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Correspondence should be addressed to Keltoum Chahour; keltoumchahour@gmail.com

Received 18 September 2019; Revised 4 December 2019; Accepted 13 December 2019; Published 21 February 2020

Academic Editor: Reinoud Maex

Copyright © 2020 Keltoum Chahour et al. *is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Fractional flow reserve (FFR) has proved its efficiency in improving patient diagnosis. In this paper, we consider a 2D
reconstructed left coronary tree with two artificial lesions of different degrees.We use a generalized fluid model with a Carreau law
and use a coupled multidomain method to implement Windkessel boundary conditions at the outlets. We introduce our
methodology to quantify the virtual FFR and conduct several numerical experiments. We compare FFR results from the
Navier–Stokes model versus generalized flowmodel and forWindkessel versus traction-free outlet boundary conditions or mixed
outlet boundary conditions. We also investigate some sources of uncertainty that the FFR index might encounter during the
invasive procedure, in particular, the arbitrary position of the distal sensor.*e computational FFR results show that the degree of
stenosis is not enough to classify a lesion, while there is a good agreement between the Navier–Stokes model and the non-
Newtonian flow model adopted in classifying coronary lesions. Furthermore, we highlight that the lack of standardization while
making FFR measurement might be misleading regarding the significance of stenosis.

1. Introduction

*e coronary arteries are a common and important site
of the development of sclerotic lesions. *us, a detailed
hemodynamic evaluation of the flow and its spatial and
temporal distribution may give important insight to
understand the pathology. In this view, the fractional
flow reserve (FFR) plays a central role (see [1]). *e
fractional flow reserve (FFR) is an invasive measure that
consists in introducing a pressure wire to a diseased
artery to measure in vivo two values of blood pressure:
the aortic pressure, Paortic, and the pressure distal to a
lesion, Pdistal. *ese pressure values are then used to
calculate the FFR ratio. According to the value obtained,

the clinician decides whether the lesion is hemodynami-
cally significant (FFR lower than 0.80) or nonsignificant
(FFR higher than 0.80). In the case of a significant lesion, a
revascularization is necessary. In this case, a realistic
simulation of vascular blood flow inside the coronary ar-
teries can be a better alternative to the invasive FFR (see
[2–4]). On the one hand, a realistic blood flow simulation
requires the use of an adequate flow model. For instance,
Boujena et al. [5] presented a non-Newtonian flow model
adapted to describe blood flow in the presence of ath-
erosclerosis. Simulation in their paper was performed in
2D and 3D simplified geometries. On the other hand, the
choice of suitable boundary conditions is crucial. In our
previous paper [1], we presented a first virtual FFR
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estimation using the generalized fluid model in [5] and
conducted different simulations to study the impact of the
lesions parameters on the FFR value. However, we con-
sidered a simplified 2D geometry and reduced boundary
conditions. In this paper, the domain of simulation cor-
responds to a realistic diseased coronary tree with many
outlets. *us, we address a special concern to the boundary
condition model. In fact, the shape and the type of the
function at the inlet are determinant of the flow and
pressure patterns obtained in the domain. In the case where
the study aims at comparing the results to in vivo mea-
surements, the inlet boundary condition should be ade-
quately chosen. Many works explored the effect of the inlet
boundary condition; among them, Liu et al. [6] and Taylor
and Steinman [7] presented realistic forms of inlet
boundary condition in the case of coronary blood flow.
Concerning the outlet, the most common boundary con-
dition for blood flow corresponds to a constant pressure.
However, this choice is not realistic when it comes to
complex geometries, with many outlets. *e strategy of
resolution in this case consists in dividing the domain into
two parts: the upstream domain and the downstream
domain that includes the outlets. *e outlet boundary
conditions are defined in the downstream domain using an
appropriate model, usually based on an electrical analogy,
known as the Windkessel effect (see [8–10]). In the first
section, we give the essential elements for simulation: the
2D multistenotic domain defined using segmentation
techniques, the realistic flow model, and finally suitable
boundary conditions. In the second section, we present the
pressure and the flow distributions obtained for three
different outlet boundary conditions. Finally, in the last
section, we give an estimation of the fractional flow reserve
(FFR) for two lesions using the pressure pattern in the
stenotic coronary tree. *e FFR calculation is performed
using two different flow models: Navier–Stokes model and
the generalized flow model, and considering diverse outlet
boundary conditions.

