Nucleic Acids Research, 2005, Vol. 33, No. 3 977-986
doi:10.1093/nar/gki241

HIV-1 integrase crosslinked oligomers are

active in vitro

Aurélie Faure, Christina Calmels, Cécile Desjobert, Michel Castroviejo,
Anne Caumont-Sarcos, Laura Tarrago-Litvak, Simon Litvak and Vincent Parissi*

CNRS UMR 5097, Université Victor Segalen Bordeaux 2, IFR 66 ‘Pathologies Infectieuses et Cancers’,

146 rue Léo Saignat, 33076 Bordeaux cedex, France

Received September 14, 2004; Revised December 2, 2004; Accepted January 23, 2005

ABSTRACT

The oligomeric state of active human immunodefi-
ciency virus type 1 (HIV-1) integrase (IN) has not
been clearly elucidated. We analyzed the activity of
the different purified oligomeric forms of recombinant
IN obtained after stabilization by platinum crosslink-
ing. The crosslinked tetramer isolated by gel chroma-
tography was able to catalyze the full-site integration
of the two viral LTR ends into a target DNA in vitro,
whereas the isolated dimeric form of the enzyme was
involved in the processing and integration of only one
viral end. Accurate concerted integration by IN tetra-
mers was confirmed by cloning and sequencing.
Kinetic studies of DNA-integrase complexes led us
to propose a model explaining the formation of an
active complex. Our data suggest that the tetrameric
IN bound to the viral DNA ends is the minimal complex
involved in the concerted integration of both LTRs
and should be the oligomeric form targeted by future
inhibitors.

INTRODUCTION

Integration of viral DNA into the host genome is a critical step
in HIV infection. Integrase (IN) is essential for viral replica-
tion and necessary and sufficient for the integration reaction
in vitro. The in vivo integration of linear retroviral DNA cata-
lyzed by integrase occurs by a concerted mechanism known as
full-site or two-ended integration. The insertion of viral DNA
is a process in which two catalytic reactions are performed
at each end of the viral genome: 3’-processing and strand
transfer. In vitro IN can efficiently perform both the 3'-
processing and the insertion of one viral extremity. The purified
recombinant enzyme also accurately reproduces concerted
integration, but the in vitro efficiency is still far below that
expected for integration in vivo.

Early reconstitution experiments using purified IN, a lin-
ear retrovirus-like DNA donor and a target DNA were
successful but yielded low levels of concerted integration
(1,2). The efficiency of full-site integration was significantly
increased later on by employing non-ionic detergent IN-
containing lysates of HIV-1 virions (3), but the proficiency
and reliability of the reaction vary with the various recon-
stitution systems (4). Although purified HIV-1 IN can per-
form full-site integration in vitro, retroviral proteins, such as
the nucleocapsid protein (NCp) (5), or factors, such as
HMGALI, belonging to cellular high mobility group proteins
have been shown to mediate efficient full-site integration
(6). The lack of these factors in in vitro integration assays
may account for the differences observed. Moreover,
deficient protein-folding or incorrect oligomerization of
purified IN may also prevent native assembly of complexes
with viral DNA ends, which is essential for full-site
integration (7,8).

The aim of our study was to determine whether efficiency of
the full-site integration activity is correlated with the oligo-
merization state of IN. For that purpose we stabilized the
multimeric structure of the enzyme by chemical crosslinking.
We determined the activity of the isolated different IN mono-
mers and multimers and observed that the cross-linked tetra-
meric form of IN is the minimal oligomer that is able to
perform full-site integration of a substrate carrying the two
LTRs.

MATERIALS AND METHODS
Bacteria and DNA

The Escherichia coli strain DH50. was used for plasmid amp-
lification. MC1060/P3 E.coli strain (Invitrogen) was used for
cloning the integration products. DNA was extracted and puri-
fied as previously described (9). The HIV-1 IN gene was
obtained from a cloned genomic provirus from a San Francisco
isolate (SF2) (10). The expression vector pHIVISF2IN was
derived from the yeast/E.coli shuttle plasmid pBS24.1 (11).
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Purification of IN

HIV-1 IN was expressed in yeast and purified as previously
described (12).

