
American Journal of Epidemiology
ª 2008 The Authors
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial
License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Vol. 169, No. 3

DOI: 10.1093/aje/kwn308

Advance Access publication November 21, 2008

Original Contribution

Maternal Age and Infant Mortality: A Test of the Wilcox-Russell Hypothesis

Timothy B. Gage, Fu Fang, Erin O’Neill, and Howard Stratton

Initially submitted November 28, 2007; accepted for publication September 8, 2008.

It has been argued (e.g., the Wilcox-Russell hypothesis) that (low) birth weight is a correlate of adverse birth
outcomes but is not on the ‘‘causal’’ pathway to infant mortality. However, the US national policy for reducing infant
mortality is to reduce low birth weight. If these theoretical views are correct, lowering the rate of low birth weight may
have little effect on infant mortality. In this paper, the authors use the ‘‘covariate density defined mixture of logistic
regressions’’ method to formally test the Wilcox-Russell hypothesis that a covariate which influences birth
weight, in this case maternal age, can influence infant mortality directly but not indirectly through birth weight.
The authors analyze data from 8 populations in New York State (1985–1988). The results indicate that among the
populations examined, 1) maternal age significantly influences the birth weight distribution and 2) maternal age
also affects infant mortality directly, but 3) the influence of maternal age on the birth weight distribution has little or
no effect on infant mortality, because the birth-weight-specific mortality curve shifts accordingly to compensate for
changes in the birth weight distribution. These results tend to support the Wilcox-Russell hypothesis for maternal
age.

birth weight; infant mortality; latent variable; logistic regression; mixture of normal distributions

Abbreviation: CDDmlr, covariate density defined mixture of logistic regressions.

Current national health policy is to lower US infant mor-
tality by reducing the rate of low birth weight, as stated in
Healthy People 2010 (1). This is supported by a large body
of literature demonstrating that low birth weight is a risk
factor for infant mortality (2–7). Nevertheless, theoreticians
often question whether birth weight lies within the ‘‘causal’’
pathway to infant mortality or is simply an indicator of
adverse conditions (7–14). If these theoretical views are
correct, prevention strategies that target birth weight might
not have the intended effect of lowering infant mortality.

One of these theoretical views, the Wilcox-Russell hy-
pothesis (7, 13–16), is sufficiently detailed to be explicitly
testable. In this theory, the relation between birth weight and
infant mortality among ‘‘normal’’ births—that is, those
from the dominant Gaussian portion of the birth weight
distribution—is influenced by 2 phenomena. First, the birth
weight distribution may shift in response to an exogenous
covariate (e.g., altitude), but the reverse-J-shaped birth-
weight-specific mortality curve also shifts horizontally by

a similar amount in the same direction (Figure 1, part A), so
that there is no change in infant mortality; that is, no indirect
effects of the factor operate through birth weight. Second,
a covariate (e.g., maternal smoking) may have direct effects
on infant mortality by increasing or decreasing the birth-
weight-specific mortality curve vertically at all birth weights
after the horizontal shifts in the birth weight distribution and
the birth-weight-specific mortality curve have been ac-
counted for (Figure 1, part B). This paradigm does not ac-
count for all of the potential ‘‘causal’’ pathways by which
birth weight might influence infant mortality; for example, it
only refers to ‘‘normal’’ births and not the remaining ‘‘re-
sidual’’ births, and it does not account for the reverse-J
shape of the infant mortality curve (12). However, if the
Wilcox-Russell hypothesis is correct for a particular vari-
able under study, it would eliminate a potentially important
pathway by which the variable could influence infant
mortality—that is, the pathway through birth weight. In
any event, all that is required to falsify the Wilcox-Russell
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hypothesis in relation to a particular variable is to show that
the birth weight distribution and the birth-weight-specific
mortality curve do not shift horizontally together to the
same extent (Figure 1, part C)—that is, that there are sig-
nificant indirect effects operating through birth weight.