2. Methods

2.1. Domain Definition: 2D Image Segmentation. In order to
create a realistic geometry for numerical simulation, we
started from a 2D patient-specific angiography. An en-
hancement technique was done before this image could be
segmented. In this phase, different filters were used to

improve the contrast of the original image (see [11]). *en,
opening/closing Matlab functions were used to extract a
black and white image that contains only the coronary tree in
which we are interested. It should be noticed that despite the
fact that the original angiography corresponds to a stenotic
coronary tree, due to the lower quality of the image and to
the small degree of stenosis, the lesion could not appear in
the black and white image. Since our aim in this paper is to
investigate the impact of the flow model and the boundary
conditions on the FFR, we introduced two different artificial
lesions in the coronary tree. *e first lesion corresponds to
68% stenosis and was drawn in the same location of the real
patient’s lesion. *e second lesion corresponds to 56%
stenosis and was drawn at the entrance of the longest branch
in the coronary tree.*is choice is justified by the purpose of
calculating the fractional flow reserve in the case of traction
free outlet boundary conditions. *e resulting 2D multi-
stenotic domain, the original extracted tree, and the original
angiography are given in Figure 1.

Starting from the new multistenotic coronary tree, the
segmentation and the meshing were performed later using a
homemade FreeFem++ code (see [12]).

2.2. Coronary Blood FlowModel. *e blood was assumed as
an incompressible, non-Newtonian viscous fluid obeying the
Carreau law with the viscosity shear rate relation given by

μ � μ∞ + μ0 − μ∞( 􏼁 1 +(λs(u))
2

􏼐 􏼑
(n− 1)/2

, (1)

where μ0 � 0.0456 Pa·s and μ∞ � 0.0032 Pa·s are the values
of the viscosity for the lowest and highest shear rates. *e
parameter values λ � 10.03 s and n � 0.344 are typical for the
Carreau law. *e shear rate s(u) is defined as follows:

(s(u))
2

� 2Du : Du � 2􏽘
i,j

(Du)ij(Du)ji, (2)

with

Du �
1
2
∇u + ∇T

u􏼐 􏼑. (3)

*e geometrical 2D domain Ωf is given in Figure 2. *e
time dependent two-dimensional generalized fluid equa-
tions presented in [5] were considered as the governing
equations in the tree domain Ωf:

ρf

zu

zt
+ ρf(u.∇)u − ∇.(2μ(s(u))Du) + ∇p � f, inΩf × 0, Tc( 􏼁,

∇.u � 0, inΩf × 0, Tc( 􏼁,

2μ(s(u))Du .n − pn � I, on Γin × 0, Tc( 􏼁,

u � 0, on Γl × 0, Tc( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)
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where u is the incompressible velocity and p is the pressure.
f is the external body force applied to the fluid. I is the

velocity function at the inlet that will be given in the next

paragraph. In the computations, the blood density ρf was
assumed to be constant at 1060Kg·m− 3. A no-slip condition
was applied to the velocities at the lumen wall, considered to
be inelastic and impermeable. A steady Stokes initial con-
dition, with a Poiseuille function at the inlet was imposed.
Tc corresponds to the duration of a cardiac cycle under
normal conditions; we took Tc � 0.8 s (corresponding to a
heart rate of 75 beats per minute).

2.3. Boundary Conditions: Inlet/Outlet. Since the processed
image treated corresponds to a left coronary artery, we
used sinusoidal functions to approach the inlet flow
distribution into the left coronary artery. *e shape of
this function is well known (see [6]). Considering that
Tsys is the period of systole, ts the start of the systolic
phase of the current cardiac cycle, and td the start of the
diastolic phase, this periodic function I(t) can be written
as follows:

I(t) �
Ip + I0 ∗ sin π ∗ t − ts( 􏼁/Tsys􏼐 􏼑, 0􏼐 􏼑, 0≤ t≤Tsys,

Ip + Ic ∗ sin π ∗ t − td( 􏼁/ Tc − Tsys􏼐 􏼑􏼐 􏼑, 0􏼐 􏼑, Tsys ≤ t≤Tc,

⎧⎪⎨

⎪⎩
(5)

where Ip � 10 cm/s represents the dominant flow, I0 �

10 cm/s, and Ic � 10 cm/s. Tsys is taken equal to 0.33 s. *e
remaining duration from the cardiac cycle corresponds
to a diastole. *e profile of this function is given in
Figure 3.

To assess the influence of outlet boundary conditions
on the pressure and flow fields, two different outlet
boundary conditions were utilized in this study: traction
free and a 2-element Windkessel model [9] to incorpo-
rate the resistant effect of the downstream bed. Indeed,
the coupled multidomain method was utilized, as de-
scribed in [9]. *e idea is to couple the solution at the

outflow boundaries of the computational domain of
simulation with the 2-element Windkessel model (cho-
sen in our case) to represent the downstream coronary
vascular network cut from the real domain. It should be
noticed that other so called lumped parameter models
can be used for the downstream bed like 1D- or 2D-based
impedance boundary conditions (see [9] or [10] for
further details).

To couple the values of u and p between the upstream
domain (extracted tree of interest) and the downstream
domain, we need to introduce the two operators:
M � [Mm, Mc

��→
] and H � [Hm, Hc

�→
]. M represents the

(a) (b)

56%

68%

(c)

Figure 1: (a) *e original angiography image (the coronary tree of interest is framed with red). (b) *e black and white original image.
(c) *e resulting multistenotic coronary tree.
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Figure 2: *e 2D geometry considered. Arrows indicate the isoline
orientation.
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traction while H represents the flow at each coronary outlet.
Each one of M and H is composed of a momentum and a
continuity operator, respectively.

