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Leptin is a pleiotropic adipocytokine involved in several physiologic functions, with a
known role in innate and adaptive immunity as well as in tissue homeostasis. Long- and
short-isoforms of leptin receptors are widely expressed in many peripheral tissues and
organs, such as the respiratory tract. Similar to leptin, microbiota affects the immune
system and may interfere with lung health through the bidirectional crosstalk called the
“gut-lung axis.” Obesity leads to impaired protective immunity and altered susceptibility
to pulmonary infections, as those by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). Although it is known that leptin and microbiota link metabolism and lung
health, their role within the SARS-CoV2 coronavirus disease 2019 (COVID-19) deserves
further investigations. This review aimed to summarize the available evidence about: (i)
the role of leptin in immune modulation; (ii) the role of gut microbiota within the gut-lung
axis in modulating leptin sensitivity; and (iii) the role of leptin in the pathophysiology of
COVID-19.
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INTRODUCTION

Leptin adipocytokine is a pleiotropic hormone involved into widespread physiologic function,
such as appetite and metabolic rate (Münzberg and Morrison, 2015; Mancuso et al., 2018), and
in maintaining the homeostasis of immune system (La Cava and Matarese, 2004; Pérez-Pérez et al.,
2017; Maurya et al., 2018; de Candia et al., 2021; Salum et al., 2021). The lung has been known as a
sensitive and leptin-producing organ for more than 20 years with extensive research published for
the role of leptin in the respiratory system, both in animals (Wang et al., 1996; De Matteis et al.,
1998; Tsuchiya et al., 1999; Bergen et al., 2002) and humans (Bruno et al., 2005a, 2009, 2011; Unal
et al., 2006; Vernooy et al., 2009; Malli et al., 2010; Brandao-Rangel et al., 2021; Figure 1A).

High leptin concentrations are directly associated with obesity and/or the subsequent
development of metabolic disease sequelae, such as insulin resistance, type 2 diabetes, and
cardiovascular diseases (Ghadge and Khaire, 2019), all key risk factors associated with increased
coronavirus disease 2019 (COVID-19) mortality (Kim et al., 2021; Mohammad et al., 2021). In
addition, it has been assessed that an increased leptinemia is observed not only in patients with
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obesity and metabolic syndrome but also in patients who are not
obese but affected by other inflammatory diseases, such as sepsis
and respiratory infections (Vernooy et al., 2013; Birlutiu and
Boicean, 2021; Karampela et al., 2021). Furthermore, increased
value of leptin is one of the factors that raised the risk of non-
alcoholic fatty liver disease presence in patients with prediabetes
(Vesa et al., 2020) as well, after adjusting for body mass index
(BMI) or fat mass, serum leptin levels result positively and
independently associated with peripheral artery disease (Zahner
et al., 2019).

Angiotensin converting enzyme 2 (ACE-2), a receptor
required for the entry of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) into the cells, is expressed on
lungs, gut, pancreas, kidneys, heart, in vessels blood, and adipose
tissue. Emerging evidence indicates that the ACE-2 expression
is increased in individuals who are obese and overweight
(Mohammad et al., 2021). Indeed, obesity appears to be a risk
factor for worsening the severity of COVID-19 or of SARS-
CoV-2 infection: large retrospective studies report a greater rates
of obesity among patients with severe COVID-19 (Guerson-Gil
et al., 2021; Zhou et al., 2021).

Similar to leptin, the gut microbiota is involved in the
development and preservation of the immune system, energy
homeostasis, and nutritional status (Belkaid and Hand, 2014;
D’Argenio and Salvatore, 2015). Dysbiosis, altered microbiota
composition, is associated with an increase in the proportion
of bacteria with a pro-inflammatory profile, with a low-
grade, persistent and systemic inflammation, and with poor
outcomes in patients with COVID-19 (Magalhães et al., 2021;
Moreira-Rosário et al., 2021). Interestingly, the gut microbiota
may affect lung health through a crosstalk called the “gut-
lung axis.”

The contribution of pro-inflammatory adipocytokine as
leptin, together with the host microbiota, in modulating the
immune system is a topic of interest in this research field.

LEPTIN, AT A GLANCE

Leptin is a 16-kD non-glycosylated hormone of 167 amino acids
discovered in 1994 (Zhang et al., 1994) with a tertiary structure
resembling that of members of the long-chain helical cytokine
family. Leptin production is related to the amount of fat tissue
(Considine et al., 1996), despite variability in plasma leptin
concentration is independent from fat (Behnes et al., 2012) as
leptin is produced by placenta, gastric mucosa, mammary gland,
skeletal muscle, brain, intestine, bone marrow, and lymphoid
tissues (Wolsk et al., 2012; Vernooy et al., 2013; Li et al., 2017;
Pan et al., 2017; Pérez-Pérez et al., 2018).

