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ABSTRACT: Revealing the tertiary structure of proteins holds
huge significance as it unveils their vital properties and functions.
These intricate three-dimensional configurations comprise diverse
interactions including ionic, hydrophobic, and disulfide forces. In
certain instances, these structures exhibit missing regions,
necessitating the reconstruction of specific segments, thereby
resulting in challenges in protein design, which encompasses loop
modeling, circular permutation, and interface prediction. To
address this problem, we present two pioneering models: pix2pix
generative adversarial network (GAN) and PLM-GAN. The
pix2pix GAN model is adept at generating and inpainting distance
matrices of protein structures, whereas the PLM-GAN model
incorporates residual blocks into the U-Net network of the GAN, building upon the foundation of the pix2pix GAN model. To
bolster the models’ performance, we introduce a novel loss function named the “missing to real regions loss” (LMTR) within the GAN
framework. Additionally, we introduce a distinctive approach of pairing two different distance matrices: one representing the native
protein structure and the other representing the same structure with a missing region that undergoes changes in each successive
epoch. Moreover, we extend the reconstruction of missing regions, encompassing up to 30 amino acids and increase the protein
length by 128 amino acids. The evaluation of our pix2pix GAN and PLM-GAN models on a random selection of natural proteins
(4ZCB, 3FJB, and 2REZ) demonstrated promising experimental results. Our models constitute significant contributions to
addressing intricate challenges in protein structure design. These contributions hold immense potential to propel advancements in
protein−protein interactions, drug design, and further innovations in protein engineering. Data, code, trained models, examples, and
measurements are available on https://github.com/mena01/PLM-GAN-A-Large-Scale-Protein-Loop-Modeling-Using-pix2pix-
GAN_.

■ INTRODUCTION
In the biological field, researchers are concerned with
understanding biological molecules and their functions. Many
molecules’ functions, especially those of proteins, depend on
their tertiary structures. Therefore, obtaining and under-
standing the tertiary structure of a protein have attracted
huge attention in many important fields, such as drug design,1

protein classification,2 gene function annotation,3 and
immunotherapy.4 Many methods are used to extract the
tertiary structures of proteins in the laboratory, such as X-ray
crystallography,5 nuclear magnetic resonance (NMR),6 and
cryogenic electron microscopy (cryo-EM),7 which can provide
high accuracy but consume a lot of time and many resources.
To overcome these restrictions, many methods have been
developed for protein structure prediction. In silico, there are
two main methods: ab initio and template-based.8 The first is
based on calculations of energy functions to predict the protein
structure from the amino acid sequence, but this method
becomes challenging when the number of amino acids (aa) is
more than 150 aa.9 The second is based on trying to find a
template structure based on alignments with a similar sequence

that can be found in various databases, such as Protein Data
Bank (PDB)10 and UniProt.11 In many instances, some small
regions of a protein structure are missing or need to be
remodeled, and this problem is known as loop modeling (other
names include interface prediction, circular permutation, and
inpainting protein structure). Inpainting these missing regions
is significant in determining the native protein structure,
function, and its dynamics. In,12 researchers utilized a self-
supervised learning approach on 700 million unlabeled
molecules, emphasizing the importance of extracting predictive
representations. They employed diverse model combinations
and an automated selection protocol, achieving superior
performance, particularly leveraging pretrained models. In,13

scientists trained a deep contextual language model on 250
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million protein sequences using unsupervised learning
techniques. Their emphasis lies in understanding biological
properties encoded in protein sequences, leading to
representations capturing intricate details. This work highlights
the potential of large-scale, unsupervised learning, particularly
in the context of pretrained models, in deciphering complex
biological information.
Recently in,14,15 the researchers have highlighted the