For each coronary outlet, we define the operators M
and H by replacing the coronary outlet pressure P(t)

with the ordinary differential equation obtained from the
2-element Windkessel model. In our case, the same
model is used to represent all the outlets. *e variational
formulation of our problem in this case can be written as
follows:

ρf􏽚
Ωf

zu

zt
vdx +(Au, v) + ρfb(u, u, v) − 􏽚

Γout
v · Mm(u, p) + Hm(u, p)( 􏼁 · n

→ds

+􏽚
Γout

q · Mc

��→
(u, p) + Hc

�→
(u, p)􏼒 􏼓 · n

→ds � 􏽚
Γin

Ids, ∀v ∈ V,∀p ∈ P,

u(0) � u0, inΩf,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

with

(Au, v) � 􏽚
Ωf

2μ(s(u))Du : Dv dx,

b(u, v, w) � 􏽘
2

i,j�1
􏽚
Ωf

ui

zvj

zxi

wjdx.

(7)

*e expressions of the boxed terms representing the
downstream bed physics will be given in the next section.

2.3.1. Windkessel Model. Lumped parameter models were
originally derived by the physiologist Otto Frank in an article
published in 1899 [13] to describe the afterload of the heart
related to pumping blood through the arterial system, as
described in [9]. *e Windkessel model is based on an
electrical analogy where an arterial tree is assimilated to an
electric circuit. *e parameters of the components of the
circuit (resistances, capacitances, etc) correspond to the
properties of each branch. *e variables are the voltage at
every node and the current in each branch. In the context
of blood flowing in an arterial network, pressure plays the

role of voltage and flow rate the role of current. During a
cardiac cycle, a 2-element Windkessel model takes into
account the effect of arterial compliance and total pe-
ripheral resistance. In the electrical analogy, the arterial
compliance (C in cm3/mmHg) is represented as a ca-
pacitor with electric charge storage properties. Peripheral
resistance of the systemic arterial system (R in mmHg
s/cm3) is represented as an energy dissipating resistor. *e
flow of blood in the heart (Q(t) in cm3/s) is analogous to
that of current flowing in the circuit and the outlet blood
pressure (P(t) in mmHg) is modeled as a time-varying
electric potential. We also consider the downstream
intramyocardial pressure Pd: the pressure in the left
atrium. Figure 4 gives a schematic view of the represen-
tative circuit of the dynamics in each compartment of the
coronary tree. *e resulting differential equation can be
written as follows:

Q(t) �
P(t) − Pd(t)

R
+ C

d P − Pd( 􏼁(t)

dt
. (8)

Using the operators M and H, we couple the flow and
pressure at each coronary outlet between the upstream finite
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Figure 3: (a) Spline function approaching left coronary blood flow. (b) *e flow function prescribed at the inlet I(t).
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element model and the downstream Windkessel model. As
proved in [9], their expressions are obtained by solving the
ordinary differential equation given in equation (8).

􏽚
Γout

v · Mm(u, p) · n
→ds � − 􏽚

Γout
v · n

→
R􏽚
Γout

u · n
→ds + 􏽚

t

0

e− t− t1( )/δ
C

􏽚
Γout

u t1( 􏼁 · nds · dt1 + n
→

.τ. n
→

􏼠 􏼡ds + 􏽚
Γout

v · τ · n
→ds,

􏽚
Γout

v · Hm(u, p) · n
→ds � − 􏽚

Γout
v · n

→
P(0) − R􏽚

Γout
u(0). n

→dΓ − Pd(0)􏼠 􏼡e
− t/δ

+ Pd(t)􏼠 􏼡ds,

Mc

��→
(u, p) � u,

Hc

�→
(u, p) � 0

→
,

(9)

where δ � RC, R � 0.95, and C � 1.06.
We consider the same values of Windkessel parameters

for all outlets. *e downstream pressure Pd is also varying
in time. *e expression of Pd can be found by solving
analytically differential equation (8) considering a sim-
plified expression for Q(t), based on common learning of
the cardiac physiology. During diastole, when the ven-
tricules are relaxed, there is no blood flow in the aorta.
However, with ventricular contraction during systole,
blood is injected into the aorta and can be modeled as a
sinusoidal wave. In this work, we use the same approach as
in [8] to implement Pd(t) in the case of a 2-element
Windkessel model. *e velocity and pressure fields inside
the realistic computational domain were solved semi-im-
plicitly, due to the viscosity term with Carreau law in-
volving shear rate s(u). *e finite element method for the
resolution was implemented under FreeFem++. *e nu-
merical results obtained are presented in the next sections.