Gel filtration chromatography

Purified IN was diluted in 1 ml loading solution (50 mM
HEPES pH 7.5; 7 mM CHAPS; 1 mM DTT; 150 mM
NaCl; 0.1 mM EDTA) at a final concentration of 150 nM
and chromatographed through a Smart Superose 12
(Pharmacia-LKB) on the Ettan LC system. The void volume
was determined with blue dextran (>2000 kDa) and the col-
umn was calibrated with catalase (232 kDa), bovine serum
albumin (67 kDa), ovalbumin (43 kDa) and chymotrypsinogen
A (25 kDa) (Pharmacia). Proteins were eluted with a flow rate
of 0.04 ml/min and recorded by continuously monitoring the
absorbance at 280 nm. Prior to chromatography, samples were
centrifuged for 10 min at 10 000 rpm to remove large protein
aggregates. The protein composition of the pooled fractions
was confirmed by mass spectrometry.

Concerted integration DNA substrates

Both target and donor plasmids were kind gifts from Dr Karen
Moreau (Université Claude Bernard-Lyon I, France). The
target corresponds to the plasmid pBSK™ (Stratagene, La Jolla,
California) carrying the zeocin resistance encoding gene. The
donor substrate was obtained by cleavage of the pUC19supF
plasmid by Ndel giving a 294 bp DNA substrate that contained
the supF tRNA gene flanked by two pre-cleaved extremities
mimicking the 3’-processed U3 and U5 LTR sequences. The
DNA substrate without the LTR sequences was generated by
PCR using the pUC19-SupF plasmid as template and primers
A (5-TTGAGCGTCGATTTTTGTGAT-3') and B (5'-TACG-
TTGCCCGGATCCGGTCG-3'). The DNA substrate carrying
one LTR was obtained similarly, but primer A was replaced by
primer C (5- TATGCTAGAGATTTTCCACATTGAGCG-
TCGATTTTTGTGAT-3').

Integration reactions

(1) The concerted integration reaction conditions were similar
to those described in reference 13, except that no cellular
proteins were added and the HIV-1 system was used.
Briefly, purified HIV-1 IN (250 nM) was preincubated
with both the 5'-end-labeled donor DNA (10 ng) contain-
ing the 3’-processed U3 and U5 LTR sequences and the
target DNA plasmid pBSK™ (100 ng) at 0°C during 20 min
in atotal volume of 5 pl. Then the reaction mixture (20 mM
HEPES, pH 7.5; 10 mM DTT; 7.5 mM MgCl,; 10%
DMSO; 8% PEG) was added and the reaction continued
for 90 min. Incubation was stopped by adding a phenol/
isoamyl alcohol/chloroform mix (24/1/25 v/v/v). The aqu-
eous phase was loaded on a vertical 1% agarose gel in the
presence of 1% bromophenol blue and | mM EDTA. After
separation of the products the gel was treated with 5% TCA
for 20 min, dried and autoradiographied. IN activity was
quantified by scanning the bands using the NIH software.

(ii) The 3’ processing and strand transfer reactions were
performed as described (8). All assays were performed
in 20 mM HEPES pH 8, 10 mM DTT, 7.5 mM MnCl,,
0.05% NP40 in a total volume of 20 ul. The reaction

mixture was incubated at 37°C for 1 h in the presence
of IN (I-5 pmol) and radiolabeled oligonucleotides
(1 pmol) and the incubation was stopped by adding 10 pul
of loading buffer (95% formamide, 20 mM EDTA, 0.05%
bromophenol blue) and heating at 90°C for 5 min. The
reaction products were analyzed by electrophoresis on
15% polyacrylamide gels with 7 M urea in Tris-borate-
EDTA (TBE) pH 7.6 and autoradiographied. The sequence
of the ODNs used to perform the processing and strand
transfer assays were the following: ODN 70: 5GTGTGG-
GTGTGGAAAATCTCTAGCAGT3',ODN 71: 5’'GTGT-
GGAAAATCTCTAGCA3', ODN 72: 5’ACTGCTAGA-
GATTTTCCACAC3'. To perform the 3’ processing assay,
the 5’ radiolabeled ODN 70 hybridized to ODN 72 was
used as a substrate while the 5’ radiolabeled ODN 71 hybri-
dized to ODN 72 was used as a substrate in the strand
transfer reaction. All IN activities were quantified by scan-
ning of the bands after gel electrophoresis and autoradio-
graphy using the NIH software.