importance of protein inpainting in designing and predicting
proteins. In,16,17 the researchers introduced the first models
that depended on the generative adversarial network (GAN)
for inpainting the missing regions of the protein structure. The
models provided promising results but used small distance
matrices of the protein structures with the maximum length of
the protein being only 50 aa. In addition, the missing region
was constant and was restricted only to the middle of the
distance matrix. The maximum length of the missing region
was 12 aa. Finally, the models can generate only the missing
region. In ref 18, the researchers used an autoencoder and a
GAN to regenerate the distance matrix of a protein structure,
which had a length of 64 aa with a missing region from 5 to 20
aa. Also, in ref 19, Rosette’s research team developed the
RosettaRemodel model to inpaint the missing region based on
the energy score of the protein. However, RosettaRemodel
consumed a lot of time to generate just one structure. For
example, RosettaRemodel takes a mean of 20 min to generate a
structure of 64 aa protein on a node with 16 CPU cores.
Rosette’s research team developed the RFDesign,20 a state-of-
art model to solve a loop modeling problem. It achieved
impressive results, but it must run on a GPU RTX-2080 and
takes several cycles to obtain the result. RFDesign was
developed based on the RoseTTAFold model.
Latterly, the field of protein structure prediction has seen

remarkable advancements, with the introduction of ground-
breaking methods such as AlphaFold21 and AlphaFold2.22

AlphaFold, developed by DeepMind, has garnered significant
attention for its unprecedented accuracy in predicting protein
structures. This transformative development has reshaped the
landscape of structural biology and holds great promise for
various applications. In the context of this evolving field, our
research aims to complement and contribute to the ongoing
efforts in protein structure prediction. While AlphaFold
represents a pioneering approach, our work introduces a
novel methodology that combines Pix2Pix GANs and self-
supervised learning techniques to address the challenge of
modeling protein structures, particularly in regions with
missing data. By doing so, we seek to expand the repertoire
of tools available to researchers in this domain and provide an
alternative approach that may prove valuable in various
biological and biomedical applications.
In this paper, we introduce two models pix2pix GAN and

PLM-GAN to generate the missing regions of the protein
structure and preserve its original structural properties
(backbone, local, and distal characteristics), which will give
significant advancement in various applications, i.e., molecular
inpainting, protein−protein interaction,23 de novo protein
design,24 drug design,25 and molecular dynamics.26 PLM-GAN
is based on the pix2pix GAN network that we trained on PDB
data,10 which contains an assortment of protein structures with
various lengths of amino acids. We embedded residual blocks
in the generator network of the pix2pix GAN architecture to
enhance its performance.

To summarize, the central contributions of this work are as
follows:

1. Applying pix2pix GAN to generate and inpaint distance
matrix of protein structure.

2. Developing the PLM-GAN model to inpaint the missing
region in the protein’s tertiary structure. It was built by
integrating the residual blocks into the U-Net network of
the pix2pix GAN network.

3. Introducing the new loss function missing to real regions
(LMTR) in the pix2pix GAN loss functions to make PLM-
GAN.

4. Maximizing the length of the missing regions from 5 to
30 aa.

5. Pairing two different distance matrices (one of the native
protein structure and one of the same structure but with
a missing region that changes in each successive epoch).

■ PROPOSED METHODOLOGY
The GAN27 is a complex and significant network frequently
used in many fields, such as computer vision,28−30 natural
language processing (NLP),31 and cybersecurity.32 Also, it has
been used to generate protein structures that mimic the native
protein structures.18 To the best of our knowledge, our models
are the first models that apply the pix2pix GAN network in the
loop modeling problem.
Generative Adversarial Network. In brief, the GAN27

involves two neural networks that work together as
competitors to each other: generator and discriminator. The
generator G is the network that tries to generate protein
structures that mimic the natural protein structure and
attempts to fool the discriminator. The discriminator D is
the network in charge of differentiating between fake and real
proteins. The loss function of the GAN network is shown in eq
1, as follows

= [ ]

+ [ ]

G D E D x

E D G z

min max GAN( , ) log ( )

log 1 ( ( ))

G D
xp x

zp z

( )

( )

r
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where pr denotes the real data distribution, pz denotes the
model distribution, and z denotes the input to the generator,
which is randomly selected from some simple noise
distribution.
pix2pix GAN Network. The pix2pix GAN network33 is a

type of GAN that is specifically designed for image-to-image
translation tasks. It uses a U-net architecture for its generator,
which is a type of convolutional neural network that has to skip
connections to maintain high-resolution features throughout
the network. The discriminator in the pix2pix GAN is
responsible for distinguishing between the generated output
and ground truth images. Unlike traditional GANs, the pix2pix
GAN uses a conditional GAN loss, which is a type of
adversarial loss that takes into account both the generated
output and the input image. The conditional GAN loss ensures
that the generated output is not only visually appealing but also
relevant to the input image. The pix2pix GAN has been used
for a variety of image-to-image translation tasks including
semantic segmentation, style transfer, and super-resolution.

