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Berberine (BBR), an important quaternary benzylisoquinoline alkaloid, has been used in
Chinese traditional medicine for over 3,000 years. BBR has been shown in both traditional
and modern medicine to have a wide range of pharmacological actions, including
hypoglycemic, hypolipidemic, anti-obesity, hepatoprotective, anti-inflammatory, and
antioxidant activities. The unregulated reaction chain induced by oxidative stress as a
crucial mechanism result in myocardial damage, which is involved in the pathogenesis and
progression of many cardiovascular diseases (CVDs). Numerous researches have
established that BBR protects myocardium and may be beneficial in the treatment of
CVDs. Given that the pivotal role of oxidative stress in CVDs, the pharmacological effects of
BBR in the treatment and/or management of CVDs have strongly attracted the attention of
scholars. Therefore, this review sums up the prevention and treatment mechanisms of
BBR in CVDs from in vitro, in vivo, and finally to the clinical field trials timely. We summarized
the antioxidant stress of BBR in the management of coronary atherosclerosis and
myocardial ischemia/reperfusion; it also analyzes the pathogenesis of oxidative stress
in arrhythmia and heart failure and the therapeutic effects of BBR. In short, BBR is a hopeful
drug candidate for the treatment of CVDs, which can intervene in the process of CVDs from
multiple angles and different aspects. Therefore, if we want to apply it to the clinic on a large
scale, more comprehensive, intensive, and detailed researches are needed to be carried
out to clarify the molecular mechanism and targets of BBR.
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infarction/reperfusion

1 INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of mortality in the world. The World Heart
Federation reported that the number of people died of CVD is up to 17.3 million every year. It
is estimated that by 2030, the number of deaths due to CVD will increase to 23.6 million (Smith
et al., 2012; Hao et al., 2017). CVD accounts for up to 40% of the disease mortality in China,
making it the first cause of death and premature death among Chinese residents. China and
India have the highest burden of CVD in the world (Zhou et al., 2016; Zhao et al., 2019).
Because of the unsatisfied demands of Western medicine for the management of CVD, some
clinicians have focused on traditional Chinese medicine (TCM) to find out what role it can play
in the prevention and treatment of CVD. A large number of studies in this area, both basic and
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TABLE 1 | Detected studies reporting potential antioxidative stress effects of berberine in CVDs.

Application Experiment Intervention
measures

Model Target References

Coronary
atherosclerosis

In vivo Berberine C57BL/6 mice and ApoE−/− mice Inflammatory and oxidative
markers (NF-κB, ICAM-1, IL-6,
i-NOS)

Feng et al. (2017)

In vivo Berberine Apoe−/− mice with
hyperhomocysteinemia

Peroxisome proliferator-
activated receptor-γ (PPARγ)

Li H. et al. (2016)

In vivo Berberine Male SHR and WKY rats AMPK, endoplasmic reticulum
(ER) stress, COX-2

Liu et al. (2015)

In vivo Berberine Male C57BLKS/J-Leprdb/Leprdb mice AMPK Jeong et al. (2009)
In vitro Berberine The murine cell line J774A.1 AMPK/mTOR Fan et al. (2015)
In vitro Berberine Human umbilical vein endothelial cells LDL, oxLDL Hsieh et al. (2007)
In vitro Berberine Human peripheral blood mononuclear

cells
NLRP3 inflammasome and
IL-1β

Jiang et al. (2017)

In vitro Berberine The human acute monocytic leukemia
cell line, THP-1

oxLDL Huang et al. (2013)

In vitro Berberine Human umbilical vein endothelial cells AMPK, eNOS, NOX4 Zhang et al. (2013)
In vitro Berberine Human umbilical vein endothelial cell line

and the human premonocytic cell line
U937

Ang II Ko et al. (2007)

In vitro Berberine Raw 264.7 macrophages and 3T3-L1
adipocytes

AMPK Jeong et al. (2009)

In vitro Berberine Human umbilical vein endothelial cells oxLDL, TNFα Caliceti et al. (2017)
In vitro Berberine Monocytic THP-1 cells, human

monocyte line
NLRP3 and IL-1β Liu et al. (2016)

Coronary
atherosclerosis

In vitro Berberine Bone marrow cells, Human THP-1 cells,
Murine 3T3L-1 cells

NLRP3 inflammasome Zhou et al. (2017)

clinical trials Berberine (500 mg, daily) Mild or moderate mixed hyperlipidemia
patients

LDL and total triglycerides (TG) Cicero et al. (2007)

Clinical trials Berberine capsules (900 mg/
d for 3 months)

Patients with mild hyperlipidemia Plasma total cholesterol (TC)
and LDL-C

Wang et al. (2016)

Clinical trials Berberine nutritional agents
(containing Berberis aristata
d.e. 588 mg)

Patients with mild to moderate
hypercholesterolemia

LDL-C D’addato et al. (2017)

Myocardial
infarction/
Reperfusion

In vivo Berberine Sprague Dawley (SD) rats Phosphoinositide 3-
kinase/AKT

Qin-Wei and
Yong-Guang, (2016)

In vivo Berberine Male Wistar rats AMPK and the AKT/GSK3b
signaling pathway

Chang et al. (2016)

In vivo Berberine Male Sprague-Dawley rats Apoptosis and mitochondrial
dysfunction

Wang et al. (2015)

In vivo Berberine Male Sprague-Dawley rats Silent information regulator 1
(SIRT1)

Yu et al. (2016)

In vivo Berberine C57BL/6 mice NF-κB and PI3K/AKT Wang et al. (2018)
In vitro Berberine H9C2 embryonic rat myocardium-

derived cells
JAK2/STAT3 Zhao et al. (2016)

In vitro Berberine H9C2 cardiomyocytes Silent information regulator 1
(SIRT1)

Yu et al. (2016)

Myocardial
infarction/
Reperfusion

Clinical trials Berberine (300 mg (tid) in
addition to the therapy of the
general group)

In acute ischemic stroke (AIS) patients The serum macrophage
migration inhibitory factor and
IL-6 levels

Li Y. et al. (2016b)

Clinical trials Berberine tablets (0.3 g/
time, and three times/day)

Patients with acute myocardial infarction
treated with percutaneous coronary
intervention

Plasma level of C-reactive
protein, tumor necrosis factor α
and IL-6

Qing et al. (2018)

Arrhythmia (atrial
fibrillation)