Cloning and sequencing of integration products

After concerted integration the products were purified on a
DNA purification system column (Promega) as described by
the supplier and then introduced into a MC1060/P3 E.coli
strain, which contained ampicillin, tetracycline and kanamy-
cin resistance genes. Both ampicillin and tetracycline resist-
ance genes carry an amb mutation. These proteins are thus
expressed only in the presence of the supF gene products.
Integration clones carrying both zeocin-resistant and supF
genes were therefore selected in the presence of 40 pg/ml
ampicillin, 10 pg/ml tetracycline, 15 pg/ml kanamycin and
25 pg/ml zeocin. Plasmids were isolated from quadruple-
resistant colonies and donor—acceptor DNA junctions were
checked by polymerase chain reaction-based sequencing
(ABI Prism big dye terminator cycle sequencing ready
reaction kit, Applied Biosystems) using the Ujz primer
(5-TATGGAAGGGCTAATTCACT-3') and the Us primer
(5-TATGCTAGAGATTTTCCACA-3).

Chemical crosslinking

Highly purified IN (5 pmol) was incubated alone or with
radiolabeled ODNs (1 pmol) in the presence of 300 uM
cis-aquahydroxydiamino-platinum (AHDAP), 0.05% NP40,
0.5 M Mg acetate, 10 mM DTT, 20 mM HEPES pH 7.5 at
37°C in the dark in a final volume of 10 pl. The platinum
derivative was prepared as described before (14). The reaction
was stopped by eliminating the excess of AHDAP after
crosslinking by elution through a G25 MicroSpin column
(Amersham).

RESULTS

Recombinant HIV-1 IN purified from yeast can
perform in vitro full-site integration

To determine whether the yeast recombinant IN was able to
catalyze the in vitro concerted integration reaction, the purified
enzyme was assayed as described in the Material and Methods
section. The donor—target products were visualized by agarose
gel electrophoresis using radioactively labeled donors. As our



recombinant HIV-1 IN was not able to catalyze concerted
integration from a blunt ended DNA substrate, we used a
two LTRs pre-cleaved substrate mimicking the 3’ processed
viral DNA and carrying 18 bp from U3 and U5 along with a
two bases overgang TA at each 5’end (Figure 1A). This shows
that this enzyme was less efficient for performing the whole
integration reaction than the purified preintegration complex
(PIC) or INs from other retroviral sources (3,13).

Various integration products were obtained in the presence
of the recombinant enzyme [Figure 1A, lane (+)]. Restriction
analyses were performed to assess the nature of the products
(data not shown). Form I comprises circular molecules result-
ing from the integration of one LTR (one-site or non-concerted
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integration, nCI) and of two LTRs (concerted integration, CI)
from the same donor into the receptor plasmid. Form II cor-
responds to linear full-site concerted integration products
of two LTRs from two donor molecules into the receptor
plasmid. The band termed SI (self-integration products) cor-
responds to integration of one-LTR DNA into another donor
molecule. Since form I includes the sum of different integra-
tion products (concerted and non-concerted) and all the linear
products found in form II may be considered as originating
from concerted integration, the latter form was considered as
representative of integration of two LTR into the target DNA.

Efficient integration was observed only in the presence of
high concentrations of PEG and DMSO, respectively 8%
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Figure 1. Concerted integration reaction catalyzed by yeast recombinant HIV-1 IN. (A) Gel analysis of the integration products. Reactions were performed in the
presence (+) or in absence (—) of 250 nM of IN. The target DNA is indicated as pBSK receptor plasmid. The donor DNA was 5’-end labeled. Products were submitted
to 1% agarose gel electrophoresis. nCI, CI: respectively non-concerted and concerted full-site integration products. SI: Self-integration products. M: Markers (base
pairs). The structure of the expected products are also described in this figure. (B) Effect of reaction conditions on the integration reaction catalyzed by recombinant
HIV-1 IN. For each condition one parameter was changed independently (MgCl, or MnCl, concentration, presence of DMSO or PEG). The percentage of the total
integrated substrate was reported on the graph. Results are the mean +/— SD of three separate experiments.
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Table 1. Sequence analysis of donor—target junctions from clones produced by
wild type IN

Total number of clones 20
Number of sequenced clones 20
Duplications with 5 bp 12
Other duplications

3 bp 3
4 bp 3
Deletions 2

Total integration products obtained in Figure 1 by wild type IN were introduced
in MC1061/P3 E.coli strain and the plasmid DNA from the isolated clones was
purified and sequenced as described in the Materials and Methods section.