In our methodology, we employ the Pix2Pix GAN
framework, which utilizes a loss function consisting of two
key components: adversarial loss (LcGAN) and L1 loss
(L1(G)). The adversarial loss, as described in eq 2, leverages
the conditional GAN loss to measure the similarity between
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the generated output and the ground truth image. This loss
encourages the generator to produce outputs that closely
resemble the ground truth images. On the other hand, the
L1(G) loss, as presented in eq 3, quantifies the absolute pixel-
wise difference between the generated output and the ground
truth image. This component aims to ensure that the generated
outputs align with the ground truth images in terms of the pixel
values. The adversarial loss ensures overall structural realism,
while the L1 loss enforces precise similarity (pixel-wise) at the

distance level. The final loss function, as shown in eq 4,
combines these two losses.

= [ ] +

[ ]

L G D E D x y E

D x G x

( , ) log ( , )

log 1 ( , ( ))

x y x zcGAN , ,

(2)

= [ ]L G E y G x( ) ( )x y1 , (3)

= +L L GGL ( )cGAN 1 (4)

Figure 1. LMTR loss function of the generator network on the PLM-GAN model. The asterisk denotes multiplication.

Figure 2. Proposed architecture PLM-GAN, where (a) represents the generator which consists of two residual blocks in U-net and (b) represents
the discriminator.
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where x denotes the distance matrix of the protein structure
involving the missing region and y denotes the native distance
matrix of the protein structure.
PLM-GAN Model. As stated before, PLM-GAN is based on

pix2pix GAN, which was harnessed to generate and paint the
missing region of the distance matrix of the protein structure.
The elucidation of the methodology of the loss function is
delineated in Figure 1. Figure 2 presents the architectural
configurations of both the generator and discriminator
components within the PLM-GAN model.
To illustrate, the generator network uses a U-net

architecture, which utilizes a skip-connection between sym-
metrical layers. We embedded it with residual blocks to
improve the model performance and the convergence of deep
neural networks. The generator maps between the distance
matrices of protein structures with a missing region and the
distance matrices of the native protein structure, allowing it to
predict and fill in the missing region within the protein
structure. The discriminator network works as a PatchGAN
network,33 a specialized type of discriminator composed of a
deep convolution neural network (CNN). PatchGAN has been
used to classify patches of an input distance matrix of the
protein structure, rather than the entire distance matrix of the
protein structure, as real or fake. The inputs to the PatchGAN
discriminator network are pairs of two distance matrices of
protein structure: the first is the source (the distance matrix of
the protein structure with missing region) and the second is
the target (the distance matrix of the native protein structure
or the generated distance matrix of the protein structure). In
the end, the PatchGAN maps the distance matrices of protein
structures to a small dimensional matrix of 30 × 30. Then, it
classifies whether the 30 × 30 patches in the input distance
matrix of the protein structure are real or fake.

Missing to Real Loss (LMTR). We introduced a new loss
function called missing to real (LMTR) in the pix2pix GAN loss
functions. Instead of comparing the whole native distance
matrix and the generated distance matrix, the LMTR function

focuses on the missing region that needs to be inpainted. For
the PLM-GAN model, the overall generator loss function is the
sum of LcGAN, L1(G), and LMTR. It can be calculated by eq 5.
We have incorporated LMTR to focus on the missing regions of
the protein structure’s distance matrix, as shown in eq 6.

= + +L L G LGL ( )cGAN 1 MTR (5)

where γ and ∂ are the hyper-parameters to determine the
impact of L1 and LMTR.

