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N6-methyladenosine (6mA) DNA modification played an important role in epigenetic
regulation of gene expression. And the aberrational expression of non-coding genes, as
important regular elements of gene expression, was related to many diseases. However,
the distribution and potential functions of 6mA modification in non-coding RNA (ncRNA)
genes are still unknown. In this study, we analyzed the 6mA distribution of ncRNA genes
and compared them with protein-coding genes in four species (Arabidopsis thaliana,
Caenorhabditis elegans, Drosophila melanogaster, and Homo sapiens) using single-
molecule real-time (SMRT) sequencing data. The results indicated that the consensus
motifs of short nucleotides at 6mA location were highly conserved in four species,
and the non-coding gene was less likely to be methylated compared with protein-
coding gene. Especially, the 6mA-methylated INcCRNA genes were expressed significant
lower than genes without methylation in A. thaliana (p = 3.295e-4), D. melanogaster
(o = 3.439e-11), and H. sapiens (p = 9.087e-3). The detection and distribution profiling
of 6BmA modification in NcRNA regions from four species reveal that 6mA modifications
may have effects on their expression level.

Keywords: non-coding RNAs, model species, DNA methylation, gene expression, 6mA modification

INTRODUCTION

DNA methylation, refers to the addition of a methyl group (CH3) to the DNA molecule,
plays a critical role in epigenetic regulation of genes expression. Previous studies have paid
more attention to 5-methylcytosine (5mC) in eukaryotes genomic DNA (gDNA) due to its
abundance and significance (Zhang et al., 2006; Zilberman et al., 2007; Law and Jacobsen, 2010;
Jones, 2012). In contrast, N6-methyladenosine (6mA) has been found at a significant level and
commonly characterized in prokaryotes. Particularly, 6mA modifications in bacteria are involved
in diverse biological processes such as DNA replication, DNA mismatch repair, host-pathogen
interaction, and gene expression (Ratel et al., 2006; Wion and Casadesus, 2006). Recently, 6mA
has been identified as a novel epigenetic mark in eukaryotes (Sun et al, 2015). And owing to
the developed high-through sequencing technologies, 6mA modifications have been detected in
diverse eukaryotes such as Chlamydomonas (Fu et al., 2015), Arabidopsis thaliana (Liang et al.,
2018), Caenorhabditis elegans (Greer et al., 2015), Drosophila melanogaster (Zhang et al., 2015), Mus
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musculus (Koziol et al.,, 2016), and Homo sapiens (Xiao et al.,
2018). These researches revealed that 6mA modifications did
play important roles in regulating many biological processes in
eukaryotes, such as the processes of embryonic development
and tumorigenesis (Wu et al, 2016; Liang et al, 2018;
Xiao et al., 2018).

Non-coding RNA (ncRNA) genes refer to genes that produce
functional RNA sequences instead of translated proteins (Mattick
and Makunin, 2006), which can be classified into ribosome RNA
(rRNA), transfer RNA (tRNA), small nuclear RNA (snRNA),
microRNA (miRNA), long non-coding RNA (IncRNA), and so
on. In recent years, it has become increasingly apparent that
ncRNAs are of significant functional importance in multicellular
eukaryotes genome. And it has been demonstrated that ncRNAs
involved diverse biological processes and the aberrational
expression of non-coding genes were correlated with human
diseases including cancer, lymphocytic leukemia, diabetes, band
neurodegenerative diseases such as Alzheimer’s and Parkinson’s
diseases (Dong et al., 2014; Chhabra, 2015; Wang and Chim,
2015; LaPierre and Stoffel, 2017). Recent studies have uncovered
that DNA 5mC modification regulated the expression of both
protein-coding genes and ncRNA genes (Borrello et al., 1992;
Li et al., 2008; Chhabra, 2015). However, the 6mA distribution
patterns in these ncRNA genes and regulatory relationships
between 6mA and ncRNA genes remain unknown.