2.4. Fractional Flow Reserve (FFR). *e fractional flow re-
serve is crucial to quantify the hemodynamic severity of the
stenosis in the case of intermediate lesions, where the degree
of stenosis varies between 40% and 70% (see [14]). From a
clinical standpoint, this measure indicates the degree of
implication of stenosis in ischemia (a deficient supply of
oxygen to the myocardium).

Like presented in our previous paper [1], to measure the
fractional flow reserve (FFR) during the invasive test, the
operator crosses the coronary lesion with an FFR-specific
guide wire. *is guide wire is designed to record the cor-
onary arterial pressure beyond the lesion (Figure 5(a)). Once
the transducer is distal to the lesion (approximately 20mm),
a hyperemic stimulus is administered by injection through
the guiding catheter. *e maximal hyperemia should be
reached to avoid underestimating the value of FFR (see [15]).
*e mean arterial pressures from the pressure wire trans-
ducer Paortic and from the guide sensor Pdistal are then used to
calculate FFR ratio: FFR � Pdistal/Paortic (Figure 5(b)). *e
aortic pressure Paortic is the central blood pressure at the root
of the aorta, while the distal pressure Pdistal corresponds to

the pressure at the surface of the sensor (pressure wire in
Figure 5(a)). Both pressures given by the FFR instrument are
calculated as a temporal mean, over the cardiac cycle, of
pressures ps(t) captured at each frequency drop (see [1]).
*ese pressures can be written as follows:

P �
1
Tc

􏽚
Tc

0
ps(t)dt. (10)

An FFR value lower than 0.75 indicates a hemody-
namically significant lesion. An FFR value higher than 0.8
indicates a lesion that is not hemodynamically significant.
Values between 0.75 and 0.80 are critical. In this case, the
FFR is not a reliable element in clinical decision making.

Our objective is to give an estimation of the FFR for both
lesions in the diseased coronary tree using the pressure
distributions obtained. We aim at studying the effect of the
flow model and the outlet boundary conditions on the FFR
value.We consider two different flowmodels: Navier–Stokes
model versus the generalized flow model (presented in the
previous section), and three options for outlets boundary
conditions: Windkessel, traction-free outlets, and mixed
boundary conditions given in detail in the next section. We
assume that the 2D geometry for FFR measurements cor-
responds to a maximal vasodilation. In fact, a clinically
usable FFR value (to be compared to real FFR measure-
ments) is not our ultimate goal in this paper. We implement
an algorithm to compute a virtual FFR following the same
calculation strategy as used by the clinical FFR device, like in
[1]. At each time step, the aortic pressure Pa is calculated by
the mean pressure of the points at 1 cm from the inlet of the
coronary tree, in order to avoid all the transient effects at the
entrance.

*e distal pressure Pd is obtained at a distance of 1 cm
beyond each lesion on the sensor contour assimilated to a
disk with constant diameter. *e ratio between the sensor
diameter and the reference diameter of the branch is
Dsensor/Dref � 1/10, based on the common magnitude of the
sensor diameter that is 0.014″ � 0.35mm. It should be
noticed that the 2D disk is not virtual and is considered as an
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obstacle to the flow, in contrast to the virtual box for Pa

calculation. *e diagram in Figure 6 describes the approach.
At each cardiac cycle—and during five consecutive cardiac
cycles—a temporal mean pressure of Pa and Pd is per-
formed. *e ratio of these two pressures gives an FFR value
at each cardiac cycle.

3. Numerical Results

Simulations are performed using the finite element solver
FreeFem++, based on a semi-implicit time discretization
scheme. Fluid velocity and pressure are calculated at each
time step. *e time step used is δt � 5.10− 3 s and the du-
ration of a cardiac cycle is Tc � 0.8 s. Five consecutive
cardiac cycles were simulated to reach a periodic regime of
the flow. As for the spatial discretization, we use a 55353
elements mesh. To study the dependency of the solution on
the numerical mesh, we perform a mesh refinement con-
vergence study for FFR estimation. *e results from this
convergence study are presented in Table 1 in Section 4.1.

3.1. Comparison of Outlet Boundary Conditions. *e results
in Figure 7 give the flow (magnitude of velocity) and
pressure patterns into the stenotic coronary tree at the
peak diastole of the fifth cardiac cycle. *e same flow
model—non-Newtonian Navier–Stokes model—is used
for all simulations. However, three different outlet
boundary conditions were considered: firstly, we consid-
ered that all outlets correspond to a 2-element Windkessel
model. Secondly, we used a free traction boundary con-
dition for all the outlets. Finally, we introduced mixed

outlet boundary conditions where the longest stenotic
branch of the tree is considered as a traction-free outlet,
and the remaining three branches correspond to 2-element
Windkessel models with the same parameters.