= [ ]L G L y G( )MTR 1 (6)

where y′ is the real region that the model tries to inpaint. G′ is
the generated inpainting region. The overall methodology of
the loss function is explained in Figure 1.
Model Architecture. The PLM-GAN model architecture

involves two parts: the generator network and the discrim-
inator network, as shown in Figure 2.

Generator Network Architecture. The generator network
consists of a U-net network boosted by two residual blocks to
improve and increase model learning. Table 1 illustrates in
detail the generator network parameters for 128 aa.

Discriminator Network Architecture. The patchGAN
discriminator architecture is shown in Figure 2b. The inputs
to the patchGAN discriminator are two distance matrices of
the protein structure. It maps the input to a small dimension
matrix of 30 × 30 patches. Additionally, it differentiates the
real patches from the generated patches. The patchGAN
discriminator involves five convolution layers. Table 2
illustrates the discriminator network parameters for 128 aa.

■ ASSESSMENT OF THE PROPOSED MODEL
To assess the accuracy of the Pix2Pix-GAN and the PLM-GAN
models in generating the missing region of the protein
structure, in addition to the whole protein structure, we used
a testing data set of 6200 proteins and compared our generated
protein structures with the native protein structures and with
those produced from the state-of-art algorithm RFDesign.20

Table 1. Layers of the Generator Network Architecture

layer details filter strid p

input 1 × 128 × 128
conv1 64 × 64 × 64 64 × 4 × 4 2 1
conv2 128 × 32 × 32 128 × 4 × 4 2 1
conv3 256 × 16 × 16 256 × 4 × 4 2 1
conv4 256 × 8 × 8 512 × 4 × 4 2 1
conv5 512 × 4 × 4 512 × 4 × 4 1 0
conv6 512 × 1 × 1 512 × 4 × 4 1 0
UpSample1 conv6 512 × 4 × 4 512 × 4 × 4 2 1

conv5 512 × 4 × 4 512 × 4 × 4 2 1
UpSample2 UpSample1 512 × 4 × 4 512 × 4 × 4 2 1

conv4 512 × 4 × 4 512 × 4 × 4 2 1
UpSample3 UpSample2 256 × 8 × 8 256 × 4 × 4 2 1

conv3 256 × 8 × 8 256 × 4 × 4 2 1
Residual2 UpSample3 512 × 64 × 64 64 × 3 × 3 1 1

UpSample3 512 × 64 × 64 64 × 3 × 3 1 1
UpSample4 Residual1 256 × 8 × 8 256 × 4 × 4 2 1

conv2 256 × 8 × 8 256 × 4 × 4 2 1
UpSample5 UpSample4 256 × 8 × 8 256 × 4 × 4 2 1

conv1 256 × 8 × 8 256 × 4 × 4 2 1
Residual1 UpSample5 128 × 64 × 64 128 × 3 × 3 1 1

UpSample5 128 × 64 × 64 128 × 3 × 3 1 1
convT5 1 × 128 × 128 1 × 4 × 4 2 1
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Our test data set, consisting of 6200 protein structures, is
sourced separately from the training data and obtained from
the PDB. This separation serves a crucial purpose in our study
as it allows us to evaluate the generalization and predictive
capabilities of our models on previously unseen protein
structures. By utilizing a distinct test set, we ensure that our
models’ performance is assessed on data that were not part of
the training process, thus providing a robust evaluation of their
effectiveness. It is also worth mentioning that we used in this
comparison several proteins not involved in our training data
set, as shown in Figure 6. The root-mean-square deviation
(rmsd)34 is used to measure the similarity between the
generated missing region and the native region of the protein
structures by comparing their distance matrices, as shown in eq
7. To build the distance matrix, we used the distance between
the CA (α carbon) atoms in the main chain of the protein
structure. Finally, we compared the features of the generated
proteins structures (backbone, local, and distal characteristics)
with those of the native protein structures. A brief explanation
of the assessment methodology is shown in Figure 3.