In vivo — p47−/− mice; MsrA−/− mice; mice with
genetic CaMKII inhibition

Oxidized CaMKII Erickson et al. (2008),
Swaminathan et al.
(2011)

In vivo — Male C57BL/6 Reactive oxygen species
signaling

Yang X. et al. (2020)

In vitro — Human Jurkat T cell line Reactive oxygen
intermediates/CaM kinases

Howe et al. (2004)

Heart failure In vivo — Nampt transgenic mice NAD+ synthesis Hsu et al. (2009)
(Continued on following page)
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clinical, have attracted increasing attention from the
cardiovascular community (Hao et al., 2017). For many
centuries, BBR has been widely used to treat various
intestinal infections and fungal infections due to its well-
known and powerful antimicrobial effects. In addition, BBR
can also act on the cardiovascular system, such as regulating
blood lipids and sugar, anti-arrhythmia, vasodilation effects
(Shaffer, 1985; Marin-Neto et al., 1988). BBR may be
cardioprotective by controlling oxidative stress and
reducing injury to the myocardium, which protects the
heart, according to recent in vitro and in vivo researches
(Table 1). To promote pharmacological research,
development, and utilization of BBR, this review describes
the preventive effects of BBR in CVDs from the perspective
of ROS.

2 CHEMISTRY AND BIOACTIVITY OF
BERBERINE

Berberine (BBR) is a natural product extracted from the roots,
rhizomes, and stem bulk of the Berberidaceae and
Ranunculaceae families (such as Hydrastis canadensis, the
Chinese herb Huanglian, and many other plants) (Pang
et al., 2015; Tan et al., 2016; Ye et al., 2017; Neag et al.,
2018; Feng X. et al., 2019) (Figure 1). It has the molecular
formula [C20H18NO4]+ and a molar weight of 336.36 g/mol
(Battu et al., 2010; Tan et al., 2016). 5,6-dihydro-9,10-
dimethoxybenzo [g]-1,3-benzodioxolo [5,6-á] quinolizinium
is the chemical name for BBR (Lau et al., 2001). BBR is a yellow
needle-shaped crystal that may be precipitated in ether and has
a melting temperature of 145°C. It exhibits antimicrobial

TABLE 1 | (Continued) Detected studies reporting potential antioxidative stress effects of berberine in CVDs.

Application Experiment Intervention
measures

Model Target References

In vivo — Male NOS3-null (NOS3−/−) mice and
C57/BL6 WT mice

151 Takimoto et al. (2005)

In vivo — p47phox−/− mice and WT mice NAD(P)H Oxidase Subunit
p47phox

Doerries et al. (2007)

In vivo — SRFHKO and control (Sf/Sf) mice NAD+ Diguet et al. (2018)
In vivo — Wistar Kyoto and spontaneously

hypertensive/HF (SHHF) rat
Xanthine Oxidoreductase Minhas et al. (2006)

In vivo — Dogs Xanthine oxidase Ukai et al. (2001)
In vitro — Primary cultures of cardiac myocyte NAD+ and Sir2α deacetylase Pillai et al. (2005)

FIGURE 1 | Source and functions and of berberine extract. (A) “Shennong’s Classic of Material Medical.” (B)Completemorphology of Chinese herb Huanglian. (C)
Prepared officinal part of Chinese herb Huanglian. (D) Chemical structures of berberine compounds. (E) Pharmacological effects of berberine. Berberine was first
documented in “Shennong’s Classic of Material Medical” in China. Berberine is isolated from Hydrastis canadensis, the Chinese herb Huanglian, and many other plants,
such as the Berberidaceae and Ranunculaceae families. Berberine has many other potential pharmacological effects on various diseases, Furthermore, they have
been known to have antiatherosclerosis, antimyocardial ischemia/reperfusion, and several other effects.
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effects on hemolytic Streptococcus, Staphylococcus aureus,
Neisseria gonorrhoeae, and Freund’s Shigella, and can
improve leukocyte phagocytosis (Ye et al., 2017). Because of
extensive antibacterial activity, extracts of BBR-containing
plants or BBR have been the most successful folkloric
therapy to against dysentery and infectious diarrhea in
China for centuries (Lau et al., 2001; Neag et al., 2018).
BBR has many other potential pharmacological effects on
various diseases, it has been known to exert anti-
inflammatory and anti-cancer effects (Neag et al., 2018); in
addition, it can also induce anti-oxidative stress activities (Ye
et al., 2017; Neag et al., 2018).

BBR is rapidly transformed after oral application into phase I
products, which are then coupled with glucuronic acid or sulfuric
acid to create phase II metabolites, which are finally discharged
from urine and bile (Ma et al., 2013; Wang K. et al., 2017). The
principal metabolic pathways (Figure 2) for BBR in humans and
rats are demethylation, demethylenation or reduction and
succedent interaction with glucuronic acid and sulfuric acid
(Wang K. et al., 2017; Feng X. et al., 2019).

However, BBR itself is of low bioavailability (with a
bioavailability of less than 1%), Feng W. et al. (2019), Feng
et al. (2020) have described that gut microbiota metabolites of
BBR could reveal the enigma between low bioavailability and
powerful therapeutic effects. In gastrointestinal tract,
nitroreductases are bacterial enzymes that could catalyze the
reductive reaction of BBR (Li Y. H. et al., 2009).
Nitroreductases regulates BBR absorption by converting BBR
into absorbable dihydroberberine, which is 5–10 times more
absorbed than BBR (Li Y. H. et al., 2009). After oral
administration of BBR, the bioavailability of BBR was
significantly increased in hamsters fed a high-fat diet

compared with hamsters fed a normal diet (Li Y. H. et al.,
2009). Interestingly, BBR can reduce blood lipids in high-fat
hamsters, but it has no obvious lipid-lowering effect on normal
hamsters. The interaction of nitroreductases with BBR in the gut
has also been demonstrated in rats (Feng et al., 2015). Clinical
studies have shown that a positive relationship between blood
concentration of BBR and activity of fecal nitroreductase (Li Y. H.
et al., 2009; Wang Y. et al., 2017). There is a study showed that
BBR could modulate branched-chain amino acids biosynthesis,
degradation, and transport in gut microbiota, which alleviate
insulin resistance in animals (Yue et al., 2019). The above-
mentioned results indicate that by studying the interaction
between gut microbiota and BBR, we can change the
predicament of BBR’s low bioavailability, which will make it
better biologically.