The single-molecule real-time (SMRT) sequencing
technology, the third-generation sequencing platform, provides
information regarding DNA modifications and identified
6mA and 4mC modifications at a single-nucleotide resolution
and single-molecule level (Eid et al., 2009; van Dijk et al,
2018). The methylation signal was detected by the variations
in inter-pulse duration (IPD) between two successive base
incorporations during DNA synthesis (Flusberg et al., 2010;
Clark et al, 2012; Fang et al., 2012; Schadt et al., 2013; Xiao
et al, 2017). The developed SMRT sequencing technology
allows genome-wide detection of 6mA at a high resolution.
To date, the feature profiling of 6mA modification in some
eukaryotes has been studied. However, the distribution
pattern and potential function in ncRNA genes remain
unknown. In this research, we identified the genome-wide
6mA modification sites in four species including A. thaliana,
C. elegans, D. melanogaster, and H. sapiens by analyzing
the SMRT sequencing datasets. Then we first decoded the
distribution patterns of 6mA in ncRNA genes and compared
them with protein-coding genes. The detection and distribution
profiling of 6mA modification in ncRNA regions from four
species reveal that 6mA modifications may have effects on their
expression level.

MATERIALS AND METHODS

Data Collection

We collected the paired long reads DNA and short-read
RNA datasets from the same tissue of four eukaryotic species
(H. sapiens, D. melanogaster, C. elegans, A. thaliana) from
NCBI database (Supplementary Table S1). The raw DNA data

sequenced by SMRT PacBio RSII were used to identify DNA
methylated sites (Chin et al., 2016; Seo et al., 2016), and the short
reads RNA datasets from the same tissue were used to explore
the gene expression in H. sapiens, D. melanogaster, C. elegans,
A. thaliana (Supplementary Table S1). The corresponding
reference genomes and gene annotations were obtained from
NCBI (Supplementary Table S1).

Detection of DNA 6mA Modification

The PacBio SMRT analysis platform (version 2.3.0) was used
to detect DNA 6mA modification'. The analysis pipeline
was as follows: First, the raw SMRT sequencing datasets in
h5 format downloaded from NCBI were filtered by using
filter_plsh5.py with parameters: “-seed = 1 -minAccuracy = 0.75
-minLength = 50, and the reads containing adapters, short
reads (less than 50 nucleotide) or reads with a low quality
region (less than 0.75) were removed. Second, the clean
reads were aligned to the corresponding reference genome
using pbalign with the parameters “-algorithmOptions = *-
useQuality’ -algorithmOptions = “minMatch 12 -bestn 10
-minPctldentity 70.0’.” Then, the polymerase kinetics data
were loaded by loadChemistry.py and loadPulses scripts
with “-metrics DeletionQV, IPD, InsertionQV, PulseWidth,
QualityValue, MergeQV, SubstitutionQV, DeletionTag.” Finally,
the aligned datasets were sorted using cmph5tools, and 6mA sites
were detected using ipdSummary.py script with “-methylFraction
-identify 6mA -numWorkers 4.” Then we retained 6mA sites with
more than 25-fold coverage for further analysis.

Bioinformatics Analysis

For the profiling of 6mA in genomics features, we obtained the
genome-wide methylation rate of adenine sites by calculating the
mean of 6mA sites from all adenine sites. The genome-wide 6mA
profiling across all chromosomes of H. sapiens, D. melanogaster,
C. elegans, and A. thaliana were generated by using Circos
(Krzywinski et al., 2009). For each 6mA modification site, we
extracted 4 bp from the upstream and downstream sequences of
the 6mA modification site as described in literature (Liang et al.,
2018). The DREME was then used to predict conserved motifs
in the flanking regions (Bailey, 2011). Besides, we used R 3.6.1 to
perform the statistical analysis and figures drawing in this study.

Non-coding RNA Genes Analysis

According to the annotation file (gff format) of the reference
genome for each species, we divided genes into protein-coding
genes, IncRNA, miRNA, snRNA, tRNA, and rRNA genes by
using in-house shell scripts. The paired comparison analysis
that compared the 6mA density (6mA/A) between ncRNA
genes and protein-coding genes were tested by Student’s -test.
Furthermore, the IncRNA genes and protein-coding genes were
divided into three and four groups, respectively, regarding to the
gene length. Then, we analyzed the 6mA density of each gene
length group and carried on F-test and Duncan multiple-range
test after F-test was significant in any two groups.

'https://www.pacb.com/products-and-services/analytical-software/epigenetics/
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RNA-Seq Analysis

To explore the relationship between 6mA modification and gene
expression in protein-coding genes and ncRNA, the clean RNA-
seq reads were aligned to the reference genome using STAR
(Dobin and Gingeras, 2015). The gene expression was calculated
by Cufflinks (Trapnell et al., 2010) and the fragments per kilobase
of transcript per million mapped reads (FPKM) was used to
represent the gene expression abundance. The gene expression
comparison between 6mA-methylated genes and -unmethylated
genes was analyzed and tested by Student’s ¢-test.