We can see that the velocity and pressure fields have
approximately the same layout withWindkessel and traction-
free outlet boundary conditions even if the isovalues are
different. *is is due to the fact that in both cases, no one of
the outlets is advantageous compared to the others: resistive
effect or traction free in all exits, especially that the Wind-
kessel model adopted uses the same parameter values for all
outlets. In contrary, with mixed boundary conditions, the
longest branch is free while the remaining corresponds to a 2-
element Windkessel model. As a result, we observe lower
values of pressure in this branch and eventually higher values
of velocity which is completely intuitive.

3.2. Flow Distributions: Navier–Stokes Model vs. Non-
Newtonian Model. *e plots in Figure 8 give velocity fields
at different times of the cardiac cycle, in particular, at peak
systole and peak diastole. *e simulations were performed
with both flow models: Navier–Stokes model (Figures 8(b)
and 8(d)) and non-Newtonian fluid model (Figures 8(a) and
8(c)). *e same type of boundary conditions is considered
for all simulations: a 2-element Windkessel model for all
outlets.

Values of blood velocity vary from 2m/s to 19m/s, and
we can clearly observe that the values given by the
Navier–Stokes model are higher than those given by the
non-Newtonian flow model. *is is due to the viscosity
term that is constant in the Navier–Stokes model in

P(t), Q(t)

Pd(t) C R

Figure 4: Windkessel electrical analogy.

Pressure wire

(Pa)
100

50

0

(Pd)
100

50

0

(a) (b)

Figure 5: (a) Schema of the invasive FFR technique. (b) A typical example of FFR measurement. Automated calculation of FFR (yellow)

corresponds to the ratio of mean distal coronary pressure (green) to mean aortic pressure (red) during maximal hyperemia.
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56%
Pd2

68%
Pd1

Pa

Figure 6: FFR calculation. *e mutlistenotic coronary tree contains two lesions: 56% stenosis and 68% stenosis.

Table 1: FFR values for the second lesion at 5 different cardiac cycles, for different values of the mesh size.

N vertices Cycle N 1 2 3 4 5

1478 FFR 0.9803 0.93115 0.8538 0.9179 0.9203
FFRa 0.9803 0.9557 0.9217 0.9208 0.9207

1746 FFR 0.9792 0.9382 0.9128 0.9278 0.9505
FFRa 0.9792 0.9587 0.9434 0.9420 0.9417

2143 FFR 0.9824 0.9228 0.8644 0.9308 0.9111
FFRa 0.9824 0.9526 0.9232 0.9251 0.9223

2786 FFR 0.9795 0.9214 0.8777 0.9138 0.9221
FFRa 0.9795 0.9504 0.9262 0.9231 0.9229

3731 FFR 0.9819 0.9203 0.8180 0.9210 0.9143
FFRa 0.9819 0.9511 0.9067 0.9103 0.9111

5254 FFR 0.9759 0.9194 0.8037 0.9014 0.9101
FFRa 0.9759 0.9476 0.8996 0.9001 0.9021

7908 FFR 0.9790 0.9267 0.8305 0.9082 0.9106
FFRa 0.9790 0.9528 0.9120 0.9111 0.9110

13916 FFR 0.9724 0.9231 0.8251 0.9222 0.9172
FFRa 0.9724 0.9477 0.9068 0.9107 0.9120

30658 FFR 0.9619 0.9243 0.8278 0.9064 0.9036
FFRa 0.9619 0.9431 0.9046 0.9051 0.9048

51528 FFR 0.9608 0.9220 0.8271 0.8993 0.9013
FFRa 0.9608 0.9414 0.9033 0.9023 0.9021

*e same value of time step was adopted for all simulations dt � 5 × 10− 3. FFR is the value for the cardiac cycle while FFRa is the average FFR value.
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Figure 7: Continued.
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Figure 7: Velocity fields at peak diastole using generalized fluid model withWindkessel outlet BCs (a), free outlet BCs (c), and mixed outlet
BCs (e). Corresponding pressure fields: Windkessel outlet BCs (b), free outlet BCs (d), and mixed outlet BCs (f).
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Figure 8: Continued.
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contrary to the non-Newtonian fluid model where the
viscosity varies according to the Carreau law introduced in
Section 2.2.

*e results are well illustrating the difference between
Newtonian and non-Newtonian rheologies. In our case,
the non-Newtonian flow model is more adapted to
simulate the flow. Firstly because the vessels’ caliber in
coronary arteries is small comparing to the aorta for
example, for which Navier Stokes model is widely used. In
this case, we cannot neglect the non-Newtonian behav-
iour of blood that is composed not only of plasma (that
can be assimilated to a Newtonian fluid) but also of blood
cells that are the main factors behind blood viscosity.
More precisely, the frictions between them and against
the arterial wall are more important when the vessel’s
diameter is small.

We also observe from Figure 8 that the values of velocity
are higher at peak diastole than at peak systole for both
models. *e flow simply follows the profile given at the inlet
of the coronary tree, given in Section 2.3. Figure 9 corre-
sponds to velocity fields near stenosis and around the obstacle:
the sensor wire in this case assimilated to a disk in 2D. Shear
stresses are observed to be higher with the non-Newtonian
flow model than with the Navier–Stokes model. FFR values
obtained with both models are 0.76 with the Navier–Stokes
model vs. 0.747 with the non-Newtonian flow model. *e
difference between the value given by the two models is still
small which means that the lesions are classified in the same
value range: hemodynamically important.