3 MOLECULAR MECHANISMS OF
OXIDATIVE STRESS IN CARDIOVASCULAR
DISEASES
Reactive oxygen species (ROS) play a significant part in many
CVDs, and their unregulated generation is related to
myocardial tissue damage. The state of oxidative stress
results from an imbalance in the formation of ROS and
antioxidant defenses in the body, which resulting in an
accumulation of ROS and eventually damage cells and
tissues (Pizzino et al., 2017; Charlton et al., 2020). In
physiological situations, appropriate amount of ROS exerts
an influence on cellular signal transduction and physiological
function, which is equivalent to their detoxification effect
(Tsutsui et al., 2009).It is known as the redox signaling

FIGURE 2 |Chemical structure of active components of berberine. BBR ismetabolized in the body bymetabolic pathways (such as demethylation, glucuronidation
etc) to thalifendin, berberrubine, jatrorrhizin, demethyleneberberin.
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characterized by specific and invertible oxidation/reduction
modification of cell signal elements that can be modulated, and
can affect gene expression, excitation-contraction coupling, or
cell growth, migration, differentiation, and death (Burgoyne
et al., 2012; Sack et al., 2017). The process of ROS production
mainly includes enzymatic or non-enzymatic reactions, which
are generated by oxidase and then eliminated by the
scavenging system. The imbalance between ROS generation
and removal systems results in increase in ROS levels and
represent alarming stresses. Almost every subcellular organelle
in the cell produces ROS (Corpas et al., 2015; Sun et al., 2020).
At the cardiac level, the mitochondrial electron transport
chain, xanthine oxidase, nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase (NOX) and nitric oxide (NO)
synthases are the primary producers of ROS (Figure 3). In our
prior investigation, we discovered that the activity of ROS was
increased by ibrutinib in mice, which boosted the synthesis of
atrial fibrillation (AF) maintenance substrates, and ultimately
making them more susceptible to AF. Apocynin is a NOX

inhibitor that can reduce the occurrence of AF and atrial
remodeling (Yang X. et al., 2020). On the one side, NOXs
(summarized as the NOX enzyme family) are the only major
ROS resources (Drummond et al., 2011; Lassegue et al., 2012;
Xu T. et al., 2019). There is ample evidence that NOX enzymes
play a key role in the pathophysiology of several CVDs
(Brandes et al., 2010; Lassegue et al., 2012; Senoner and
Dichtl, 2019). On the other side, the activity of the
mitochondrial electron transport chain (ETC) generates
ATP to meet cellular energy requirements. In most cell
types, oxygen acts as an electron acceptor, which is another
ROS resource (Murphy, 2009; Xu T. et al., 2019). In addition,
many other enzymes such as xanthine oxidase, nitric oxide
synthase, cyclooxygenase, cytochrome P450 enzymes and
lipoxygenase, as well as other organelles, such as
peroxisomes and endoplasmic reticulum, can promote the
production of ROS in cells (Senoner and Dichtl, 2019).
Intracellular ROS is strongly linked to the pathogenesis of
CVDs, such as atherosclerosis (AS), myocardial ischemia/

FIGURE 3 | Reactive oxygen species-producing systems in cardiovascular diseases. O2
C− can be generated in extracellular myocardium by NAD(P)H, uncoupled

eNOS, xanthine oxidase, and mitochondrial respiration chains. H2O2 can be spontaneously converted into OHC− by Fe reaction and SOD. H2O2 can be detoxified by
GSH peroxidase, Trx peroxidase, and catalase to H2O and O2. The myeloperoxidase enzyme can employ H2O2 to oxygenize chloride to the strong oxidizer HOCl. In
addition, the decoupling of eNOS reduces the production of NOC in endothelial cells, and the decrease in the expression and activity of eNOS further aggravates
the production of NOC. NAD(P)H, nicotinamide adenine dinucleotide (phosphate); eNOS, endothelial nitric oxide synthase; NOC, nitric oxide; O2

C−, superoxide; HOCl,
hypochlorite; SOD, superoxide dismutase activity; H2O2, hydrogen peroxide; ONOO−, peroxynitrite; OHC, hydroxyl radicals; GSH, glutathione; GSSG, oxidized
glutathione; GPx, glutathione peroxidase; Trx, thioredoxin.
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reperfusion (I/R) injury, arrhythmia, and HF (Xu T. et al.,
2019; Sun et al., 2020).

4 EFFECT OF BERBERINE ON
CARDIOVASCULAR DISEASES

4.1 Coronary Atherosclerosis
AS is currently considered a chronic inflammatory illness.
Hyperactivated pro-inflammatory signaling pathways,
increased oxidative stress and upregulated cytokines/
chemokines expression are crucial factors in the pathogenesis
of AS. The excessive production of ROS causes oxidative stress,
which has become an essential and final common mechanism of
AS (Kattoor et al., 2017). Some researches onmouse models of AS
suggest that BBR may have an anti-atherosclerotic effect (Wu
et al., 2020; Yang X.-J. et al., 2020). BBR plays a protective and
ameliorative role in AS by regulating various cellular events that
pro-atherogenic, including the reduction of oxidative stress
(Cheng et al., 2013).

4.1.1 In Vivo
Endothelial dysfunction and cell damage is caused by oxidative
stress, which plays a key role in the onset and progression of
cardiovascular disorders, such as AS (Xi et al., 2007). In the
ApoE−/− mouse model, BBR, particularly 8-BBR-C16
administration, effectively inhibited nuclear factor kappa-B
(NF-κB) activation and reduced the protein expression of
ICAM-1, iNOS and interleukin (IL)-6. These results indicate
that the inhibition of BBR and 8-BBR-C16 on the
development of AS in ApoE−/− mice can be achieved not only
by reducing lipids levels, but also by enhancing anti-
inflammatory and antioxidant capabilities (Feng et al., 2017).
BBR is a protective agent for endothelial cells. There is a study has
found that BBR improves the stability of atherosclerotic plaques
in mice with hyperhomocysteinemia, which is associated with the
stimulation of peroxisome proliferator-activated receptor-c and
consequent reduction of oxidative stress in endothelial cells (Li H.
et al., 2016). BBR treatment can inhibit endoplasmic reticulum
stress and thereby eliminate ROS, resulting in cyclooxygenase
(COX)-2 down-regulation (Liu et al., 2015) or reduction of
endothelial microparticle-mediated oxidative stress, thereby
improving endothelial function (Cheng et al., 2013). It has
been demonstrated that probiotics can influence the lipid
metabolism and effectively reduce AS by means of regulating
gut microbiota to decrease trimethylamine oxide (Liang et al.,
2020). The study has shown that different short chain fatty acids
have different effects on the activation of Nod-like receptor family
pyrin domain containing-3 (NLRP3) and formation of arterial
neointima. Among short chain fatty acids, butyrate has promising
therapeutic effects and can serve as a new source of therapeutic
strategies for AS (Yuan et al., 2018). An article concluded that the
regulatory role of BBR in metabolic abnormalities and AS is
achieved through the interaction with the gut microbiota (Cao
et al., 2021). The research indicated that in high-fat diet-fed rats,
BBR restored the gut barrier, decreased inflammatory and
oxidative stress markers, and improved gut peptide levels via

