-19

Clustering accuracy
using RF = 99.56%
Classification
accuracy using
VGG-16 = 92.08%

[23] 2020 59 categories
49 disease
categories, 10
healthy

36,252,
AI-challenger

Video cameras
Smartphone

MDFC-ResNet
VGG-19
AlexNet
ResNet = 50

Accuracy = 93.96%
Precision = 98.22%
Recall = 95.40%
F1 score = 96.79%

[52] 2019 Pearl millet Downy mildew
711
Images from the
Internet

No camera
No IoT

VGG-16
Transfer learning

Accuracy = 95%
Precision = 94.50%
Recall = 90.50%
F1 score = 91.75%

[29] 2018 Rice

Bacterial Blight
Sheath Blight
Brown Spot
Leaf Blast

International
Rice Research
Institute (IRRI)
database

Drone
Camera
GPS sensor

Support vector
machine (SVM)

Only disease
boundary detected

Moreover, the technique has a biological significance too. The quick and automatic
detection of plants infected with rust and blast helps the farmers apply disease control
measures, thus preventing the further spread of diseases to the whole farmland.

To further validate the efficacy of the proposed model ‘Custom-Net’, the authors com-
pared its performance with the state-of-the-art models viz. VGG-16, VGG-19, ResNet-15,
Inception-V3, and Inception ResNet-V2. The comparison shows that the ‘Custom-Net’
model efficiently extracts relevant features and involves the relevant features in the decision-



Sensors 2021, 21, 5386 20 of 23

making. It achieved the classification performance equivalent to the InceptionResNet-V2.
Moreover, it requires a minimum time for training. Therefore, the authors integrated the
‘Custom-Net’ model in the ‘Automatic and Intelligent Data Collector and Classifier’.

In the future, there is a scope of making the predictions based on the parametric
dataset collected by the data collector part of the proposed framework. Moreover, there is a
need to develop a multi-class classifier to classify the healthy plants infected with Downey
mildew, blast, smut, ergot, and rust.

6. Conclusions

The framework ‘Automatic and Intelligent Data Collector and Classifier’ (AIDCC)
is proposed in this manuscript for automating the collection of imagery and parametric
datasets from the pearl millet farmland, feature visualization, and prediction of blast and
rust diseases. The framework is an appropriate integration of IoT and deep learning to
analyze imagery and numeric data. The hardware components, such as drone cameras,
digital cameras, sensors, etc. are anchored in the pearl millet farmland at ICAR, Mysore,
India, to collect data automatically. The ‘Custom-Net’ model is designed as a part of this
research and deployed on the cloud server. This DL model processes the data collected
by the data collector and provides real-time prediction for the blast and rust diseases in
pearl millet. Moreover, to showcase the impact of transfer learning, the authors pre-trained
the proposed model on the online available ImageNet dataset. The pre-trained model is
further trained on the dataset of 2310 images of leaves of pearl millet infected with blast
and rust. The performance of the pre-trained and non-pre-trained ‘Custom-Net’ models is
evaluated. Based on the visualization of features through Grad-CAM, it is concluded that
transfer learning improves the extraction of relevant features and helps the model discard
the features picked from the background. At the same time, the slight difference of 0.25%
in the F1 score of pre-trained and non-pre-trained ‘Custom-Net’ models prove that being a
shallow network, it is equally efficient in making correct classifications even though the
training dataset is small.

Moreover, the authors compared the performance of the pre-trained and non-pre-
trained state-of-the-art DL models viz. VGG-19, VGG-16, Inception ResNetV2, Inception V3,
and ResNet-50 architectures. Furthermore, the authors implemented these models using
transfer learning. They employed the pre-trained models on the ImageNet dataset and fur-
ther trained them on the dataset collected by the data collector of the framework proposed
in this research. However, the pre-trained and fine-tuned VGG-19 model outperformed all
the models. It achieved the highest values of 99.39%, 99.82%, 99.11%, and 99.46% for the
average accuracy, precision, recall, and F1 score, respectively, on the test dataset comprising
990 images of leaves infected with blast and rust. However, this model requires a training
time of 600 s that is 86.67% higher than the ‘Custom-Net’ model. Moreover, the high
number of training parameters of 20,089,922 increases its computation cost. Therefore,
the authors deployed the pre-trained and fine-tuned ‘Custom-Net’ model as a classifier
in the framework ‘AIDCC’. Therefore, this research provides a low-cost and user-friendly
framework for automating the data collection, feature visualization, disease detection, and
prediction of blast and rust diseases in pearl millet. As a result, it may prove a significant
contribution to the food industry and farmers in order to increase the yield and quality of
crop products.
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