4. Fractional Flow Reserve (FFR) Computation

*e lesions of interest have a degree of stenosis equal to 56%
and 68%, which makes them both in the intermediate value
range. *is justifies the necessity of a recourse to an esti-
mation of the fractional flow reserve in taking a clinical
decision. Table 2 gives the FFR values for these two lesions
using the Navier–Stokes model and the generalized flow
model and considering three different options for the outlet
boundary conditions: Windkessel model, traction-free

outlets, and mixed outlet boundary conditions where only
the longest branch is considered free while the other
branches’ outlets are assimilated to a 2-element Windkessel
model. *e FFR result in Table 2 corresponds to the average
FFR value over five cardiac cycles in each different case of
study.

*e model used for simulation is nonlinear, as shown in
equation (4). Moreover, the domain of simulation is not a
plane geometry but a curved boundary configuration, and
the finite element method used is standard (triangular el-
ements are not well adapted to curved domain in the op-
posite of isoparametric elements, for example, see [16, 20]).
As a result, the solution of our system is dependent on the
numerical mesh and the FFR estimation algorithm is sen-
sitive to the mesh discretization (as shown in Table 2). In this
case, the accuracy of the FFR estimation might be ques-
tioned. In order to study the sensitivity of the FFR value
computed, a mesh refinement convergence study is pre-
sented in the next section.*en, a discussion of the results in
Table 2 is provided in Section 4.2, based on the finer mesh
simulations.

4.1. Convergence Study. In this section, we lead a mesh
refinement study for FFR computation. We consider 10
different meshes, with a number of elements varying from
1478 to 51528. We use P2 element for velocity components
and P1 element for the pressure. For each finite element
space considered, the simulation was run during five con-
secutive cardiac cycles; we compute the FFR value and the
average FFR value FFRa over the previous cycles. We only
considered one lesion, that is, lesion 1 represented in Fig-
ure 6. *e time step dt � 5 × 10− 3 considered for all sim-
ulations was small enough so that the numerical stability of
the semi-implicit scheme is verified. For all simulations, we
use the non-Newtonian model for flow and the 2-element
Windkessel boundary condition for all outlets. *e main
results from this study are presented in Table 1.

We can observe from the results in Table 1 that from the
third cycle the FFR average FFRa is not subject to a big
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Figure 8: Velocity field using generalized fluid model at peak systole (a) and peak diastole (b). Velocity field using Navier–Stokes model at
peak systole (c) and peak diastole (d).
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change (two decimal places constant) for all the space
discretizations considered. We can see that for the two final
meshes, the FFRa value is not subject to a big change. *e
value of 0.90 can be adopted to make a clinical decision.
*is lack in the accuracy of the estimation can only affect
the lesions for which the FFR value obtained is close to the
clinical FFR cutoff. In general, for these special cases, the
practitioner resorts to the patient clinical history and to

some additional tests to decide for the strategy of treatment
(see [14]).

4.2. Discussion. *e flow model considered for simulations
is only slightly influencing the FFR value. For example,
considering the possible options for outlets boundary
conditions, the difference in the FFR between the
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Figure 9: Velocity distributions near stenosis with the two flowmodels at different times of the cardiac cycle. (a) Peak diastole—generalized
flow model. (c) Peak systole—generalized flow model. (b) Peak diastole—Navier–Stokes model. (d) Peak systole—Navier–Stokes model.

Table 2: FFR values for both lesions corresponding to the two flowmodels and the different outlet boundary conditions. Two different mesh
files were used for these calculations: coarse mesh (14240 elements) and fine mesh (55353 elements).

Mesh size Flow model Outflow BC FFR 1 FFR 2

Coarse mesh

Navier–Stokes
Windkessel 0.917 0.760
Free outlets 0.710 0.119
Mixed BC 0.717 0.885

Generalized flow
Windkessel 0.908 0.7478
Free outlets 0.698 0.106
Mixed BC 0.722 0.8567

Fine mesh

Navier–Stokes
Windkessel 0.9515 0.8205
Free outlets 0.8704 0.2459
Mixed BC 0.7172 0.9891