regulating gut microbiota (Xu et al., 2017). In ApoE-/- mice fed a
high-fat diet, BBR can improve serum lipid and systemic
inflammation levels, and alleviate AS, which may be partly due
to changes in composition and functions of gut microbiota (Wu
et al., 2020). A similar animal study showed that BBR alleviated
AS development and decreased inflammatory cytokine
expression, which is related to alterations in gut microbiota
compositions (Shi et al., 2018). Gut microbiota are of great
value in the treatment of disease processes, and studies have
found that modulating gut microbiota, especially increasing the
abundance of Akkermansia, may be helpful to improve the anti-
atherosclerotic andmetabolic protective effects of BBR (Zhu et al.,
2018).

4.1.2 In Vitro
Atherosclerosis is an inflammation-driven disease and
macrophages have a central role in the modulation of
inflammation. Two major macrophages phenotypes have been
characterized according to the activation by different
microenvironmental signals: pro-inflammatory M1
macrophages induced by bacterial lipopolysaccharide (LPS)
and/or interferon gamma (IFN-γ) and anti-inflammatory M2
macrophages triggered by IL-4 or IL-13 (Kuznetsova et al., 2020;
Yang et al., 2021). There is research suggested that BBR not only
inhibit M1 macrophages polarization, but also promote M2
macrophages polarization (Yang et al., 2021). Activated
macrophages produce a number of inflammation-related
factors such as IL-1β, TNF-α, IL-6, IL-8, matrix
metalloprotease-9 (MMP-9), and so on, which initiate
inflammation to induce AS (Kleemann et al., 2008). Some
studies suggest that BBR significantly downregulated the
proinflammatory cytokines (TNF-α, IL-6, IL-1β, and MCP-1)
(Jeong et al., 2009; Wang et al., 2020). NOX may be the most
important ROS generation system in the cardiovascular system
(Kattoor et al., 2017). BBR inhibited the generation of ROS, which
may be caused by the inhibition of the activated NOX content
(Jiang et al., 2017). On the one hand, NOX activity in
macrophages is an important part of the production of
oxidized low-density lipoprotein (ox-LDL) (Kattoor et al.,
2017). Ox-LDL, which stimulates circulating monocytes and
increases their potential to penetrate blood vessel walls, is one
of the novel and high-profile cardiovascular risk factors.
Increased infiltration is a critical factor in the occurrence of
AS (Huang et al., 1999; Cipolletta et al., 2005; Hulsmans and
Holvoet, 2010). BBR can stimulate macrophage autophagy
through AMPK/mTOR signaling pathway, thereby attenuating
the inflammatorymarkers generated by ox-LDL (Fan et al., 2015).
In human umbilical vein endothelial cells (HUVECs), oxidative
stress is alleviated to a sufficient degree to normalize ApoB
fragmentation after BBR treatment. It is suggested that BBR
has strong antioxidant capacity and inhibits LDL oxidation
(Hsieh et al., 2007). BBR significantly reduced the adhesion of
monocytes and HUVECs induced by ox-LDL, and this effect was
positively correlated with the dose. The experiments show that
BBR has a protective effect in the early stage of AS (Huang et al.,
2013). On the other hand, the activation of NOX can promote the
formation of ROS, leading to endothelial dysfunction (Sena et al.,
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2013). NOX4 is a subtype of NOX, which is mainly expressed in
vascular endothelial cells and is the main source of endothelial
cells to produce O2

− (Zhang et al., 2013). In palmitic acid-treated
HUVECs, BBR reduced ROS production and NOX4 protein
expression (Zhang et al., 2013). Moreover, excessive ROS, up-
regulated monocyte chemoattractant protein (MCP)-1, and
increased adhesion of monocytes to endothelial cells induced
by Ang II can all be effectively inhibited by BBR (Ko et al., 2007).
According to research findings, BBR mainly inhibits the
accumulation of ROS derived from NOX4 in HUVECs (Zhang
et al., 2013) or the production of cellular ROS in macrophages by
activating AMPK (Jeong et al., 2009). BBR treatment can reduce
the level of ROS in endothelial cells after acute exposure to H2O2

(Caliceti et al., 2017). Furthermore, the activation of NLRP3
inflammasomes can also be suppressed by BBR: BBR reduces
the activation of ROS-dependent NLRP3 inflammasomes in
macrophages and inhibits NF-κB, which inhibits the
expression and release of IL-1β (Jiang et al., 2017; An et al.,
2019). BBR reduces the activation of inflammasomes induced by
natriuretic acid crystals by inhibiting the expression of NLRP3
and IL-1β (Liu et al., 2016). Furthermore, BBR also inhibits the
action of NLRP3 inflammasomes and the production of IL-1β
induced by saturated fatty acids (palmitate) in adipose tissue-
derived macrophages through activating AMPK-dependent
autophagy (Zhou et al., 2017).