The Wilcox-Russell hypothesis has never been statisti-
cally tested for any particular variable because of the lack
of proper statistical techniques. Our primary aim in this
paper was to apply the ‘‘covariate density defined mixture
of logistic regressions’’ (CDDmlr) method to test the
Wilcox-Russell hypothesis with respect to a continuous co-
variate, in this case maternal age. In particular, the CDDmlr
model can statistically distinguish horizontal and vertical
shifts in the birth-weight-specific infant mortality curve sep-
arately for both ‘‘normal’’ and ‘‘residual’’ (referred to here
as ‘‘compromised’’) births, and thus it can test the hypoth-
esis that the horizontal shifts in the birth weight distribution
and the birth-weight-specific mortality curve are identical.
In this paper, we apply the model to 1985–1988 New York
State birth cohorts to estimate the role that birth weight
plays with regard to the impact of maternal age on infant
mortality. The results are stratified by sex, parity, and African-
American versus European-American race/ethnicity. Other
racial/ethnic groups were omitted because of small samples.

MATERIALS AND METHODS

Mathematical model

CDDmlr in its application to birth outcomes (17, 18) is
defined as the product of the conditional mortality submodel
f2ðyjx; h; bÞ and the birth weight density submodel f1ðx; hÞ:

f ðx; y; h; bÞ ¼ f2ðyjx; h; bÞf1ðx; hÞ; ð1Þ

where x, y, h, and b represent birth weight, the occurrence of
death, the parameters modeling the birth weight distribu-
tion, and the parameters modeling the birth-weight-specific
mortality, respectively.

In the case of 2 Gaussian subpopulations (corresponding
to Wilcox and Russell’s ‘‘normal’’ and ‘‘residual’’ births (7,
14, 15, 19)),

f1ðx; hÞ¼ps 3N0ðx; ls;r2
s Þ þ ð1 � psÞ3N0ðx; lp;r2

pÞ: ð2Þ

ps, the mixing proportion, is defined as the proportion of
births belonging to the less numerous of the 2 subpopulations—
that is, the secondary subpopulation (s) as opposed to the
primary subpopulation (p). For i ¼ p and s, N0ðx; li;r2

i Þ
represents the Gaussian density, truncated at 0, with mean
li and variance r2

i .
The probability of death conditioned on x is given by

f2ðy ¼ 1jx; h; bÞ ¼ qsðx; hÞ3Pðx; as; bs; csÞ
þ ½1 � qsðx; hÞ�3Pðx; ap; bp; cpÞ; ð3Þ

where qsðx; hÞ is the conditional probability of an infant with

Figure 1. Characteristic changes in mortality with respect to changes
in birth weight based on the Wilcox-Russell ‘‘causality’’ theory (7,
13–16), New York State, 1985–1988. A) No indirect effect, shift in birth
weight (bold lines, solid to dashed) and corresponding shift in birth-
weight-specific mortality curve (thin lines, solid to dashed), no overall
change in infant mortality. B) No indirect effect plus a direct effect, shift
in birth weight (bold lines, solid to dashed) and corresponding shift in
birth-weight-specificmortality curve (thin lines, solid to dashed), no over-
all change in infant mortality due to shift in birth weight but direct effect
increases mortality at all birth weights and overall. C) Indirect effect but
no direct effect, shift in birth weight (bold lines, solid to dashed) not
identical to the shift in birth-weight-specific mortality curve (thin lines,
solid to dashed), infantmortally changes due to shift in birth weight. Only
the graph in part C suggests that birth weight lies within the ‘‘causal’’
pathway. See Wilcox (14) for details.
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birth weight x belonging to subpopulation s. The birth
weight density submodel (equation 2) determines

qsðx; hÞ ¼ ps 3N0ðx; ls;r2
s Þ=½ps 3N0ðx; ls;r2

s Þ
þ ð1 � psÞ3N0ðx; lp;r2

pÞ�; ð4Þ

and, for i ¼ p and s, Pðx; ai; bi; ciÞ is the corresponding
probability of death for subpopulation i (standard logistic
regression). Birth-weight- and subpopulation-specific mor-
tality is generally assumed to be reverse-J-shaped in this
model, following the Wilcox-Russell theory (7, 13–16);
hence the quadratic parameterization:

Pðx; ai; bi; ciÞ ¼
expðai þ bixþ cix

2Þ
1 þ expðai þ bixþ cix2Þ: ð5Þ

Here the original model is extended in 2 ways. First,
a continuous exogenous covariate, t, is incorporated into
the birth weight density submodel (equation 2) by defining
the respective parameters as functions of t—that is, by as-
suming nonlinear (second-degree polynomial) effects:

logit½psðtÞ� ¼ gðtÞ ¼ a0 þ a1t þ a2t
2: ð6Þ

liðtÞ ¼ ci;0 þ ci;1t þ ci;2t
2: ð7Þ

riðtÞ ¼ ki;0 þ ki;1t þ ki;2t
2: ð8Þ

Second, the standardized birth weight (zi; i.e., the birth
weight (x) standardized on the basis of the mean (li) and
the standard deviation (ri) of the respective subpopulation)
and the covariate t are incorporated into the mortality sub-
model (equation 5); that is,

Pðzi; t; ai; bi;z; ci;z; bi;t; ci;t; diÞ

¼ expðai þ bi;zzi þ ci;zz
2
i þ bi;tt þ ci;tt

2 þ dizitÞ
1 þ expðai þ bi;zzi þ ci;zz

2
i þ bi;tt þ ci;tt2 þ dizitÞ

: ð9Þ

Overall, there are 27 parameters (Table 1): 15 for the
birth weight density submodel and 12 for the mortality sub-
model.

Adding covariate t to the logistic regression (equation 9)
while defining the birth weight density submodel parameters
as a function of t (equations 6–8) represents the covariate’s
direct effect on infant mortality (i.e., the vertical shift,
bi;tt þ ci;tt

2) and its indirect effect through birth weight on
infant mortality (i.e., any difference between the horizontal
shifts of birth weight and the mortality curve, dizit). Thus,
a significant interaction term (di) indicates a rejection of the
Wilcox-Russell hypothesis for that covariate.

Data and methods

The data for this analysis consisted of all non-Hispanic
African-American and European-American singleton live-
births occurring in New York State during the period 1985–
1988. We used these data instead of data on more recent birth

cohorts because the higher death rates in these data increased
the power of the analysis (20) but the data were nevertheless
accurately and consistently collected. Births with missing
information on sex, parity, race/ethnicity, maternal age, or
birth weight were omitted. We also omitted births to mothers
with third- and higher-order parity to reduce heterogeneity in
the multiparous strata. Analyses were carried out with
stratification by race/ethnicity, sex, and parity (primiparous
(parity ¼ 0) vs. multiparous (parity ¼ 1 or 2)).

The CDDmlr model is fitted to individual-level data by
using the maximization function ms() in the S-PLUS library
(21) to maximize the joint likelihood—that is, both submo-
dels are fitted under 1 likelihood (17, 18). Details on the
fitting procedures used and the statistical properties of
CDDmlr are presented elsewhere (20). The CDDmlr model
is identified when the birth weight density submodel is iden-
tified and when the individual logistic regressions are

Table 1. Definitions of the Model Parameters Used in an

Application of the CDDmlr Method to Test the Wilcox-Russell

Hypothesis With Respect to Maternal Age, New York State,

1985–1988

Symbol Definition

Birth weight density submodel
parameters for the i
subpopulation (i ¼ s and p)a

psðtÞ Mixing proportion (% secondary
subpopulation)

a0 Constant in logit½psðtÞ�
a1 Linear term in logit½psðtÞ�
a2 Square term in logit½psðtÞ�
li ðtÞ Mean birth weight

ci ;0 Constant in li ðtÞ
ci ;1 Linear term in li ðtÞ
ci ;2 Square term in li ðtÞ
ri ðtÞ Standard deviation of birth

weight

ki ;0 Constant in ri ðtÞ
ki ;1 Linear term in ri ðtÞ
ki ;2 Square term in ri ðtÞ

Conditional mortality submodel
parameters for the i
subpopulation (i ¼ s and p)b

ai ;z Constant

bi ;z Linear term for standardized
birth weight (z)

ci ;z Square term for z

bi ;t Linear term for maternal age (t )