Generalized flow
Windkessel 0.9404 0.8039
Free outlets 0.8096 0.2082
Mixed BC 0.7229 0.9791
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Navier–Stokes model and the non-Newtonian flow model
does not exceed 2% where the outlets are not all traction
free. In the case of free outlets, the decrease in the FFR value
for the first lesion is quite surprising (cells in grey in the
table): up to 79% and 75%with the generalized fluid and the
Navier–Stokes models, respectively. In fact, there is a huge
pressure drop in the P(t) value since the distal sensor for
this lesion is not far enough from the free exit. On the
contrary, we do not have this problem with the second
lesion as the branch is long enough beyond the sensor. *is
shows that these types of boundary conditions are not
appropriate and not realistic to perform such calculation in
the coronary arteries, though their widespread use (see
[17]). Now, comparing Windkessel and mixed boundary
conditions, we can see that the first lesion conserves the
same FFR classification—hemodynamically non sig-
nificant—while the second lesion moves from the non
significant stenosis class to the significant one. *ese same
classifications are conserved with both flow models.
Considering the fact that the first lesion has an important
degree of stenosis (68%) while the second one is a 56%
lesion, this result confirms that the FFR value is not only
depending on the degree of stenosis which renders a
physical severity of the lesion but also on the hemody-
namical flow inside the connected tree, strongly impacted
by the flow model and the nature of boundary conditions
(inlet and especially outlet boundary conditions).

5. Quantification of the Sensor Position
Impact on the FFR Value

5.1. Sensor Position: Effect on the Virtual FFR. FFR measure,
as explained previously, uses pressure sensor-tipped
intracoronary wires to quantify the transtenotic pressure
gradient Pd. In this section, we aim to study the error
induced by the deviation of the sensor from its position of
origin that is in general defined at the center of the branch
cross section (see Figure 10).

*e mean value of the distal pressure Pd is measured
using the sensor’s contour points at each time step. In this
2D study, we consider only two sources of error, that is,
sensor displacement along the flow direction (vector T)
and along the normal to flow direction (vector N) (see
Figure 10).

*e common value for FFR sensors diameter is 0.014
inches, which corresponds to 0.35mm. *e same size of
FFR sensors is used in almost all clinical centers for
standardization reasons, which is why the sensor’s probe
size was not considered as a source of error.

We incorporate a 2D disk in a position of reference
inside the coronary tree, given in Figure 10. We consider
that this position is subject to variation due to the ran-
domized aspect of the clinical intervention: the practi-
tioner is not very precise as to the sensor position and two
different practitioners can adopt two different sensor’s
positions for the test, which may modify the FFR value.*e
sensor’s position can also vary due to the flow during the
measure. Figure 10 shows how the sensor position can vary
in the normal and tangential directions. *e disk diameter

is considered constant, and the ratio between the sensor
diameter and the reference diameter of the branch is
Dsensor/Dref � 1/10.

*e aortic pressure Pa is calculated virtually at 1 cm from
the entrance of themain branch of the arterial tree. In order to
quantify the effect of the flow model and the outlet boundary
conditions on the FFR value in presence of the distal sensor,
we conducted different simulations. On the one hand, we
compared the Navier–Stokes model and the generalized
flow model. On the other hand, a comparison between
traction-free outlet boundary conditions and the Wind-
kessel model is presented. From the two artificial lesions
introduced in the previous sections, only one was con-
sidered for each study.

5.2. FFR Variation Corresponding to Both Directions. *e
following graphics in Figure 11 illustrate the variations in
the FFR value for the fixed 68% stenotic lesion. In each
simulation, a different position of the sensor is considered.
Figure 11(a) represents a variation of the FFR value
according to the normal to flow direction N (see Figure 10),
and the tangential coordinate is fixed while the normal
varies from − 3/10 × Dref to 3/10 × Dref . Dref is the diameter
of reference of the stenotic branch. Figure 11(b) represents
the variation of the FFR value according to the flow di-
rection T (Figure 10). *e normal coordinate is fixed to the
center of the branch while the tangential varies from
− 6/10 × Dref to 6/10 × Dref . For each position of the sensor,
two simulations are run: one with the Navier–Stokes model
and the other with the non-Newtonian flow model, to
obtain two values of the virtual FFR, represented, re-
spectively, in the blue and red curves (Figure 11). *e same
space discretization is used for all simulations, based on a
55353 elements mesh file. In the two figures, a grey area is
drawn to represent the critical zone for FFR values, and the
cutoff considered in this case is 0.75. We can see that with
the two models, for each new positions of the sensor, the
virtual FFR illustrates important variations. With the
Navier–Stokes model (blue curve), the lesion was classified
in the same value range for all the positions of the distal
sensor: not hemodynamically significant. On the contrary,

T

Fixed 68% stenosis lesion

Variable sensor position

N

Figure 10: Distal sensor displacement according to the normal and
tangential positions.
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with the generalized flow model, 8/26 positions of the
distal sensor classified the lesion to be hemodynamically
significant while the remaining positions gave the
opposite conclusion. In all simulations, the same model for
boundary conditions was considered: a 2-element Wind-
kessel model as introduced in Section 2.

*e graphics from Figure 12 illustrate the effect of
boundary conditions on the virtual FFR computed. *ese
simulations combine in each time a different flow model:

Navier Stokes vs. non-Newtonian flow model and different
boundary conditions: Windkessel model vs. free outlets
BC, though this last choice is not very realistic, as proved
by the results in Table 2. *e FFR values represented in
Figure 12 correspond to the 56% stenotic lesion, given in
Figure 6.