4.1.3 Clinical Trials
The lipids that cause AS, particularly low-density lipoprotein
cholesterol (LDL-C), have occasional effects on the occurrence
and development of atherosclerotic plaques (Ference et al., 2017;
Fatahian et al., 2020). Numerous clinical trials have been
conducted to investigate the role of BBR in the treatment of
atherosclerotic lipids. It has been shown that in mild or moderate
mixed hyperlipidemia patients, 500mg of BBR daily were able to
significantly reduce LDL and total triglycerides (TG). And no
adverse events were reported during the study (Cicero et al.,
2007). A clinical randomized controlled trial concluded that oral
BBR capsules (900 mg/d for 3 months) were effective in reducing
plasma total cholesterol (TC) and LDL-C levels compared with
placebo in patients with mild hyperlipidemia (Wang et al., 2016).
A multicenter, randomized, double-blind, placebo, controlled
trial confirmed the safety and efficacy of BBR in patients with
mild to moderate hypercholesterolemia, where continuous daily
oral BBR nutritional agents (red yeast rice, coenzyme Q10, and
hydroxytyrosine, containing Berberis aristata d.e. 588 mg) for
4 weeks induced a 26% reduction in LDL-C (D’addato et al.,
2017). The study suggests that combined administration of
monacolin K and BBR could provide similar protection from
CVDs compared to prescription statin therapy, with potentially
lower risks for adverse effects (D’addato et al., 2017). In addition,
there are some meta-analyses showed that BBR was successful in
reducing TC and LDL cholesterol. A meta-analysis that included
19 controlled and cross-sectional trials indicated that the
combination of BBR with silymarin significantly lowered
cholesterol (Bertuccioli et al., 2020). Moreover, a meta-analysis
including 16 randomized controlled trials with 2,147 participants
strongly confirmed the BBR’s efficacy and safety in the treatment

of dyslipidemia patients. They thought that the blood lipid status
of patients with dyslipidemia was significantly improved after
BBR treatment, and the safety was satisfactory, the contents of TC
and LDL-C were significantly decreased, and no significant
adverse events occurred (Ju et al., 2018). Another clinical
study and meta-analysis showed that BBR combined with
nutritional supplements or combined oral administration of
BBR and drugs could reduce plasma LDL-C and TC levels
without significant side effects (Affuso et al., 2010; Marazzi
et al., 2011; Pisciotta et al., 2012; Cicero et al., 2019; Zhang
et al., 2019). In conclusion, these studies all confirm that BBR
regulates plasma cholesterol levels in patients with dyslipidemia
and that this natural compound provides an exciting and
encouraging preventive and therapeutic strategy for AS.

4.2 Myocardial Infarction/Reperfusion
Myocardial infarction is one of the common ischemic heart
diseases and is the main cause of mortality in high-income
societies (Kim et al., 2009). Reperfusion itself can lead to other
injuries, such as cardiac dysfunction, reperfusion arrhythmia, and
aggravated myocardial infarction. ROS is critical for organ
damage during I/R (Cross et al., 1987; Halliwell et al., 1992;
Jeroudi et al., 1994). Numerous researches have demonstrated
that the formation of ROS increases regardless of whether it is
during I/R (Minutoli et al., 2016). The mechanisms by which
excessive ROS induce cellular injury involve interference with cell
signal transduction, activation of inflammatory factors, lipid
peroxidation (Davidson et al., 2012) and even direct cell death
(Zhan et al., 2016). BBR has antioxidant and anti-inflammatory
effects, meanwhile, BBR treatment has a cardioprotective effect
on I/R injury, and can significantly improve cardiac function after
I/R injury (Qi et al., 2010; Chang et al., 2012; Gao et al., 2012;
Chang et al., 2016; Zhao et al., 2016).

4.2.1 In Vivo
There is a study offered direct evidence that BBR-treated rats
played an antioxidant role by reducing cardiac superoxide
production, gp91phox expression, malondialdehyde (MDA)
concentration and promoting superoxide dismutase (SOD)
activity (Yu et al., 2016). In previous research, the levels of
MDA, a marker of lipid peroxidation (Chang et al., 2016), were
significantly reduced in the BBR-treated diabetic rat model
(Chang et al., 2016). Sirtuin 1 (SIRT1)-mediated antioxidant
effects have been shown to exert a protective effect on I/R
myocardium (Zhang et al., 2018). Mitochondria is the center of
energy production. Ischemia triggers energy depletion, leading
to mitochondrial dysfunction, which increases oxidative stress
and induce apoptosis (Bulteau et al., 2005; Bhatti et al., 2017).
In turn, oxidative stress aggravates ischemia reperfusion injury
(Bulteau et al., 2005; Wang et al., 2015; Bhatti et al., 2017). In
myocardial ischemia-reperfusion model of male Sprague-
Dawley rats, the mitochondrial membrane potential (MMP)
is improved due to BBR pretreatment, indicating that
I/R-induced mitochondrial lesion was obviously reduced
(Wang et al., 2015). Yu et al. (2016) found that SIRT1
inhibitors abrogated the antioxidant effect of BBR using a
rat myocardial I/R injury model, suggesting an indispensable
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role of SIRT1 in the cardioprotective effect of BBR. The anti-
inflammatory effect of BBR is associated with its inhibition of
phosphoinositide 3-kinase (PI3K)/AKT signaling pathway,
which reduces the secretion of a variety of pro-
inflammatory cytokines/mediators in cardiac myocytes and
serum, such as IL-6, IL-1β and tumor necrosis factor (TNF)-α
in serum and cardiac myocytes (Shang et al., 2010; Li et al.,
2014; Qin-Wei and Yong-Guang, 2016). In addition, BBR also
alleviated inflammation by suppressing the NF-κB signaling
pathway (Wang et al., 2018). Moreover, it has been reported
that the BBR derivative rainanberine protects pulmonary
arterial ring and by inhibiting NOX and calcium influx
(Gao et al., 2012). In addition, Liu et al. (2017) suggest a
potential new strategy by which exercise benefits the
cardiovascular system by altering the microbiome. Zununi
Vahed et al. (2018) reviewed the development of microbiota
dysbiosis after myocardial infarction and gave recent advances
in a microbiota-based therapeutic strategy to delay or prevent
myocardial infarction. Administration of antibiotics decrease
or increase the abundance of specific bacterial groups in the rat
intestine, which links to severity of myocardial infarction and
may provide opportunities for novel diagnostic tests and
interventions for prevention of CVD (Lam et al., 2012; Lam
et al., 2016). Beneficial microbiota reduce MI risk factors or
reduce post-MI events mainly by modulating lipogenesis and
cholesterol metabolism and antioxidant production (Girard
et al., 2009; Lam et al., 2012; Mccafferty et al., 2012; Gan et al.,
2014). As a consequence, further studies are needed to devise
the impact of BBR on intestinal microbiota and myocardial
infarction though ROS.