ci ;t Square term for t

di Interaction term for z and t

Abbreviation: CDDmlr, covariate density defined mixture of logistic

regressions.
a Coefficients of a nonlinear function of a continuous exogenous

covariate t .
b Coefficients of a second-degree bivariate polynomial function.
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identified (e.g., covariate matrix full rank) (20). The birth
weight density submodel is identified by specifying that the
majority subpopulation is the primary subpopulation (20, 22).
It is also identified when continuous exogenous covariates
(e.g., maternal age) are introduced. However, some care must
be taken when examining dichotomous exogenous covariates
(23). Statistical significance is examined by using bias-
adjusted bootstrap percentile confidence intervals at the 95%
level. The bootstraps consist of 200 replicates, the first 100
of which are used to estimate the bias of the fitting procedure
and the second 100 of which are used to estimate the width
of the confidence interval. This is a relatively small sample
of bootstraps. Larger samples require excessive computing
resources. To determine whether this results in stable con-
fidence intervals, 800 additional bootstrap iterations were
carried out for 4 European-American cohorts. Comparison
of the results obtained using the total sample of 1,000 boot-
straps and those based on 200 bootstraps showed that they
were similar. Thus, the smaller samples appeared to provide
reasonable results.

RESULTS

The demographic and birth weight characteristics of the
8 birth cohorts are presented in Table 2. The parameter

estimates and the bias-adjusted 95% confidence intervals
for the birth weight distribution and the conditional mortal-
ity submodels are presented in Table 3 and Table 4, respec-
tively. With the exception of the interaction term specifying
the Wilcox-Russell hypothesis, the use of second-degree
polynomials limits the biologic interpretability of the indi-
vidual parameters. Therefore, the results are presented
graphically.

Relation ofmaternal age and the birthweight distribution

Maternal age had a strong effect on the mean birth weight
of the primary subpopulation and the variance of the sec-
ondary subpopulation (Figure 2, Table 3). In particular, the
effects of both the linear and the quadratic coefficients for
maternal age on the primary subpopulation mean birth
weight were significant at all parities in all populations ex-
amined. Primary subpopulation infants born to multiparous
mothers were significantly larger than their peers born to
primiparous mothers, particularly at maternal ages greater
than 20 years (Figure 2, part A). On the other hand, maternal-
age effects on the mean birth weight of the secondary sub-
population were significant in only 1 of 8 populations tested
(African-American multiparous females) (Table 3). There
were no significant differences in the mean birth weight

Table 2. Characteristics of the Sample Populations Used in an Application of the CDDmlr Method to Test the

Wilcox-Russell Hypothesis With Respect to Maternal Age, New York State, 1985–1988

Birth
Cohort

African Americans European Americans

Females Males Females Males

Parity 0
Parity
1 or 2

Parity 0
Parity
1 or 2

Parity 0
Parity
1 or 2

Parity 0
Parity
1 or 2

No. of births 22,981 24,801 24,028 25,931 111,203 124,120 117,657 130,811

No. of deaths 294 263 366 336 547 594 730 776

Crude death ratea 12.79 10.60 15.23 12.96 4.92 4.79 6.20 5.93

Birth weight, g

Minimum 195 140 120 116 78 100 170 113

5th percentile 2,041 2,155 2,146 2,250 2,500 2,608 2,552 2,693

25th percentile 2,807 2,835 2,920 2,977 3,033 3,118 3,147 3,232

50th percentile 3,120 3,175 3,260 3,317 3,345 3,402 3,459 3,550

75th percentile 3,450 3,515 3,572 3,640 3,657 3,720 3,799 3,884

95th percentile 3,941 4,026 4,082 4,167 4,139 4,206 4,309 4,394

Maximum 6,522 6,120 6,350 6,719 7,999 7,919 7,709 7,940

Maternal age, years

Minimum 12 14 12 14 11 15 10 15

5th percentile 17 19 17 19 19 21 19 21

25th percentile 20 24 20 23 23 25 23 26

50th percentile 24 27 24 27 26 29 26 29

75th percentile 28 31 28 31 30 32 30 32

95th percentile 34 37 34 37 35 37 35 36

Maximum 45 47 48 48 47 55 55 58

Abbreviation: CDDmlr, covariate density defined mixture of logistic regressions.
a No. of deaths per 1,000 births.
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between primiparous and multiparous secondary subpopu-
lation births across the range of maternal age (Figure 2, part
B). Maternal age influenced the standard deviation in birth
weight of the secondary subpopulation in all birth cohorts

examined, but it only affected the standard deviation in birth
weight of the primary subpopulation in 2 of the 8 birth
cohorts examined (Table 3). Thus, the most consistent ef-
fects concern the primary subpopulation mean and the