= =G D
x y

n
rmsd( , )

( )i
n

i i0
2

(7)

where n denotes the size of the region and x and y refer to the
inpainted and native regions of the distance matrix for the
protein structure, respectively.
Assessment of Generated Missing Region of Protein

Structure. Our evaluation methodology is based on assessing

the similarity of the missing region in the natural, inpainted,
and generated protein structures, utilizing the rmsd measure
between them.
Assessment of the Whole Structure of the Generated

Proteins. We compare the entire generated distance matrix of
the protein structure with that of the native protein structure.
Additionally, we perform a comparison based on the features
of the distance matrices of the protein structure, which consist
of backbone, short-range (local structure), and long-range
(distal structure) distances.

Assessment of the Average Peptide Bond. The average
peptide bond is a summation of the diagonal distance values of
the protein distance matrix, which is then divided by the
number of all entries along the main diagonal.35,36 The
generated protein tertiary structure distance matrix was
evaluated by comparing its feature (distance of backbone,
short-range, and long-range) to the natural feature protein.

Assessment of the Backbone Structure. The backbone in
the regenerated protein distance matrix is the main diagonal.
The diagonal of the distance matrix is formulated by every
consecutive (i,i + 1) CA atom pair, where 0 < i < n − 1.
According to the natural protein, the ideal distance is 3.79 Å
between two consecutive amino acids in the natural protein for
128 aa.

Assessment of the Short-Range Structure and the Distal
Structure. After calculating the backbone, we will calculate
both the short-range (local structure) and long-range distances
(distal structure). First, we compute the short-range, where we
move forward from the backbone by every consecutive (i,i + j)
CA pair where 1 < j < 4; the ideal short-range distance is 7.8 Å
in the natural protein. Second, the long-range distance is
calculated by expanding j > 4; the ideal long-range distance is
21.31 Å in the natural protein for 128 aa.

■ TRAINING DATA SET
The data set consists of 115 K proteins collected from the PDB
site,10 which holds various protein structures of various sizes.
We have relied on the distance between the CA (α carbon)

Table 2. Layers of the Discriminator Network Architecture

layer details filter strid padding

input 1 × 128 × 128
conv1 64 × 64 × 64 64 × 4 × 4 2 1
conv2 128 × 32 × 32 128 × 4 × 4 2 1
conv3 256 × 32 × 32 256 × 3 × 3 1 1
conv4 512 × 30 × 30 512 × 5 × 5 1 1
conv5 1 × 30 × 30 1 × 3 × 3 1 1

Figure 3. (a) Distance matrix of the 4ZCB protein structure that contains a missing region of length 25 aa. (b) Inpainted distance matrix of the
protein structure by RFDesign model. (c) Regenerated distance matrix of the protein structure by the PLM-GAN model. (d) Distance matrix of the
inpainted protein structure by the PLM-GAN model. (e) Native distance matrix of the protein structure.
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atoms in the main chain of the protein structure to build the
distance matrix. The dimensions of the matrices are n*n, where
n is equal to 128 aa. To ensure the diversity of the missing
regions, the proposed models paired native protein structure’s
distance matrices with changing the position of the missing
regions in each epoch, which increases the accuracy of the
models.

■ IMPLEMENTATION DETAILS
The PyTorch framework was employed to conduct all
experiments, utilizing an RTX2080 GPU and 128GB of
RAM. For each discriminator and generator, the learning rate

was set to 0.001. We employed the Adam optimizer,
configuring the values of β1 and β2 to 0.9 and 0.999,
respectively. Following a series of trial experiments, we
determined that the hyperparameters γ and ∂ for the PLM-
GAN model should be set to 200 and 2000, respectively. The
training duration for each epoch was approximately 9 min, with
a total of 200 epochs.

■ RESULTS AND DISCUSSION
We depended on a diversity of measurements to evaluate the
performance of our models, which shows the quality and
efficiency of our models.

Figure 4. Comparison between the native and the generated proteins’ structure distance matrix features (backbone, local, and distal characteristics)
in each epoch.