RESULTS

The Overview Characterization of 6mA in

Four Species
Collecting and analyzing the raw SMRT sequencing data
of four species, we detected 75,630, 17,437, 18,226 and
1,439,519 6mA modification sites in A. thaliana, C. elegans,
D. melanogaster, and H. sapiens, respectively (Table 1 and
Supplementary Data Sheet S1). The 6mA density which refers to
the number of adenines with 6mA methylation over all adenines
(6mA/A) ranged from 0.023% in D. melanogaster to 0.099% in
A. thaliana (Table 1). The 6mA density in A. thaliana genome
was 0.099% and the chromosome 2 had the highest 6mA density
0.112% (Supplementary Figure S1A). In C. elegans genome, the
density was 0.027% and chromosome 1 was with the high density
0.030% (Supplementary Figure S1B). In D. melanogaster, the
gDNA density was 0.023% and the chromosome X had a high
density of 0.029% (Supplementary Figure S1C). As for human,
the 6mA density was 0.083% and chromosome 19 had the highest
density 0.117%. In contrast, the chromosome X and Y with 6mA
density 0.006 and 0.013%, respectively, which were remarkable
lower than other chromosomes (Figure 1A). In all four species,
the 6mA density in mitochondrial DNA was significantly higher
than other chromosomes (Figure 1 and Supplementary Figure
S1), and the 6mA density of chloroplast DNA was higher than
mitochondrial DNA in A. thaliana (Supplementary Figure S1A).
The distribution and modification level of 6mA sites in nuclear
DNA in four species was profiled and showed in circos plot
(Figure 1B and Supplementary Figure S2). According to the
methylation level, 6mA sites were divided into three groups:
low (0-30%, green ring), middle (30-70%, blue ring), and high
(70-100%, orange ring). And we further profiled the 6mA
density in each 50 kb bin in three 6mA methylation levels
groups. Compared with high modification level, the low and

TABLE 1 | Statistical overview of 6mA modification in genomic DNA of four
species.

Species Genome Total A 6mA 6mA
size (bp) number number ratio
A. thaliana 119,668,627 76,401,859 75,630 0.099%
C. elegans 100,286,401 64,745,154 17,437 0.027%
D. melanogaster 137,567,484 79,398,495 18,226 0.023%
H. sapiens 3,088,286,401  1,737,096,659 1,439,519 0.083%

middle modification levels were pervasively distributed in all
chromosomes in four species. Particularly, the 6mA density in
middle group was predominant which indicated the middle
6mA level was more variable across the genome in all species
(Figure 1B and Supplementary Figure S2). Additionally, in
human genome, the 6mA density of low and high modification
level in the sexual chromosomes was different from the autosomal
chromosomes (Figure 1B).

Consensus Motifs for 6mA in Four

Species

The consensus DNA sequence motifs of short nucleotides with
a probable biological function were widespread around 6mA
modification sites (Xiao et al., 2018). We extracted the upstream
and downstream 4 bp sequences to investigate the enriched
sequence motifs using DREME (Bailey, 2011) and further
compared the motifs pattern in four species genomes.

The most significantly enriched sequence motif AHNKA
was identified in A. thaliana and D. melanogaster (Figure 2),
which was also highly similar to the most enriched motif
ARHKA in C. elegans and the second enriched motif AMHGA
in H. sapiens (Figure 2). These motifs all contained two
conserved adenines at both ends (Figure 2). In addition, the
AGGT motif presented among the top three enriched motifs
in four species shared the consensus core AGG with the motif
sequence GAGG and AGGC (Figure 2 and Supplementary
Figure S3). Above results illustrated that the 6mA modification
in multicellular eukaryotes shared highly conserved sequence
of short nucleotides, and further verified the reliability of the
consensus motifs of 6mA sites.

The Distribution Pattern of 6mA in

Non-coding RNA Genes

To decode the 6mA distribution pattern of ncRNA genes,
we compared the ncRNA genes with protein-coding genes.
Interestingly, the percentage of 6mA-methylated ncRNA genes
was commonly smaller than protein-coding genes in four species
(p < 2.2e-16) (Figure 3A and Supplementary Data Sheet S2),
which may be correlated with the lower gene expression in
ncRNA genes. However, the 6mA density in tRNA, miRNA, and
snRNA gene was significantly higher than protein-coding genes
in four species (Supplementary Figure S4A and Supplementary
Data Sheet S3). For IncRNA genes, the 6mA density was
significantly higher than protein-coding genes except for human,
and the density in rRNA in C. elegans and H. sapiens was different
from protein-coding genes (Supplementary Figure S3A and
Supplementary Data Sheet S3). These results suggested that the
6mA modification could have specific function across ncRNA
and protein-coding genes.