Table 3. Parameter Estimates and Significance for the Birth Weight Density Submodel in an Application of the

CDDmlr Method to Test the Wilcox-Russell Hypothesis With Respect to Maternal Age, New York State, 1985–1988

Birth
Cohort

African Americans European Americans

Females Males Females Males

Parity 0
Parity
1 or 2

Parity 0
Parity
1 or 2

Parity 0
Parity
1 or 2

Parity 0
Parity
1 or 2

a0 �1.62a �2.95a �0.80a �2.21a �1.18a 0.25a 0.49a 1.17a

a1 �2.72 7.45 �12.24a �1.86 �12.35a �21.60a �23.06a �28.01a

a2 (310�2) 0.06 �0.15 0.28a 0.08 0.25a 0.36a 0.43a 0.47a

cs,0 1,645.56a 321.96a 2,369.52a 1,559.23a 1,844.67a 1,670.83a 1,677.73a 1,969.81a

cs,1 84.61 164.85a 3.47 52.54 81.92 103.52 92.43 77.21

cs,2 �2.04 �2.96a �0.05 �0.52 �1.63 �1.97 �1.63 �1.38

ks,0 896.83a 921.35a 841.51a 997.82a 936.87a 766.81a 880.49a 1,064.26a

ks,1 8.07a 7.20a 12.12a 4.93a 5.62a 13.08a 7.33a 3.59a

ks,2 (310�3) 0.04a �0.12a 0.06 �0.23a 2.15a 0.09a 0.29a 0.09a

cp,0 2,909.58a 2,703.25a 2,721.13a 2,665.97a 3,100.22a 2,758.24a 3,246.73a 2,784.72a

cp,1 17.45a 29.91a 42.46a 42.46a 20.32a 43.38a 19.51a 51.81a

cp,2 �0.25a �0.40a �0.73a �0.62a �0.38a �0.68a �0.37a �0.82a

kp,0 453.29a 490.84a 327.96a 333.39a 514.28a 558.66a 507.36a 574.49a

kp,1 �4.57 �5.19 9.22 9.63 �5.92a �8.06a �2.99 �8.05a

kp,2 0.15 0.14 �0.16 �0.17 0.12a 0.14a 0.05 0.16a

Abbreviation: CDDmlr, covariate density defined mixture of logistic regressions.
a Significant on the basis of 95% bias-corrected confidence intervals.

Table 4. Parameter Estimates and Significance for the Conditional Mortality Submodel in an

Application of the CDDmlr Method to Test the Wilcox-Russell Hypothesis With Respect to

Maternal Age, New York State, 1985–1988

Birth
Cohort

African Americans European Americans

Females Males Females Males

Parity 0
Parity
1 or 2

Parity 0
Parity
1 or 2

Parity 0
Parity
1 or 2

Parity 0
Parity
1 or 2

as �10.36a 0.46a �6.83a 4.20a 2.68a 1.55a �1.82a 0.87a

bs,z �3.16a �1.77 �1.89 �4.21 0.76a �0.16a �0.44a 0.50a

cs,z 1.07a 1.21 0.94 �0.63 0.65a 0.67a 0.66a 0.72a

bs,t 0.13 �0.65 0.04 �0.79 �0.63a �0.58 �0.27 �0.36a

cs,t (310�2) 0.13 1.27 �0.01 0.85 0.88 1.02 0.33 0.44a

ds 0.03 �0.02 �0.04 �0.13 �0.13 �0.06 �0.06 �0.07a

ap �4.53a �0.64a �4.71a �2.06a �4.72a �3.64a �1.87a �0.91a

bp,z �0.86a �0.48a �0.36a �0.66a �0.69a 0.06a �0.45a �0.35a

cp,z 0.21a 0.33a 0.25a 0.23a 0.28a 0.32a 0.30a 0.23a

bp,t �0.08 �0.36a �0.10 �0.23a �0.13 �0.14 �0.32a �0.32a

cp,t (310�1) 0.01 0.06a 0.03 0.04a 0.02 0.01 0.06a 0.05a

dp (310�2) 1.30 0.31 �0.04 1.05 1.02 �1.58 0.18 �0.21

Abbreviation: CDDmlr, covariate density defined mixture of logistic regressions.
a Significant on the basis of 95% bias-corrected confidence intervals.
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secondary subpopulation standard deviation of birth weight.
In general, maternal-age-specific primary subpopulation
mean birth weight had an inverted-U shape, with maximum
values between ages 25 years and 35 years (Figure 2, part
A). The standard deviation of the secondary subpopulation
generally increased monotonically with maternal age
(Figure 2, part B), except for European-American multipa-
rous female births, where it declined again at older maternal
ages (not shown).