4.2.2 In Vitro
In addition, the antioxidant effect of BBR was also observed in
cultured cells (Tan et al., 2007; Chatuphonprasert et al., 2013).
BBR significantly attenuated I/R injury in SIR-injured H9C2
cardiomyocytes, and the SIRT1 signaling pathway more or less
mediated this cardioprotective property characterized by
antioxidant and anti-inflammatory effects (Yu et al., 2016).
Furthermore, SIR-induced cardiac apoptosis, oxidative stress
and endoplasmic membrane stress were remarkably
downregulated by BBR (Zhao et al., 2016).

4.2.3 Clinical Trials
Unfortunately, although a large number of preclinical studies
have conclusively concluded that BBR has a preventive and
curative effect on I/R, its clinical studies are scarce (Liu et al.,
2019). For the first time, Li Y. et al. (2016) found evidence that
neurological deficits and the prognosis were improved in acute
ischemic stroke (AIS) patients. The BBR group received BBR
300 mg (tid) in addition to the therapy of the general group. They
believe that BBR worked by downregulating the serum
macrophage migration inhibitory factor and IL-6 levels. And
there was no significant difference in the incidence of adverse
reactions between the two groups (Li Y. et al., 2016). Similarly, the
BBR group was given additional BBR tablets 0.3 g/time, and taken
three times a day. The results suggest that BBR prolonged the life
expectancy and improved the quality of life in patients with acute

myocardial infarction treated with percutaneous coronary
intervention (Qing et al., 2018). Moreover, they also
discovered that the plasma level of C-reactive protein, tumor
necrosis factor α and IL-6 were considerably decreased by BBR
treatment. In summary, all of these findings indicated that BBR
may alleviate I/R injury by inhibiting the over-reactive
inflammatory response.

4.3 Arrhythmia
Arrhythmia is defined as an abnormality of the heart rate or
rhythm due to an abnormality in the frequency, rhythm, pacing
site, conduction velocity, or sequence of excitation of the heart
impulses, with AF being the most prevalent and closely linked to
high cardiovascular morbidity and mortality (Nattel and Dobrev,
2016; Barangi et al., 2018).

4.3.1 Oxidative Stress in Atrial Fibrillation
Atrial structural remodeling, electrical remodeling, alterations in
the autonomic nervous system, and Ca2+ disturbances are the
four major mechanisms of AF pathogenesis. In addition,
increased ROS might alter ion channel activity, thereby
increasing AF susceptibility (Barangi et al., 2018). ROS via
modifying proteins central to excitation–contraction coupling,
including L-type calcium channels, sodium channels, potassium
channels, and sodium-calcium exchangers, which may contribute
to the pathogenesis of the arrhythmia (Takimoto and Kass, 2007).
ROS also affects the function of the sarcoplasmic reticulum Ca2+-
adenosine triphosphatase (SERCA) and changes the activity of
calcium sensitivity in myofilaments. Additionally, ROS causes an
energy deficit by interfering with the action of energy-
metabolizing proteins. Eventually, ROS promotes fibrosis via
increasing cardiac fibroblast proliferation and matrix
metalloproteinases, which results in extracellular remodeling
(Takimoto and Kass, 2007; Van Der Pol et al., 2019). On the
one hand, excessive ROS was detected in cardiac tissue of several
atrial pacing models, which leads to electrical changes in the atria
and ultimately induces AF (Violi et al., 2014; Karam et al., 2017;
Korantzopoulos et al., 2018). On the other hand, the role of
oxidative stress in the pathogenesis of AF has been increasingly
recognized. The risk factors that induce AF, such as adiposity,
diabetes, age, and hypertension, may all be linked by oxidative
stress (Ziolo and Mohler, 2015). Accelerated ROS in myocardial
tissues causes DNA, protein, and lipid damage, as well as tissue
injury. These events lead to heart structural and electrical
remodeling, which increases susceptibility to AF (Barangi
et al., 2018). Meanwhile, the multifunctional calcium/
calmodulin-dependent protein kinase II (CaMKII) as a sensor
is activated after being stimulated by ROS, thereby promoting the
occurrence of arrhythmia (Erickson et al., 2008; Swaminathan
et al., 2011). Ox-CaMKII could be regarded as a biomarker
activated by ROS, mediating the development of AF (Howe
et al., 2004; Erickson et al., 2008; Palomeque et al., 2008). In
our previous study, we have proved the effects of ROS on atrial
cardiomyocytes of mice, and it is possible that ROS activates ox-
CaMKII and p-CaMKII (Thr-286) to increase AF susceptibility
after ibrutinib treatment (Yang X. et al., 2020). Gut microbe-
derived metabolites function primarily to modulate energy

Frontiers in Pharmacology | www.frontiersin.org March 2022 | Volume 13 | Article 8653538

An et al. Berberine in Cardiovascular Diseases

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


metabolism, local and systemic immune systems, and neural
activity (Liu et al., 2022). Based on a strategy of metagenomic
and metabolomic analyses, the study shown that the disordered
gut microbiota and microbial metabolite profiles in AF.
Imbalances in gut microbial function and associated changes
in metabolic patterns were observed in both feces and serum of
patients with AF (Zuo et al., 2019). The heart-gut axis is a
potential target for CVDs therapy. A high-fructose diet can
induce inflammation of the heart-gut axis and metabolic
disturbances that ultimately lead to arrhythmias (Cheng W. L.
et al., 2021). The current study demonstrates that aged-associated
microbiota dysbiosis promotes AF in part through a microbiota-
gut-atria axis. It is indicating that in fecal microbiota
transplantation rat model, the microbiota-intestinal barrier-
atrial NLRP3 inflammasome axis may be a reasonable
molecular target for the treatment of age-related arrhythmias
(Zhang et al., 2021).