and 15% (w/v) (Figure 1B). The preferred cation was Mg*™"
(optimum at 7.5 mM). Gel analysis permits quantification of
global integration efficiency but does not make it possible to
distinguish one-site insertion from the concerted integration
products. To address this issue, integration products can be
cloned into MC1061/P3 E.coli that contains drug resistance
markers with amber mutations. Only DNA products carrying
the amber mutation suppressor gene (supF) should be able to
replicate and form colonies under drug selection. Thus, only
the circular concerted integrated products corresponding to
form I should replicate in bacteria. Total products from the
integration reaction described in Figure 1 were cloned in
MC1061/P3 bacteria and 20 resistant clones were selected.
In contrast, no colonies were selected when the integration
reaction was performed using an inactive IN that exhibits the
DI116A mutation. We sequenced the donor DNA-acceptor
plasmid junctions of the isolated integration products to
check the accuracy of the integration reaction (duplication
of short acceptor DNA sequence). As reported in Table 1,
of 20 clones, 12 exhibited a target DNA duplication of 5 bp,
the hallmark of HIV-1 IN in vivo integration activity, 6 clones
showed a duplication of different sizes and 2 clones carried a
short deletion of the target DNA. These results indicate that
INs purified from yeast shares the same in vitro characteristics
as other recombinant INs obtained from bacteria (15,16).

Although the level of concerted integration obtained with
recombinant IN was similar to that described before, max-
imum activity corresponded to <10% of the total substrate
integrated which is a relatively low figure compared to the
activity obtained with lyzed virions (3). This could be due to:
(1) a need for auxiliary, viral or cellular proteins that are absent
from the in vitro preparation; (ii) differences between the
specific activities of virion and recombinant integrases and
(ii1) inefficient folding or oligomerization of the enzyme.
We investigated this by studying the possible link between
IN multimerization and its in vitro integration activity and the
in vitro activity of pre-stabilized IN oligomers.

Purification of the integrase oligomeric forms

To address the question of the enzymatic activity versus the
oligomerization state of HIV-1 IN, the enzyme was cross-
linked to form stable multimers. The chemical crosslinking
agent used was cis-aquahydroxydiamino platinum. This
technique allows the formation of covalent bonds between
platinum and the potential acceptors on proteins and nucleic

acids, mainly the sulfur-containing groups of cysteine or
methionine residues, the imidazole rings in histidine residues,
and the N group of guanine, adenine and cytosine (17).

IN was treated with AHDAP for different lengths of time
and chromatographed through a Superose 12 gel filtration
column. The elution profile of the different forms of IN
was checked with known molecular weight protein markers
(Figure 2A). Before the crosslinking treatment IN appeared
in solution mainly as a monomer—dimer equilibrium while
a lower but significant amount of tetramer was detected
(Figure 2A, 0 min) indicating that our yeast recombinant
IN has the same oligomeric structure in solution as recom-
binant bacterial IN (18,19). As expected, the time duration
of the crosslinking treatment increased the proportion of oli-
gomeric forms of the enzyme including tetramers of IN
(Figure 2A, 45 and 120 min). High molecular weight aggreg-
ates were eliminated through centrifugation before loading
onto the column.

To obtain stable oligomers we performed a 45-min incuba-
tion of IN in the presence of AHDAP and chromatographed
through the Superose column allowing sufficient separation in
order to isolate tetramers, dimers and monomers. Fractions
containing the different oligomeric forms of IN were collected
and their nature was checked by loading an aliquot of each
fraction onto a new Superose column. As reported in Figure 2B
the fractions migrated as expected from their corresponding
oligomeric size. The multimeric fractions were called INMo,
INDi and IN® respectively. Mass spectrometry analysis further
confirmed the presence of 90-95% of monomers, crosslinked
dimers and tetramers of IN in the corresponding pooled frac-
tions. The remaining 5—10% showed a mass weight lower than
the IN monomer and thus correspond probably to minor
degradation products.

Purified fractions of crosslinked IN oligomers were
obtained and stocked at sub-micromolar protein concentra-
tions (from 400 to 500 nM). Those concentrations were
maintained during all subsequent studies. Since under these
conditions wild type IN appears mainly as a monomer, as
described previously by time-resolved fluorescence aniso-
tropy (18), no re-association of the purified crosslinked
oligomers was expected to take place during further steps
of this study.