Maternal age had significant effects on the mixing proportion
of all 4 European-American cohorts but only 1 of the African-
American cohorts (Table 3). Among European-American
births, ps was significantly U-shaped with maternal age for
all parities (Figure 2, part C). However, European-American
multiparous births had a significantly lower proportion of sec-
ondary subpopulation births compared with primiparous births,
particularly among mothers aged 25–35 years (Figure 2, part
C). These parity-specific differences with maternal age were
not significant for 3 of the 4 African-American cohorts,
although the trends were similar.

Relation of maternal age to infant mortality

In general, infant mortality tended to decline with mater-
nal age to a minimum and then increase again at older ages,
particularly among primary subpopulation births (Figure 3).
However, among African Americans, secondary subpopula-
tion infant mortality among primiparous births increased
monotonically with maternal age (not shown), while for
multiparous European-American female births, secondary
subpopulation infant mortality increased to a maximum
and then declined at older ages (not shown).

Significant direct effects of maternal age on infant mortal-
ity occurred in 4 of the 8 primary subpopulations and 3 of the
8 secondary subpopulations (Table 4). On the other hand,
there was little if any statistically detectable indirect effect
of maternal age on infant mortality (Table 4). The birth
weight 3 maternal age interaction coefficients (i.e., ds and
dp) were all insignificant, with the exception of secondary
subpopulation multiparous European-American males. Thus,
there were significant shifts in birth weight distributions, prin-
cipally in the primary subpopulation mean; but in all primary
subpopulations and most of the secondary subpopulations,
birth-weight-specific infant mortality shifted along with the
shifts in the birth weight distribution.

The value of ds was �0.07 (95% confidence interval:
�0.02, �0.13) among secondary subpopulation multiparous
European-American males (Table 4). The result was a sig-
nificant horizontal shift in the birth-weight-specific mortal-
ity curve to the right relative to mean birth weight and an
accompanying vertical shift in the birth-weight-specific
mortality curve towards a lower optimal mortality. Interest-
ingly, mean birth weight did not change in this case (Table 3).
Figure 4 presents the results for maternal age at 20 and
25 years, but the shifts were similar at all ages.

A maternal age pediatric paradox

Figure 5 presents characteristic model-estimated birth-
weight-specific infant mortalities at several maternal ages.

Figure 2. Characteristic changes in the birth weight distribution by
maternal age and parity, New York State, 1985–1988. A) primary sub-
population; B) secondary subpopulation; C) mixing proportion. The solid
lines represent primiparous births (parity ¼ 0), and the dashed lines
represent multiparous births (parity ¼ 1 or 2). The thin lines represent
the respective bias-adjusted 95% confidence intervals. The inverted
triangles (=) represent the estimated values for multiparous births ob-
tained by applying the ‘‘covariate density defined mixture of logistic
regressions’’ method stratified by maternal age (bin size ¼ 2 year)
rather than using maternal age as a covariate. The results are for
European-American males and are similar to the results for all popula-
tions examined, except as noted in the text. SD, standard deviation.
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Of particular interest is the ‘‘pediatric paradox’’ with respect
to maternal age. For example, in Figure 5, part C, infants
born to women aged 26 and 34 years have higher estimated
mortality at birth weights below 2,200 g but lower estimated
mortality at birth weights above 2,200 g in comparison with
infants born to older women. Whether estimates for older
and/or young women display this effect varies by parity and
race/ethnicity, with the effect being stronger for female
births to African-American teenagers and primiparous
births to older European-American mothers. In addition,
primiparous male births to African-American teenagers
have lower estimated mortality up to 3,500 g. However, re-
peated childbearing for adolescent mothers results in signif-
icantly higher estimated mortality (not shown), as is
commonly observed (24).