We further detailed the 6mA modification distribution in
IncRNA and protein-coding genes. The IncRNA genes were
classified into three groups regarding to the gene length
(Supplementary Table S2). To ensure similar amounts of genes
in each group, three groups were divided by length <500, 500-
1000, and >1000 in A. thaliana, respectively. In C. elegans
and D. melanogaster, group 1, 2, and 3 represented gene

Frontiers in Genetics | www.frontiersin.org

March 2020 | Volume 11 | Article 268


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

Lietal. B6mA Modification in Non-coding RNA Genes

A
0.30+
0.254
)
o=
< 0.204
=
=
w
C
[
T 0.15+
<
S
«©
0104 .
0.05-
0.00-
rTrrrrrrrvrrrvrrrrrvrvrvrvvrrrriTrTTd
R 2T T eI o T oo NaNEEE
66556655 6655665566556500
chr20 chr21chr22
B ndd 2 o S0 3 Shry

o

by
N
&
d
? 4

]

Chrg 3 “_F;’ r gr_'_é !
chr7

% B
a J(.“‘ﬁ

FIGURE 1 | Distribution of N6-methyladenosine modification (6mA) in human genomic DNA. (A) Line diagram of 6mA modification density in human genomes.
(B) Circos plot of BmA in the human genome [green ring: lowly methylated (0-30%) 6mA; blue ring: moderately methylated (30-70%) 6mA; orange ring: highly
methylated (70-100%) 6mA].
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gene categories were shown in histogram. The numbers of BmA-methylated genes in different categories were shown above the histogram. (B) The 6mA density of
different INcCRNA gene length groups was shown in boxplot. The different letters shown above the box meant the significant difference in Duncan multiple-range test.

length < 1000, 1000-2000, >2000, respectively. In H. sapiens, and Supplementary Data Sheet S3). Meanwhile, we classified the
group 1, 2, and 3 were classified with length < 10,000, 10,000- protein-coding genes into four groups (Supplementary Table S2
20,000, >20,000, respectively. The difference of 6mA density and Supplementary Figure S4B). The results indicated that the
among different gene length groups was significant (Figure 3B  protein-coding genes were consistent with the IncRNA genes that
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the short genes tended to contain higher 6mA density in four
species (Figure 3B and Supplementary Figure S4B).

Correlation Between 6mA Methylation

and Gene Expression in IncRNA

To examine the relationship between 6mA modification and gene
expression in IncRNA, we categorized all IncRNA and protein-
coding genes into two groups: 6mA-methylated genes and
non-6mA methylated genes (Supplementary Data Sheet S4).
FPKM values of genes were calculated and compared between
two categories. The 6mA-methylated IncRNA genes expressed
lower than -unmethylated genes in all four species (Figure 4A).
The differences in A. thaliana (p = 3.295e-4), D. melanogaster
(p = 3.439¢-11), and H. sapiens (p = 9.087e-3) were significant
(Figure 4A). For protein-coding genes, the expression of 6mA-
methylated protein-coding genes was significantly higher than
-unmethylated genes (p < 2.2e-16) in H. sapiens (Figure 4B),
which was consistent with previous study (Xiao et al., 2018).
However, the opposite trend was observed in A. thaliana
(p = 6.074e-15) and D. melanogaster (p < 2.2e-16) (Figure 4B)
that 6mA-metyalted genes expressed significantly lower than
-unmethylated genes, which was contrast to studies (Greer
et al., 2015; Liang et al., 2018). And there was no significant
difference between 6mA-methylated and unmethylated protein-
coding genes which was the same as IncRNA genes in C. elegans
(Figure 4). These results further indicated that 6mA modification
might have specific function across IncRNA and protein-coding
genes and illustrated that the correlation between 6mA and gene
expression in various organisms and different individuals in the
same organism was dynamical.