In vitro activities of oligomeric forms of integrase

The fractions were tested for concerted integration
(Figure 3A). We focused our interest on integration
products I and II since they are the most representative of
the physiological integration reaction. Interestingly, amongst
the crosslinked forms of IN, only the fraction containing
tetramers (lane IN™) was able to catalyze the formation of
the full-site concerted integration form II product. A control
with IN that was not crosslinked (lane INNC) showed that this
fraction was also able to perform the concerted integration
reaction in addition to non-concerted integration.

Integration products were further analyzed by cloning them
into bacteria. As reported in Figure 3B, a mean value of
25 clones were recovered from the cloning of the integration
products obtained with non-crosslinked IN and 70 with
crosslinked tetramers indicating a higher level of concerted
integration catalyzed by the tetramer of IN as compared with
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Figure 2. (A) Gel filtration chromatography of crosslinked HIV-1 IN. IN (150 pmol) was crosslinked for different lengths of time and products were loaded on a
Superose 12 column. Migration of the molecular weight markers is indicated. Monomers (Mo), dimers (Di) and tetramers (Te) of IN are indicated by comparison with
markers. The fractions containing monomers (INM°), dimers (INPY) and tetramers (IN™®) of IN were pooled and used to assay the IN activity. (B) Size of the IN
oligomers determined by gel filtration chromatography. 25 pl aliquots of the fractions INV°, INP' and IN™ obtained in A were chromatographed on a Superose
12 column under similar conditions. The elution position of each fraction was reported (shown as triangles) in this figure and compared to elution profile of known
molecular weight markers (shown as clubs in the figure): catalase (232 kDa), bovine serum albumin (67 kDa), ovalbumin (43 kDa) and chymotrypsinogen A (25 kDa).

the non-crosslinked protein. No clones were recovered from
the INM® and the INP! enzymes confirming that they were not
active. Although no form I products corresponding to INT®
were observed in the gel, bacterial clones of the tetrameric
form were isolated indicating that even when form I products
were undetected on agarose gel, they were actually present
confirming that this IN multimer performed a ‘true’ concerted
integration of a complete viral substrate.

In order to identify the structure of the integration products,
20 clones were isolated and sequenced for each condition
(Table 2). From the 20 clones obtained with non-
crosslinked IN, 11 exhibited a target DNA duplication of 5
bp as expected from HIV-1 IN activity, 6 exhibited a duplica-
tion comprising sizes from 3 to 6 bp and 3 exhibited a deletion
in the acceptor DNA. In sharp contrast, all the clones obtained
with products of the reaction catalyzed by the IN tetramers
exhibited the HIV-1 IN 5 bp duplication hallmark. This strik-
ing result strongly supports the idea that crosslinked IN
tetramers display a higher concerted integration activity
than non-crosslinked IN tetramers thereby suggesting the

involvement of the tetrameric forms in the physiological in-
tegration of both LTR viral ends in the infected cell.

The purified crosslinked oligomers of IN were also tested
using the one-LTR 3’-processing and one viral end strand
transfer substrates in the in vitro reactions (Figure 3C).
Both processing and strand transfer activities were detected
only with the dimeric form of IN. These results were similar to
those obtained with the non-crosslinked IN (compare lanes
INP! and INNC). Monomers and tetramers did not show an
3’-processing cleavage or strand transfer activities (lanes IN™°
and INT®).

Taken together these results show that the different
oligomeric forms of IN do not share the same in vitro catalytic
properties. Monomers were inactive for all specific IN
activities. Dimers were able to catalyze the 3’-processing
and the insertion of one LTR into a short target DNA, but
could not integrate viral extremities in the longer substrates
used for the concerted integration reaction. In contrast, the
full-site integration of both LTR extremities required at
least one tetramer.
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Table 2. Sequence analysis of donor—target junctions from clones produced by
non-crosslinked and crosslinked tetrameric IN

INNC INT®

Total number of clones 20 55
Number of sequenced clones 20 20
Duplications with 5 bp 11 20
Other duplications

3 bp 3

6 bp 3
Deletions 3 -

Total integration products obtained in Figure 3A were introduced in MC1061/P3
E. colistrain. Plasmid DNA from the selected clones was purified and sequenced
as described in Materials and Methods.

The in vitro requirements of the tetrameric form of
HIV-1 IN are less stringent concerning
non-physiological molecules

The requirement of high concentrations of non-physiological
molecules like PEG and DMSO to obtain efficient in vitro
integrations catalyzed by wild type INNC suggests that this
recombinant protein might need the presence of these agents
to attain a significant degree of activity. Thus, the role of PEG
and DMSO may be to overcome the lack of cellular factors or
the misfolding of the enzyme in vitro. To investigate this
hypothesis, we tested the effect of these compounds on the
full-site integration reaction catalyzed with the purified IN™®.