DISCUSSION

These results suggest that in the populations studied, the
effects of maternal age on infant mortality among ‘‘normal’’
(primary subpopulation) births were direct and not indirect
(Table 4), which supports the Wilcox-Russell hypothesis
(7, 13–16) with regard to maternal age. In particular, maternal
age did significantly influence the birth weight distribution
among ‘‘normal’’ births, but these changes were compen-
sated for by shifts in birth-weight-specific infant mortality,
so that ‘‘normal’’ infant mortality was unaffected.

The Wilcox-Russell hypothesis does not address ‘‘residual/
compromised’’ (secondary subpopulation) births. Nev-
ertheless, the results presented above suggest few, if any,
indirect effects of maternal age on infant mortality among
‘‘compromised’’ births (Table 3). In the 1 significant case,
males born to European-American multiparous mothers, the

Figure 3. Characteristic changes in infant mortality by maternal age,
New York State, 1985–1988. A) primary subpopulation; B) secondary
subpopulation; C) total infant mortality. The solid lines represent pri-
miparous births (parity ¼ 0), and the dashed lines represent multipa-
rous births (parity ¼ 1 or 2). The thin lines represent the respective
bias-adjusted 95% confidence intervals. The results are for European-
American males and are similar to the results for all populations
examined, except as noted in the text. The insert in part C shows a
comparison of the observed mortality rates (=) with the model-
estimated mortality rates for multiparous births.

Figure 4. Model-estimated birth-weight-specific infant mortality
curves for secondary subpopulation European-American males born
to multiparous mothers aged 20 years (solid line) and 25 years
(dashed line), New York State, 1985–1988. The dotted line shows
the mortality curve for mothers aged 25 years assuming ‘‘no indirect
effect.’’
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secondary subpopulation birth weight distribution appeared
to remain fixed, while, in addition to a direct effect (i.e., the
vertical shift), the secondary subpopulation birth-weight-
specific mortality curve shifted to the right with increasing
maternal age. This was the only significant indirect effect
observed in the 16 tests conducted. It is possible that this is
simply Type I error. Additional data will be necessary to
confirm these results.

Maternal age also influenced birth weight and infant mor-
tality through the proportion of ‘‘normal’’ births versus
‘‘compromised’’ births (Figure 2, part C), since these sub-
populations differed significantly with respect to their birth
weight distributions (Figure 2, parts A and B) and birth-
weight-specific infant mortality (Figure 5, parts A and B)
(17, 25). In our analysis, the effects of maternal age on the
mixing proportion were all significant among European
Americans but not among most African-American birth co-
horts (Table 3). The lack of significant results could be due
to the smaller African-American samples. Analyses with
larger samples will be necessary to determine whether this
racial/ethnic difference is correct.

The Wilcox-Russell hypothesis (7, 13–16) and the anal-
ysis presented above have several limitations. First, a limi-
tation of our implementation for maternal age is the
specification of indirect effects as a linear interaction (logit)
with maternal age (i.e., dizit). The finding that indirect ef-
fects are not significant could be due to nonlinearity in this
response. For example, the birth-weight-specific mortality
curve might shift relative to birth weight in 1 direction dur-
ing the early childbearing years and then back again in
the later childbearing years. This is most likely to be a
problem among African Americans, given the substantial
proportion of births to women under the age of 20 years
(Table 2). However, additional analyses by 5-year mater-
nal-age segment (not shown) suggest that the linear inter-
action assumption is a reasonable approximation in all
populations examined. Analyses with larger samples, par-
ticularly at the youngest and oldest maternal ages, will be
necessary to determine whether this trend is in fact linear on
a logarithmic scale over the entire range of childbearing
years.