Leptin receptor was found in lungs both from human and
animals (Wang et al., 1996; De Matteis et al., 1998; Bruno et al.,
2005a, 2009) and in human inferior turbinates (Bruno et al.,
2019). Since a while, it has been assessed that leptin displays
many faces in the respiratory system, from lung embryogenic to
maturation and to the control of ventilation (Tankersley et al.,
1998; Takabatake et al., 1999; Jutant et al., 2021). All these
functions are mainly related to the leptin-signaling pathway

involvement in immune modulation (La Cava and Matarese,
2004; Procaccini et al., 2017).

Leptin modulates both innate and adaptive immune
responses in monocytes/macrophages (Curat et al., 2004),
neutrophils, eosinophils, effector, and regulatory T lymphocytes
(Bruno et al., 2005b; Conus et al., 2005; Lourenço et al.,
2016). Furthermore, a large amount of literature reports an
important association between leptin and inflammation (Naylor
and Petri, 2016; Becerril et al., 2018; Ziegler et al., 2019;
Schoeman and Fielding, 2021).

Leptin modulation of inflammatory responses can directly
contribute to the pathophysiology of COVID-19. Leptin activates
monocytes promoting cytokine storm that contribute to severe
respiratory distress syndrome and multiple-organ failure in
COVID-19. Upon infection, patients with excessive fat mass
would be prone to produce more leptin. High levels of leptin
were associated with inflammatory mediators and disease severity
in obese and not obese patients (Vernooy et al., 2013; Birlutiu
and Boicean, 2021; Karampela et al., 2021; Wang et al., 2021).
A state of low-grade, chronic inflammation, as observed in
obesity, has been associated with altered leptin levels, impaired
immune system, and host defenses: obese subjects are more
susceptible to respiratory virus infection, to a greater severity
of illness prolonged viral shed, increased viral diversity, and
adverse endpoints after diseases, until death (Andersen et al.,
2016; Aquino-Junior et al., 2018).

Leptin together with other cytokines, could be promising
new biological markers and therapeutic targets in obesity-related
diseases (Ghadge and Khaire, 2019; Bruno et al., 2021). As
leptin deficiency/resistance has been associated with immune
dysregulation and altered cytokine production, impairments of
leptin signaling may hinder the cooperative interplay of the
immunologic, metabolic, and neuro-endocrinologic processes
(White et al., 2013; Guglielmi et al., 2021), potentially
playing a role in driving the COVID-19 cytokine storm. In
addition, leptin sensitivity may be modulated by gut microbiota
(Heiss and Olofsson, 2018).

THE MICROBIOTA AS A MODULATOR
OF LEPTIN SENSITIVITY

The term “microbiota” identifies all microorganisms, mainly
bacteria and a small number of fungi, archaea, and viruses,
that live on the surface and inside our body (D’Argenio and
Salvatore, 2015). Most of the adult human microbiota lives
in the gut but it also colonizes the oral cavity, skin, vagina,
and the lung (Dickson et al., 2016; Blum, 2017; Maschirow
et al., 2019; Campisciano et al., 2021). These communities of
microorganisms are essential for human physiology and survival
and for this reason the microbiota is called the “forgotten organ”
(O’Hara and Shanahan, 2006).

There is a strong link between the diet, the gut microbiota, and
the effects on the metabolism of host (Tremaroli and Bäckhed,
2012). The gut microbiota regulates the host energy homeostasis
as it is involved in the absorption of host nutrients, in maintaining
the integrity of the intestinal immune barrier, in the regulation
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FIGURE 1 | (A) Leptin history in the respiratory tract. Since its discovery 27 years ago, the adipocytokine leptin has provided a revolutionary framework for studying
the physiological role of adipose tissue as an endocrine organ, also on respiratory tract. Leptin was discovered in mouse by Friedman group (Zhang et al., 1994) and
soon leptin receptor (ObR) expression was found in the lung from rat (Wang et al., 1996). In 1997, it was studied as the correlation between serum leptin and lung
cancer cachexia (Simons et al., 1997) and in 1998, the cross-talk between human lung and adipose tissue started to be identified (Kielar et al., 1998; Tankersley
et al., 1998). Since 1999, leptin and its receptor are studied in patients with chronic obstructive pulmonary disease (COPD), asthma (Heuck and Wolthers, 1999;
Takabatake et al., 1999; Bruno et al., 2005a, 2009), and since 2006 also in patients with allergic rhinitis (Unal et al., 2006; Bruno et al., 2019). With coronavirus
disease 2019 (COVID-19) pandemic, it has been hypothesized a role of leptin in severity disease (Guglielmi et al., 2021; Wang et al., 2021). (B) Leptin and the
gut-lung axis. Both leptin and microbiota influence innate and adaptive immune system and are critical for maintaining homeostasis of the immune system in the
lungs (iBALT = inducible bronchus-associated lymphoid tissue) and in the gut (GALT = gut-associated lymphoid tissue). High fiber diet can increase the prevalence
of Bacteroidetes species as well as the production of short chain fatty acids (SCFAs), which maintain the health immune system through the induction of regulatory T
cells (Tregs) and interleukin-10 (IL-10) production and by inhibiting inflammation. On the other hand, high fat diet can increase both adipose tissue and Firmicutes
species, associated with dysbiosis, inflammation, and with increased of effector T cells and IL-17 and tumor necrosis factor-α (TNF-α) production as well as the level
of circulating leptin. This latter is also increased by dysbiosis. In turn, lung disorders and respiratory infections boots dysbiosis.
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of host fat storage genes, and pathways that modulate appetite,
intestinal motility, and energy expenditure (Backhed et al., 2004;
Duca and Lam, 2014; Bagarolli et al., 2017). Alterations of
the gut microbiota are associated with obesity and vice versa.
Studies have shown that a high-fat diet can cause imbalances
in the composition of the gut microbiota with a decrease of
phylogenetic diversity and that germ-free animals are protected
from this (Cani et al., 2008; Duncan et al., 2008; Bagarolli et al.,
2017). At the same time, other studies have showed that the obese
phenotype can be transferred by gut microbiota transplantation
(Turnbaugh et al., 2006; Heiss and Olofsson, 2018).