As shown in Figure 4, concerted integration was observed with
INTe, even in the absence of DMSO, under conditions where
INNC showed no concerted integration activity, while the pres-
ence of PEG was still needed by the tetrameric form to perform
this reaction.

These results indicate that: (i) the tetrameric form of IN
possesses biochemical properties closer to the enzyme found
in the infected cell than to the native non-crosslinked IN pre-
paration and (ii) DMSO could compensate for deficient oli-
gomerization of the non-crosslinked IN required for efficient
in vitro integration. In contrast, PEG may act directly on the
integration process most probably via a molecular crowding
effect.

Oligomeric state of the integrase bound to DNA

The oligomeric state of HIV-1 can be affected by the presence
of DNA (19). Thus, we used the crosslinking approach to
analyze the oligomeric forms of the enzyme bound to different
DNA substrates.

Three 294 bp labeled DNA oligonucleotides carrying one-,
two- or no LTR ends were crosslinked to IN for different
times. The products were subjected to DNase I treatment,
in order to eliminate non-IN-protected DNA tails and to dis-
tinguish between monomers and higher oligomeric forms of
IN bound to the oligonucleotide. The labeled crosslinked com-
plexes were visualized by SDS-PAGE and autoradiography
(Figure 5). Different IN-DNA complexes were observed
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depending on the substrate DNA. High molecular weight mul-
timeric products unable to enter the gel were obtained when IN
was crosslinked to the DNA oligonucleotide without a viral
sequence (Figure SA). In contrast, the crosslink of IN to DNAs
carrying one or two LTRs led to the formation of intermediary
products corresponding in size to oligomers of IN bound to
DNA (as determined by comparison with protein markers).
With the ODN carrying one-LTR, two crosslinked products
were detected prior to the formation of high-order complexes
(Figure 5B). The first band, termed (a), which presents a size
that corresponds to a monomer of IN, was observed before the
formation of the second IN-DNA complex, termed (b). The
results of the migration taken together with the DNase I treat-
ment suggest that band (b) migrates as a complex formed by a
dimer of IN bound to one-LTR viral extremity. When the two-
LTR oligonucleotide was used, the binding to IN was stronger,
as observed by the intensity of the bands (Figure 5C). In
addition to bands (a) and (b), band (c) corresponding to the
size of a tetramer of IN was detected. In a control performed
only with DNA and the crosslinking agent, only aggregates of
crosslinked material were obtained. No discrete bands such as
(a), (b) and (c) were present (data not shown). The activities of
isolated INM°, IN®" and IN™® were also analyzed by protein—
DNA crosslink. While INM© formed exclusively band (a) with
the single LTR substrate, IN®" and IN"® yielded high molecu-
lar weight aggregates (data not shown).

The kinetic analysis of the formation of different IN-DNA
complexes suggested that the presence of one LTR induces the
binding of monomers prior to the formation of IN dimers
bound to the DNA. In the presence of two LTRs, monomer
and dimer binding is increased, most probably due to the
possibility of binding to both LTR ends leading to the forma-
tion of a tetrameric IN-DNA complex. In the absence of LTR,
only a non-specific binding of DNA to IN leading to aggreg-
ates is observed. These results indicate that binding of DNA
induces IN oligomerization whose level depends on the pres-
ence of the specific LTR sequences.

DISCUSSION

Determination of the oligomeric state of physiologically active
IN is crucial to understand the retroviral integration reaction
mechanism and to modelize efficient inhibitors of the enzyme.

The activity of recombinant HIV-1 IN in solution is related to
an equilibrium between different oligomeric forms and
depends on the concentration of proteins, cations, detergent
and the presence of DNA substrate(s) (18-21). Previous stud-
ies have provided important data concerning the IN multimer-
ization process using dynamic approaches (18-20). The
crosslinking method used here allows the chemical stabiliza-
tion, further isolation and assay of specific oligomeric forms
of the protein. We isolated stable crosslinked oligomers and
tested their in vitro activities. Dimers of HIV-1 IN catalyzed
3/-processing and integration of only one LTR extremity,
while full integration of both viral extremities required at
least IN tetramers, suggesting that the reactions catalyzed
by IN could involve different enzyme quaternary structures.
A lower activity of the crosslinked enzyme when compared
with the native one was expected since a fraction of inactive
enzyme should result from the crosslinking reaction. We also
showed that crosslinked tetramers of IN lead to a higher per-
centage of integrated products bearing the HIV-1 IN hallmark
of 5 bp duplication when compared with non-crosslinked IN.
These data strongly suggest that this multimeric form of HIV-1
IN is the minimal active form involved in nuclear proviral
integration.