A second limitation of our model is that the birth weight
density submodel employed here is not identical to Wilcox’s
semiparametric birth weight model (7, 14, 15, 19), upon
which the Wilcox-Russell hypothesis is conceptually based.
Wilcox and Russell’s model assumes an uncontaminated
Gaussian distribution in the middle of the birth weight
range. This requires constraints on the fitting procedure that
degrade the goodness of fit (19). Experimentation with
2- and 3-subpopulation Gaussian density submodels (26) and
biologically reasonable alternative parametric specifications
(27) indicates that for our data, the central part of the birth
weight density is not a pure Gaussian distribution. In other
respects, however, these 2 mixture models are very similar.
In particular, they are both interpreted in the same way—
that is, the primary subpopulation is one undergoing ‘‘nor-
mal’’ fetal development, while the secondary/‘‘residual’’
subpopulation represents births that were ‘‘compromised’’
during fetal development (7, 14, 15, 17–19, 25, 28)—for
example, by preterm delivery (we did not exclude preterm

Figure 5. Characteristic model-estimated birth-weight-specific infant
mortality curves for European-American males born to primiparous
mothers, by maternal age, New York State, 1985–1988. A) primary
subpopulation; B) secondary subpopulation; C) total cohort. The solid,
dashed, dotted, and dashed-dotted-dotted lines represent mothers
aged 18, 26, 34, and 42 years, respectively. The insert in part C shows
a comparison of the observed mortality rates based on binned data
(bin size ¼ 500 g) (with corresponding 95% confidence intervals
(T-shaped bars)) with the model-estimated mortality rates. Note that
the decline in infant mortality which occurs at high birth weights for
most maternal ages is due to the quadratic specification of subpopu-
lation-specific infant mortality and the paucity of data at these birth
weights (i.e., the large observed standard errors). The results are
similar for the other ages.
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births). Additional applications will be necessary to confirm
this view. Nevertheless, we believe that the 2-subpopulation
Gaussian mixture submodel provides a reasonable separation
between ‘‘normal’’ and ‘‘compromised/residual’’ births.

A final limitation is that the Wilcox-Russell hypothesis
assumes that the primary birth-weight-specific mortality
curve is reverse-J-shaped. Birth weight could be the
‘‘cause’’ of the reverse-J shape of the mortality curve. Basso
et al. (12) theorize that the reverse-J shape is a result of
confounding among 3 Gaussian subpopulations, each with
constant birth-weight-specific mortality. The Basso et al.
paradigm (12) can also be examined statistically using
CDDmlr, but this was beyond the scope of the present
analysis.

Nevertheless, at least in the case of maternal age, the
Wilcox-Russell hypothesis appears to be correct. Horizontal
shifts in the birth weight density appear to be compensated
for by shifts in the birth-weight-specific infant mortality
curve, so that overall mortality is not affected by the shift
in birth weight. The major effects on infant mortality iden-
tified are consistent with direct effects of the covariate. The
implication is that part of the observed association between
birth weight and mortality is due to the direct influences of
maternal age on infant mortality and on birth weight. Anal-
yses of additional covariates are needed to confirm or qual-
ify these findings.

Policies aimed at reducing infant mortality by influencing
birth weight make the most sense if a shift in birth weight
necessarily results in a change in infant mortality. The find-
ings presented above, however, suggest that shifts in the
birth weight density do not necessarily produce changes in
overall infant mortality. Thus, an intervention that improves
birth weight may not necessarily improve overall mortality.
On the other hand, the results suggest that intervening on the
basis of the proportion of ‘‘normal’’ births versus ‘‘compro-
mised’’ births will influence both birth weight and infant
mortality. A policy, such as the US policy (1), which focuses
on reducing low birth weight in an effort to reduce infant
mortality might be effective if it lowers the proportion of
‘‘compromised’’ births. However, more efficient interven-
tions might be developed by targeting ‘‘compromised’’
births directly.

In conclusion, CDDmlr is a new method for examining
the relation of birth weight to infant mortality. Here it was
used to test the Wilcox-Russell hypothesis (7, 13–16). Ex-
amination of the effects of maternal age on birth weight and
infant mortality tended to support the Wilcox-Russell hy-
pothesis. In particular, we found statistically significant di-
rect effects of maternal age on infant mortality but few if any
indirect effects of maternal age on infant mortality operating
through birth weight, despite significant effects of maternal
age on the distribution of birth weight itself. We also found
that maternal age affected the overall birth weight distribu-
tion and total infant mortality through its effects on the pro-
portion of ‘‘normal’’ births versus ‘‘compromised’’ births.
These results suggest that interventions targeting birth
weight could have little effect on infant mortality. More
effective interventions might be designed by targeting the
direct effects and/or the proportion of ‘‘compromised’’
births.
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