DISCUSSION

DNA 6mA modification had been characterized in several
eukaryotes in recent studies and was involved in regulating gene
expression (Liang et al., 2018; Xiao et al.,, 2018; Liu et al., 2019;

Luan et al, 2019). The aberrational transcription of non-
coding gene, as an important epigenetic control element, could
also exert a great impact on important biological processes
(Ling et al.,, 2013; Luo et al,, 2017; Gomez-Orte et al., 2019).
In this research, we first analyzed the 6mA modification
distribution in ncRNA and compared it with protein-coding
genes in model species included H. sapiens, D. melanogaster,
C. elegans, and A. thaliana. The mitochondria DNA had a
higher 6mA density than autosomal chromosomes in all four
species (Figure 1 and Supplementary Figure S1) which was
consist with previous study (Xiao et al., 2018). In addition,
the consensus motif of 6mA methylation was highly conserved
in four multicellular eukaryotic organisms (Figure 2). We
further found that 6mA-methylated genes expressed significantly
different from unmethylated genes except for C. elegans,
which implied that the 6mA might be pertaining to the gene
transcription (Figure 4). Importantly, the ncRNA gene was less
easily to be methylated than protein-coding gene (Figure 3A).
Furthermore, the 6mA density of methylated tRNA, snRNA,
and miRNA genes were significantly higher than protein-
coding genes (Supplementary Figure S4A). However, the 6mA
density in non-coding genes was commonly higher than protein-
coding genes.

The 6mA density of gDNA in A. thaliana (0.099%), C. elegans
(0.027%), D. melanogaster (0.023%), and H. sapiens (0.083%)
(Table 1) was different from previous studies A. thaliana
(~0.048%) (Liang et al., 2018), C. elegans (~0.7%) (Greer et al.,
2015), D. melanogaster (~0.07%) (Zhang et al., 2015), and
H. sapiens (~0.051%) (Xiao et al., 2018), which indicating that
6mA was dynamic in various tissues and development stages.
Although 6mA abundance varied in various species genomes,
the consensus motifs of short nucleotides at 6mA location were
highly conserved (Figure 2). The four species shared conserved
sequence of short nucleotides, such as AGG motif in 6mA
location, which suggested that the 6mA DNA methyltransferases
in multicellular eukaryotes might have conserved catalytic
functional domain.
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In human, the 6mA density of IncRNA was significantly
lower than protein-coding gene which was inconsistently
observed in other three species (Supplementary Figure
$3). We further investigated the FPKM values of 6mA-
methylated IncRNA and protein-coding genes and compared
them with -unmethylated genes through analyzing the RNA-
seq datasets from the same tissues in four species. For
IncRNA, the expression of 6mA-methylated IncRNA genes
was distinctly lower than -unmethylated genes in A. thaliana,
D. melanogaster, and H. sapiens, but the trend was not
observed in C. elegans (Figure 4B and Supplementary
Data Sheet S4). Considering the cases of C. elegans was
probably because of missing IncRNA annotations, and the
6mA-methylated IncRNA genes may correlate with gene
repression. For protein-coding genes, the methylated genes
expressed significantly higher than -unmethylated genes in
human (Figure 4B), but the contrast trend was observed in
A. thaliana and D. melanogaster. The correlation between 6mA
and protein-coding gene expression in different individuals
of the same organism and various organisms may be
dynamically regulated in different developmental conditions
(Liang et al., 2018).

The short protein-coding genes and IncRNA genes tended
to contain higher 6mA density in four species. To explore the
relationship between gene length and transcription regulation,
we performed correlation test between gene length and gene
expression in IncRNA and protein-coding genes. For IncRNA,
there was no significant correlation between gene length and
gene expression. For protein-coding genes, we found a weak
negative association between genes length and gene expression
in four species (A. thaliana: r = —0.016, p = 0.007, C. elegans:
r = —0.047, p = 3.159e—11, D. melanogaster: r = —0.022,
p = 0.009, and H. sapiens: r = —0.040, p = 1.356e—09), which
revealed gene length could affect the gene expression level
(Chiaromonte et al., 2003). In addition, the expression of both
IncRNA and protein-coding genes may be affected by multiple
factors such as various types of DNA methylation. Whether the
6mA modification plays a different role in IncRNA and protein-
coding genes in various organisms will be an interesting topic for
further investigation.

Due to the number of 6mA-methylated tRNA, rRNA,
miRNA, and snRNA genes were small and IncRNA was the
widely studied ncRNA, we detailed the 6mA distribution of
IncRNA and compared it with protein-coding genes in this
study. Although there is a lack of GO terms for IncRNA,
we analyzed the potential function of IncRNA in H. sapiens
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