*e main reason to adopt a different lesion in this case is
the fact that this last is positioned at the entrance of the
branch and that this branch is long enough to keep the distal
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Figure 11: (a) Comparison between FFR values for Navier–Stokes model and non-Newtonian flowmodel obtained by moving the sensor in
the normal direction. (b) Comparison between FFR values for Navier–Stokes model and non-Newtonian flow model obtained by moving
the sensor in the tangential direction. *e grey area represents critical FFR values.
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Figure 12: (a) Comparison between FFR values for Navier–Stokes model and non-Newtonian flow model combined with free outlets or
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sensor far from the exit. *is condition is not verified in the
first lesion. Otherwise, we obtain an important pressure drop
when free outlet boundary conditions are considered. We
can see from the curves that for both flow models and for
sensor’s displacement in both directions, the lesion is
classified nonsignificant if the outlet boundary conditions
are Windkessel: virtual FFR beyond 0.85. However, this
lesion becomes significant when considering free outlet
boundary conditions: virtual FFR under 0.75.

*is first 2D approach is adopted to illustrate the var-
iability of the computed FFR due to the eventual pertur-
bations in the distal sensor’s position which make it possible
to obtain two contradictory clinical conclusions for the same
lesion if the circumstances of the FFR intervention are
different. *is arbitrary position of the distal sensor can be
in the origin of drift that is unavoidable during FFR
measurement.

6. Conclusions and Perspectives

In this work, we calculated the fractional flow reserve (FFR)
corresponding to a multistenotic patient-specific coronary
tree. *e two lesions of interest were not present in the
original angiography but were artificially incorporated inside
the vascular tree. *us, the used geometry is sufficiently re-
alistic to represent important features of the flow in a real
diseased coronary tree. *e two intermediate lesions of in-
terest have degrees of stenosis of 68% and 56%.*e strategy of
FFR computation was based on a stabilized semi-implicit time
discretization scheme of the nonlinear problem, using tri-
angular elements. A sensitivity study was performed to study
FFR sensitivity to mesh discretization. *e FFR classification
for these two lesions was not influenced by the flow model
adopted for the simulation even if the FFR values were slightly
different between the Navier–Stokes model and the non-
Newtonian flow model. However, according to the chosen
option for outlet boundary conditions, we could obtain
different lesions classifications. Based on the finer mesh
simulations, the second lesionmoved from the insignificant to
the significant value range stenosis. We can summarize the
following conclusions:

(i) *ere is a good agreement between the Navier–
Stokes model and the non-Newtonian flowmodel in
simulating coronary blood flow and thus in clas-
sifying coronary lesions if the fluid parameters are
carefully chosen (see [18]).

(ii) Traction-free outlet boundary conditions are not
realistic to consider for FFR computation, since
they are sensitive to the FFR sensor position.
Moreover, they do not reproduce the dynamics of
the coronary downstream bed, which is in general
removed from the geometry (opposite to Wind-
kessel model or other lumped parameter models,
see [9, 10]).

(iii) *e study confirms the fact that the degree of ste-
nosis is not enough to quantify the severity of a
lesion (see [19]). In our case, the two considered
lesions had different classifications each time outlet
boundary conditions were modified.

Our aim was to place emphasis on the sensitivity of
virtual FFR calculations and flow features in coronary ar-
teries to the physical model, the boundary conditions, and
the space discretization as well, keeping out of scope the
important purpose of validating virtual FFR against clinical
data. Indeed, the FFR value issued from a 2D simulation
cannot be directly compared to the real invasive FFR, since a
2D angiography-based reconstruction of the coronary tree is
not the best representation of the physiological domain. As a
result, one perspective to this work is the reproduction of the
coronary blood flow into a 3D geometry (see [20]). During
FFR invasive measurement, many undesirable effects can
occur during the procedure, leading to a drift in the value of
the index. In this chapter, we aimed to illustrate one of these
effects through the uncertainty in the pressure distal sensor’s
position. Using a 2D modelling of the FFR measurement
scenario with a similar computation strategy to the clinical
device, we could demonstrate only by simulation that for the
same lesion we can have different medical conclusions. We
conducted different simulations using two fluid models for
blood, Navier–Stokes model and non-Newtonian model,
and different outlet boundary conditions: Windkessel vs.
free outlets. All the considered cases in 2D showed that FFR
value is subject to small changes that amplify depending on
the degree of stenosis, which affects the accuracy of the
measure. *e study presented in this work is an evident proof
that simulation is an essential key to explore all the eventual
sources of error that might occur during FFR test and that
might impact the accuracy of the measure. *e developed
methods can provide clinicians with powerful new tools,
rivaling and even surpassing experimental methods to in-
vestigate the mechanisms of disease and to design new
medical devices and therapeutic interventions.
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