4.3.2 Berberine in Atrial Fibrillation
Huang et al. described the anti-arrhythmic activity of BBR for the
first time in 1989 (Feng X. et al., 2019). BBR exerts its
antiarrhythmic effect by prolonging action potential duration
(APD), which is due to the mechanism that BBR blocks ion
currents (Barangi et al., 2018). In cardiac myocytes, BBR
significantly shortened the extended QTc interval while also
stabilized the decreased transient outward potassium current
(Ito) and L-type Ca2+ (ICa) currents (Wang et al., 2012) or
depressed ATP-sensitive K+ channel (KATP) channel activation
(Wang et al., 1996). The effects of BBR on cell membrane ion
currents was related to its concentration, with BBR at
concentrations of 0.3–30 µM blocking rapid (IKr) delayed
rectifier K+ channels and at higher dose inhibiting Ito
(Sanchez-Chapula, 1996). Further studies revealed that BBR as
well as the derivatives of BBR targets a variety of channels
including the cardiac slow (IKs) delayed rectifier K+ channels
and IKr, KATP, inwardly-rectifying K

+ channel (IKl), ICa (Chi et al.,
1996; Chi et al., 1997; Lau et al., 2001; Li et al., 2008). Na channel
activity plays a major role in mediating proper action potential
conduction across the heart (Karam et al., 2017). Studies have
shown that elevated intracellular NADH causes a decrease in
cardiac Na+ current (INa) signaled by an increase in
mitochondrial ROS (Liu et al., 2009; Liu et al., 2010). Liu et al.
(2013) demonstrated a reduction in mitochondrial ROS in
cardiomyopathy will reverse the reduced INa and possibly
some of the arrhythmic risk by improving conduction velocity.
BBR increases myocardial contractility and cardiac output via
blockade of K+ channels, stimulation of Na+–Ca2+ exchanger, and
elevation of coronary blood flow. It is considered that a transient
inwardcurrent carried primarily by Na+, which is intimately
associated with an increase in intracellular Ca2+ overload, is
responsible for the delayed afterdepolarization. This effect is
also likely to be involved in the antiarrhythmic effect of BBR
(Lau et al., 2001). Recently, there are some studies that have
shown that, through its favourable antioxidant and sodium
channel inhibitory effects, Cannabidiol, is the main non-
psychotropic constituent of the Cannabis sativa plant, may
protect against high glucose-induced arrhythmia and

cytotoxicity (Fouda et al., 2020; Fouda and Ruben, 2021).
Future studies may reveal the antiarrhythmic effect of BBR
through ROS and sodium channels. In rabbit atrial myocytes,
Acetylcholine-induced AF can be inhibited by the effects of BBR
to prolong APD and increase the effective refractory period of the
atrium. Notably, The RR interval and effective refractory period
(ERP) were likewise prolonged by BBR. According to the above-
mentioned mechanisms, BBR treatment results in the
termination of the acetylcholine-induced AF (Zhou et al.,
2015). The IC50 value indicates the concentration of the
inhibitor which is required to inhibit a given biological or
biochemical function by half (Caldwell et al., 2012). The
research found that the drug at concentrations of 0.3–30 μM
blocked only the delayed rectifier (IK) current with an IC50 =
4.1 μM. BBR produced a tonic block and a phasic block that was
increased with the duration of the depolarizing pulse (Sanchez-
Chapula, 1996). CPU86017 is a novel Class III antiarrhythmic
agent derived from BBR. It blocks IKr.tail, IKs, and ICa currents with
IC50 values of 25, 14.4, and 11.5 μM, respectively (Dai, 2006).

Although several experiments have shown that BBR has an
anti-arrhythmic impact by changing ion channel activity. Few
researches have focused on the antioxidative effects of BBR in AF
condition. Therefore, further research in vivo and vitro or clinical
trials investigating the antiarrhythmic effect of BBR via ROS are
warranted.

4.4 Heart Failure
HF is a complicated clinical syndrome caused by abnormalities in
the cardiac structure or function, and its pathogenesis involves
structural changes, neurohumoral, cells, and molecules (Van Der
Meer et al., 2019). HF is an increasing global burden of disease
characterized by altered excitation-contraction coupling, cardiac
energy deficit, and oxidative stress (Weissman and Maack, 2021).

4.4.1 Oxidative Stress in HF
Nicotinamide adenine dinucleotide (NAD+) and its reduced
dinucleotide NADH play a pivotal role in driving oxidation-
reduction reactions refer to energy production (Mericskay, 2016;
Hershberger et al., 2017). In addition to its function in regulating
the energy metabolism of cardiomyocytes, NAD+, as a precursor
for the phosphorylated dinucleotide pair NADP+/NADPH, is
vital in the detoxification of ROS (Mericskay, 2016; Hershberger
et al., 2017). Reduced myocardial NAD+ levels have been
observed in HF murine models (Pillai et al., 2005; Hsu et al.,
2009; Rajamohan et al., 2009). Excessive ROS triggered left
ventricular (LV) dilatation, LV remodeling, and consequently
LV systolic dysfunction in mice (Takimoto et al., 2005). In mice
myocardial infarction models, NOX inhibition lacking the
cytoplasmic NOX component p47phox attenuates ventricular
remodeling and dysfunction (Doerries et al., 2007). In a
murine HF model, cardiac function and redox status could be
improved by supplementing NAD+ levels and nicotinamide
riboside (NR), a precursor of NAD+ (Diguet et al., 2018).
After inhibition of xanthine oxidase using oxypurinol (rats) or
allopurinol (dogs), the heart from LV remodeling was protected,
the LV contractile function and myocardial efficiency post-
cardiac injury was improved. These observations suggest that
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xanthine oxidase inhibition restores cardiac structure and
function, and may enhance myocardial calcium sensitivity in
HF (Ukai et al., 2001; Minhas et al., 2006). The gut microbial
modulation of inflammation through short-chain fatty acids
production, which is important in disease states. In patients
with HF, the abundance of Ruminococcaceae on the family
level was decreased and abundance of Blautia from the
Lachnospiracea family on the genus level was reduced (Kamo
et al., 2017), and the levels of Faecalibacterium prausnitzii was
reduced (Cui et al., 2018). In HF, most of the microbes that were
reduced belonged to the Lachnospiracea family, in addition to
Faecalibacterium from the Ruminococcacea family (Kummen
et al., 2018). Butyrate exerts local anti-inflammatory effects in
the gut mucosa, and stimulates surrounding regulatory T cells
(Arpaia et al., 2013). Kummen et al. (2018) reported that patients
with chronic HF have reduced butyrate-producing potential
bacteria (Kummen et al., 2018). Evidence suggests that
elevated bacterial translocation during HF is the result of one

or more mechanisms, including altered gastrointestinal structure
and function during visceral hyperemia, and abnormal host
immune defenses (Tang et al., 2019). There are two main
ways in which gut microbiota directly interact with BBR: 1)
BBR modulates gut microbiota; 2) gut microbiota transforms
BBR. Researching interactions between BBR and gut microbiota
will be providing reference for clinical rational use of BBR in the
treatment of diseases (Cheng H. et al., 2021).