However, a surprising result was obtained with the tetra-
meric form: the enzyme was unable to perform the one-LTR
integration, in contrast to the ability of the dimeric form to
perform the reaction (Figure 3). One hypothesis to explain this
observation is that dimers bind only to one LTR, leading to
processing and strand transfer whereas the conformation of the
tetramers allow only the binding to two viral ends close to each
other. It could thus suggest that the structure of the isolated
dimer and the dimer involved in a tetrameric complex are
different. Alternatively, we cannot completely rule out the
possibility that the isolated tetramers were defective in the
single LTR processing assay due to an artifact of crosslink.

On the basis of complementation studies, the active form of
IN has been shown to be at least one dimer (22-24). Moreover,
the DNA binding ability of IN has been linked to oligomer-
ization (25). Stable complexes have been obtained between
DNA substrate carrying one-LTR extremity and IN monomers
and dimers (19). These studies did not rule out the possibility
that a higher order organization might be responsible for the
in vivo activity.
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Figure 5. SDS-PAGE analysis of crosslinked IN-DNA complexes. IN (5 pmol)
was preincubated with the 5’-end radiolabeled 294 bp DNA substrate (1 pmol)
carrying either no viral LTR (A), one viral LTR (B) or two viral LTRs sequences
(C) for 0 to 60 min (lanes O to 60) in the presence of AHDAP at 37°C (final
volume 20 pl). After 1 h of DNase 1 treatment, products were separated by
electrophoresis on 12% SDS-PAGE gel. The gel was then dried and autoradio-
graphed. The positions of bands a, b and ¢ were compared with the migration of
protein weight markers (BIO-RAD) submitted to electrophoresis under the
same conditions and reported in the right part of each gel. The migration front
of monomers, dimers and tetramers of IN obtained by crosslink of the enzyme
by AHDAP is also reported (stars in the figure).

Structural modeling makes it unlikely that a dimer may
mediate the concerted integration of both viral DNA ends
(26). The site of insertion on each strand of target DNA is
separated by 5 bp, corresponding to a distance of 15 A in the
helical B-form of DNA. The functional unit of IN should
therefore have two active sites separated by a spacing around
15 A. However, in the crystal structure of HIV-1 IN, the active
sites in the dimer are separated by more than 30 A. Assuming
that the dimer interface in crystals is maintained in the func-
tional IN multimer, at least one tetramer of the enzyme must be

required to fulfill the complete integration mechanism. Mod-
eling and biochemical experiments support this idea. Muta-
tions of amino acids involved in the interface of two HIV-1 IN
dimers leading to tetramers have a deleterious effect on in vitro
integration activity, without any detectable effect on partial
3'-processing (27).

HIV-1 IN is a member of a family of polynucleotidyl trans-
ferase enzymes sharing certain functional aspects and similar
topology. This family also includes other retroviral integrases,
bacteriophage Mu transposase, RuvC, E.coli RNase H and the
closely related RNase H domain of HIV-1 RT. Catalytically
active recombinant HIV-1 IN can exist in a dynamic equilib-
rium of monomers, dimers, tetramers and higher order species.
Numerous studies indicate that the enzyme functions as a
multimer, minimally a dimer. In the case of the avian retroviral
IN, it has been suggested that tetramer formation may be a pre-
requisite step during catalysis (28). By using presteady-state
active site titrations, it was shown that four IN protomers were
required for a single catalytic turnover. The volumetric deter-
mination of IN-DNA complexes as determined by atomic
force microscopy revealed substrate-induced assembly of a
tetramer (28). Moreover, avian IN mutants, in which tetramer
formation is altered, are less efficient at performing two-ended
concerted DNA integration (13). Tetramers and dimers have
been reported in Mu transposase. Analysis of the structure of
the stable intermediates in Mu transposition revealed that
recombination is catalyzed by a tetramer of Mu transposase
bound to the ends of the Mu DNA (29,30). Other transposases,
however, are dimeric (31). Structural studies have shown that
the Tn5 transposase complexed to DNA adopts a dimeric form.
Interestingly, comparison of the bacterial Tn5 transposase
dimer with the tetrameric structure of HIV-1 IN shows a
close resemblance (32).