Figure 5. Comparison between the native and the generated and inpainted proteins’ structure distance matrix by pix2pix GAN and PLM-GAN
models through the rmsd along each epoch.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c05863
ACS Omega 2024, 9, 437−446

442

https://pubs.acs.org/doi/10.1021/acsomega.3c05863?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05863?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05863?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05863?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05863?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05863?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05863?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05863?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c05863?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Average Peptide Bond. As previously stated, the distance
matrix of protein structures is estimated by considering the
average length of the peptide bond for the backbone as well as
the short-range (local) and long-range (distal) distances. As
shown in Figure 4, when using a test set of 6200 proteins with
different masks ranging from 5 to 30 aa, our models were
trained over multiple epochs, resulting in distance matrices for
the proteins that closely resemble the native distance matrices.
The stability of the models is reflected in the proximity of the
generated distance matrices to their native counterparts, even
in cases in which the models alter the length and positioning of
the missing regions.
Evaluation of rmsd. As mentioned before, we used rmsd

to compare the generated and the inpainted distance matrices
of protein structure with the native distance matrix of the
protein structure. As illustrated in Figure 5, our models are
stable and effective in inpainting the missing region and
generating the whole protein structure with a small rmsd value
from as early as 25 epochs to the end of the training.
Although both models achieved great performance, the

PLM-GAN model had better results in rmsd in both the
generated and inpainted distance matrices. There was a clear
superiority of PLM-GAN in rmsd between both the generated
and inpainted distance matrix of protein structure. In addition,
the features of the distance matrix of the protein structure are
close to the native features, and this is evident, especially in the
missing regions of small (5−10 aa) and medium (10−20 aa)
length.
Comparison between Pix2Pix GAN and PLM-GAN

Models with State-of-the-Art-Methods. In this study, we
conducted extensive training on our model to tackle the
challenging task of handling missing regions in protein
structures. Our training data set covered a diverse range of
lengths for these missing regions, spanning from 5 to 30 amino
acids. To ensure a fair and rigorous comparison, we
deliberately maintained a consistent missing region length of
25 aa across the proteins when comparing our model with the
state-of-the-art model RFDesign.20 This thoughtful approach
allowed us to directly evaluate the efficacy of both models
under identical conditions, shedding light on their performance

in handling the same inpainting task. By standardizing the
missing region length and considering various regions of the
proteins, we significantly bolstered the reliability and validity of
our comparative analysis. This allowed us to gain valuable
insights into how each model performed when confronted with
inpainting challenges of the same missing length in different
protein regions.

Incorporating RFDesign as a benchmark in our comparison
enabled us to present a comprehensive assessment of our
model’s painting capabilities within the context of cutting-edge
techniques. The outcomes of this comparison contribute
significantly to the advancement of protein structure inpainting
research, providing a clearer understanding of the strengths
and limitations of both models under these specific conditions.
To ensure impartial evaluation, we consciously excluded
proteins 4ZCB, 3FJB, and 2REZ from our model’s training
data set. Additionally, we randomly selected these proteins
from the PDB for the purpose of comparing them with
RFDesign. This careful selection ensured that these proteins
served as unseen data, guaranteeing an unbiased evaluation of
the performance of our model’s performance. Through this
approach, we effectively assessed how well our model could be
generalized to novel protein structures. By keeping the
evaluation process consistent across all compared methods,
we maintained the integrity of our findings. This allowed us to
draw meaningful conclusions about its inpainting capabilities
on diverse and previously unseen protein structures. In our
model, the separation of the training and testing data ensured
the reliability and validity of our comparative analysis.

The RFDesign algorithm does not generate distance
matrices. However, it generates the protein structures as
PDB files, which we converted to a distance matrix to compare
it with the generated and the inpanted distance matrices of our
models and the native distance matrix. Figure 6 demonstrates
the results of three models (the pix2pix GAN, the PLM-GAN,
and the RFDesign model) in each of the three proteins
compared with the native protein. Our two models (pix2pix
GAN and PLM-GAN) have two results in each protein: one
for generating the whole protein (p2p-generated and PLM-
GAN-generated) and the other for inpainting only the missing