4.4.2 Berberine in HF
Cardiac function in transverse aortic constriction (TAC) surgery
induced chronic HF in mouse model can be remarkably
ameliorated by BBR (Abudureyimu et al., 2020). In a high-
dose isoprenaline (s.c.)-induced HF model in rats, 12 days of
continuous administration of total saponins of Panax ginseng
(20 mg/kg/d) combined with BBR (20 mg/kg/d) had similar
therapeutic effects compared with captopril alone (Li Y. et al.,
2009). BBR (63 mg/kg/d, p.o., 4 week) was further proven to be a

FIGURE 4 | Reactive oxygen species in the evolution of cardiovascular diseases (CVDs) and pharmacological mechanism of berberine (BBR). During the evolution
of atherosclerotic plaques, the main role of berberine is to inhibit the oxidation of LDL, Ang II and inflammation, or activate AMPK and PPARγ, and further inhibiting the
oxidative stress response; BBR in MI/R regulates superoxide reaction by MDA, thereby preventing excessive myocardial injury. BBR may regulate oxidative stress
through the NF-κB signaling, PI3K/AKT signaling, JAK2/STAT3 signaling and so on. Oxidative stress mainly affects SR and RyR2 through ox-CaMKII and causes
calcium overload, which eventually leads to AF. In terms of treatment, BBRmainly reduces the occurrence of AF by inhibiting ion channels. ROS-induced HF is mainly due
to NADH/NADPH, mitochondrial disorders, XO and NOS, but the improvement of berberine in HF is mostly clinical research. Therefore, it is necessary to further study the
mechanisms of BBR to treat HF through ROS and find for clinical treatment new targets.
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promising medicine to ameliorate HF by targeting the inhibition
of cardiomyocyte Ca2+ overload (Zhang et al., 2008). Similarly,
intravenous BBR administration reduced left ventricular end-
diastolic pressure and systemic vascular resistance, thereby
improving cardiac output in dogs with ischemic HF (Huang
et al., 1992). This activity has also been validated in other animal
models (Ko et al., 2000). A randomized, double-blind controlled
study concluded that BBR significantly improved left ventricular
ejection fraction (LVEF), exercise capacity, dyspnea-fatigue
index, and lowered the frequency and complexity of
ventricular premature complexes (VPCs) in patients with
chronic HF (Zeng et al., 2003). However, despite the above
mentioned abundant preclinical studies suggesting an
important role for oxidative stress in the development of HF,
unfortunately, there is currently a lack of clinically recognized
treatments that directly target ROS (Weissman andMaack, 2021).
This may be due to that in the experimental setting, the most of
the researches to test the efficacy of anti-oxidative stress
treatments in HF models, while in the clinical setting the
treatments of anti-oxidative stress were primarily tested in
patients with acute myocardial infarction and not HF (Van
Der Pol et al., 2019). Hypertension is a major risk factor for
CVDs, including coronary artery disease, stroke, HF, AF and so
on (Yousefian et al., 2019). Several studies have demonstrated the
therapeutic potential of BBR and its derivatives for hypertension
(Liu et al., 1999; Zhang et al., 2005; Lan et al., 2015). A systematic
review investigate BBR effect on blood pressure and CVD risk in
five randomized controlled trials and two non-randomized
controlled trials were included with 614 participants (Suadoni
and Atherton, 2021). It has been reported that natural
compounds can improve hypertension due to the formation of
stable free radicals with ROS-derived NADPH oxidase and
prevent the assembly of NOX subunits (Yousefian et al.,
2019). It was showed that NOX4-derived ROS play an
important role in endothelial microparticles-induced oxidative
stress, and BBR can reverse cell damage caused by elevated
endothelial microparticles (Cheng et al., 2013). Tian et al.
(2019) suggest that in 2K1C renovascular hypertensive rats,
BBR attenuates hypertension and sympathoexcitation though
the ROS/Erk1/2/iNOS pathway. Therefore, more work should
be taken to investigate the mechanisms of BBR or other clinical
therapies on HF via ROS and find new targets for the clinical
management.

5 CONCLUSION

In recent years, an increasing number of studies have begun to
focus on the role of BBR in CVDs. In the last decade, there are
also a growing number of studies showing the unexpected
therapeutic effects of BBR on many CVDs, including AS,
myocardial I/R, AF and so on (Figure 4, created with
BioRender.com). In this paper, we systematically and
comprehensively review the chemical properties,

bioavailability, and molecular mechanisms of BBR on CVDs
via oxidative stress. Besides, the application of BBR in
metabolic diseases is limited by its unsatisfied oral
bioavailability. As a result, improving the bioavailability of
BBR is a problem that needs to be addressed to expand its
clinical application. It is fortunate that polymer materials and
nanotechnology provide us a new idea (Zhu et al., 2013;
Mirhadi et al., 2018; Xu H. Y. et al., 2019). There is
research that shows that novel nanoemulsion provides a
promising carrier to improve the hypoglycemic efficacy of
BBR by overcoming its gastrointestinal deficiency.
Nanoemulsion increased the oral bioavailability of BBR in
rats by 212.02% (Xu H. Y. et al., 2019). Moreover, Mirhadi et al.
(2018) describes different types of nanocarriers (polymeric
based, magnetic mesoporous silica based, lipid based,
dendrimer based, graphene based, silver and gold
nanoparticles) have been used for encapsulation of BBR.
Similarly, the self-microemulsifying drug delivery system
formulation could be used as a possible alternative to
traditional oral formulations of BBR to improve its
bioavailability, which was enhanced about 2.42-fold
compared with the commercial tablet in rats (Zhu et al.,
2013). The information can be referred to for the future
research related to BBR.

BBR is extensively used in clinical practice in traditional
medicine. Therefore, it is worthwhile to explore the active
ingredients of BBR and to elaborate the mechanism of BBR
deeply from the perspectives of molecular biology and
pharmacokinetics, which is beneficial to promote the broader
clinical application of BBR. In short, the role of BBR in preventing
and treating CVDs should not be underestimated, and rigorous,
large-scale, long-term, high-quality, multicenter clinical trials
need to be implemented to confirm the efficacy, safety, and
economic benefits of BBR. What needs to be emphasized is
that researches on the association between BBR, BBR
structural analogs, BBR-containing plants and CVD, especially
clinical investigations, needs to continue.
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