Even if the tetramer of HIV-1 IN is required for the integ-
ration of both viral ends into cellular DNA, our data showed
that it may not be involved in all the integration steps. The
crosslinked tetramer is not active for 3’-viral end processing
in contrast to the IN dimer. This strongly suggests that a
sequential formation of different complexes, accompanied by
conformational changes as described previously (33-36), are
crucial for performing the whole integration reaction. Follow-
ing terminal cleavage of viral DNA, complexes are more
stable than those present at earlier reaction steps and probably
help to promote correct assembly and avoid reversal of this
reaction (37).

The chemical crosslink data illustrates the formation of a
stable complex between the two DNA LTRs and IN tetramers.
On the basis of data from the literature and our own results, we
propose a model of the formation of the DNA-IN complex
(Figure 6). IN monomers bind each LTR allowing the dimer-
ization of IN. The two dimers can perform 3’-processing of the
viral ends and can then interact together to form a tetramer
capable of integrating the two LTRs in the target DNA. In the
case of MLV virus it has been reported that mutations of one
DNA end inhibited processing of the other intact LTR wild
type end (38-39). This result suggests that the two viral ends
may be synapsed together before the processing reaction. IN
could thus engage both LTR ends before being active to cleave
either end. Taken together our results and these data suggest
that processing could also occur in an additional step of our
model between E and F and before formation of tetramers.
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Figure 6. Model for the in vitro formation of an active IN-DNA complex. HIV-
1 IN exists in solution as an equilibrium between monomers and dimers (A).
Each LTR extremity might bind to a correctly folded monomer (B), allowing
the correct dimerization of IN (C). The 3'-processing of each extremity might be
performed by dimers (D). Both dimers might interact together (E), forming a
tetramer ready to integrate the two LTRs in the target DNA (F). Black circles
indicate the 3/-processed viral ends.

Each dimer engaged with one LTR could interact with the
second viral end engaged with the second dimer forming a
complex able to catalyze the concerted 3'processing of each
viral LTR. Then remodelization of this complex could lead
to the formation of an active tetramer for integration of both
viral ends.

This model is in agreement with others obtained with dif-
ferent approaches (19,27). Mutagenesis studies of HIV-1 IN
performed recently in our laboratory confirmed the involve-
ment of different IN structures in the different integration
steps, leading to similar conclusions and to the proposal of
a complementary model (40). Crosslinked IN tetramers were
able to catalyze the two-LTR integration in vitro suggesting
that the two viral extremities could be joined in the absence of
a dimer intermediary.

The oligomeric association of IN in vivo is likely to be
governed by cellular proteins that might stabilize a tetrameric
organization of the enzyme. We have previously described the
involvement of the cellular chaperone HSP60 in the stabiliza-
tion of the active structure of IN (8). Such proteins, absent in
the in vitro integration assays used in this work, should play an
important role in the cellular integration process. The absence
of cellular proteins can explain the differences observed
between the in vitro IN biochemical characteristics and the
in vivo proviral integration conditions (cation preference,
DMSO and PEG requirements, etc.). In our crosslinking
experiments the lack of cellular factors could be compensated
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by the increased stability of the IN crosslinked oligomers.
While this work was under progress, the importance of cellular
proteins was elegantly demonstrated by results showing that
LEDGF/p75, a cellular protein able to interact strongly with
IN and found associated with HIV-1 IN in human cells, may be
involved in the formation of stable IN multimers (41).

In conclusion, we have isolated a minimal crosslinked act-
ive form of HIV-1 IN capable of catalyzing the in vitro con-
certed full-site integration and have identified it as a tetramer.
A significant fraction of the crosslinked tetramer is enzymat-
ically active in the concerted integration reaction and, thus,
could be used as a tool for determining the structure of the
active multimer of HIV-1 integrase and for identifying the
region of interaction between monomers in the active com-
plex. Identification of the monomer—monomer interaction
domains inside the crosslinked tetramer is underway in our
laboratory using isotopic exchange coupled with mass spec-
trometry. Data described here and experiments in progress will
provide the basis for the future modeling of ligands/inhibitors
of IN and should enlighten the reaction mechanism.
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