Figure 6. Heatmaps visually represent the distance matrices of protein tertiary structures generated using different models: pix2pix GAN, PLM-
GAN hybrid, and RFDesign. Additionally, the rmsd between each generated or inpainted protein structure’s distance matrix and the native one is
indicated as (G) for generated and (I) for inpainted.
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region (p2p-inpainted and PLM-GAN-inpainted). We found
the rmsd between the inpainted distance matrix of protein
structure and the distance matrix of native protein structure for
4ZCB (6.7346, 5.0111, and 5.7182), 3FJB (4.6506, 4.1767,
and 5.886), and 2REZ (4.4198, 4.0802, and 6.8436) for
pix2pix GAN, PLM-GAN, and RFDesign, respectively. In all
the proteins, PLM-GAN achieved better results than those of
the RFDesign. In two of the proteins (3FJB and 2REZ), the
pix2pix GAN was better than the RFDesign. Moreover, we
observed that PLM-GAN outperforms RFDesign with an
average processing time of under a second, making it superior
for time-critical applications. In contrast, RFDesign requires
several seconds and does necessitate GPU, thereby the PLM-
GAN offers a more accessible solution for users without high-
end hardware. These findings provide valuable insights for
researchers and practitioners in selecting the most suitable

methodology based on their specific needs. When comparing
the performance of the models on the 3D protein structure, all
three matrices were turned to 3D using metric multidimen-
sional scaling (MMDS).37 The generated and inpainted 3D
protein structures for 4ZCB, 3FJB, and 2REZ by pix2pix GAN,
PLM-GAN, and RFDsign models are shown in Figure 7. Both
models pix2pix GAN and PLM-GAN obtained smaller rmsd
than that of the RFDesign, and PLM-GAN achieved the best
result of the three models.
Convergence Analysis. We examined the convergence

and reduction of loss for both the generator and the
discriminator curves during training. In Figure 8, we illustrate
the performance loss of our models, pix2pix GAN and PLM-
GAN, on the 128 aa training data set. The results demonstrate
the stability and convergence of the loss curves over the
epochs.

Figure 7. rmsd between each generated or inpainted protein structure and the native protein structure for the three models: (G) for generated and
(I) for inpainted.

Figure 8. Convergence and stability analysis of pix2pix GAN and PLM-GAN losses.
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■ CONCLUSIONS
In this article, we have focused on the loop modeling problem,
in which the protein tertiary structures may have missing
regions or regions that need to be reconstructed. Solving this
problem represents a major step toward simplification of
protein design and protein prediction models. In addition, it
will help other models of protein−protein interactions and
drug design achieve better results. The pix2pix GAN and PLM-
GAN models were developed to generate and inpaint protein
distance matrices and use MMD to “fold” the protein structure.
Our models were developed through five contributions: (I)
applying pix2pix GAN to generate and inpaint distance matrix
of protein structure. (II) Developing the PLM-GAN model
based on the pix2pix GAN by integrating the residual blocks in
the U-Net network of the GAN network. (III) Adding a new
loss function missing to real (LMTR) loss in pix2pix GAN to
make PLM-GAN. (IV) Pairing two different distance matrices
(one of the native protein structure and one of the same
structure but with a missing region that changes in each
successive epoch). (V) Increasing the length of the missing
region up to 30 aa and the length of the protein to 128 aa. We
applied the pix2pix GAN and PLM-GAN models on the
natural proteins 4ZCB, 3FJB, and 2REZ, obtaining promising
experimental results for inpaint in 2D: rmsd of 6.7346, 4.6506,
and 4.4198 for pix2pix GAN and 5.0111, 4.1767, and 4.0802
for PLM-GAN. The distance matrix was converted to inpaint
in 3D, obtaining an rmsd of 3.1291, 4.1304, and 4.7997 for
pix2pix GAN and 3.0110, 4.0088, and 3.1953 for PLM-GAN.
In future work, we can increase the length of the missing

region to more than 30 aa. Also, we can create a graphical user
interface for the user to generate the missing region in different
protein structures. We may also extend our models to work on
3D proteins directly without needing MMD to convert them.
In addition, we will focus on the functional sites, protein−
ligand binding sites, and protein−protein interactions to be
handled by the GAN models.
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