Leptin sensitivity can be influenced by multiple factors,
such as diet and gut homeostasis (Gabriel and Fantuzzi, 2019),
which in turn is profoundly affected by gut microbiota asset.
Microbiota metabolites, such as short-chain fatty acids (SCFAs)
as acetate, propionate, and butyrate, can activate the specific
signaling pathways in the host and regulate the secretion of
hormones, such as glucagon-like peptide, peptide YY, and leptin
itself, affecting the gut motility and the fat storage in the
adipose tissue (Heiss and Olofsson, 2018). It was found that
SCFAs, produced by the gut microbiota, stimulate the production
of leptin in mouse adipocyte cultures through the activation
of the G-protein coupled receptor (GPR) 41 and their oral
administration in mice also increases the concentrations of
circulating leptin (Xiong et al., 2004). In a study on diet-
induced obese and type 2 diabetic mice, it has been assessed that
prebiotics (good food for microbiota) improve leptin sensitivity
in an altered gut microbiota composition, suggesting that gut
microbiota modulations could be a novel therapeutic target to
reset leptin sensitivity (Everard et al., 2011). Furthermore, it has
been reported that leptin receptor deficient mice (db/db) have
lower Bacteroidetes and higher Firmicutes proportions than wild-
type mice (Rajala et al., 2014) as both leptin and adiponectin
supplementation throughout the suckling period are able to
modify both the intraepithelial lymphocytes and gut microbiota
composition in mice (Grases-Pintó et al., 2019). An experimental
study performed in humans in overweight/obese mothers, with
high leptin concentration in their breast milk, reported a
lower abundance of Proteobacteria phylum in the infant gut
microbiota (Lemas et al., 2016). Specific bacterial strains are
associated with the release of leptin. A study demonstrates
that amounts of Bifidobacterium and Lactobacillus correlate
positively with plasma concentrations of leptin (Queipo-Ortuno
et al., 2013). Intestinal dysbiosis has been reported to be
associated with chronically increased leptin levels and decreased
sensitivity to leptin, through the induction of the suppressor
of cytokine signaling 3 (SOCS3) and the suppression of the
brain-derived neurotrophic factor (BDNF) expression in the
hypothalamus (Schéle et al., 2013), and decreased expression
of obesity-suppressing neuropeptides in the central nervous
system (Yao et al., 2020). All evidence aimed to assess a possible
modulation by microbiota on leptin expression/sensitivity and
vice versa.

Gut microbiota, as leptin, influences and modulates
inflammation and immune systems (Macpherson and
Harris, 2004; Lynch and Pedersen, 2016; Bizzoca et al., 2020;
Mohammadi et al., 2020; Yang et al., 2020). Commensal

bacteria are recognized by the innate immune system and thus
the microbiota plays a role in regulating the development,
homeostasis, and function of innate and adaptive immune
cells (Brestoff and Artis, 2013), avoids inflammation and
bacterial translocation and hinders the colonization of pathogens
(Maschirow et al., 2019).

In addition, gut microbiota dysbiosis is associated with lung
disorders and respiratory infections (Trompette et al., 2014;
Shukla et al., 2017). Changes in species and the proportion of
bacteria in the gut are associated with asthma, lung disease, and
allergic inflammation (Kalliomaki et al., 2001; Russell et al., 2013).
Conversely, changes in the lung microbial community due to viral
infections modify the composition of the gut microbiota leading
to intestinal dysbiosis (Ichinohe et al., 2011). All these findings
confirm that gut microbiota systematically influences the lung
microbiota and this strictly interconnection is termed “gut-lung
axis” (Marsland and Gollwitzer, 2014; McAleer and Kolls, 2018;
Dang and Marsland, 2019).

LEPTIN AND GUT-LUNG AXIS

A balance between host and gut microbiota is crucial to keep a
healthy intestinal barrier and for healthy metabolism. Microbiota
is believed to contribute to metabolism in humans as it has been
reported that differences in the composition of the microbiota
are related to obese or lean individuals (Turnbaugh et al.,
2009). Moreover, microbiota plays a fundamental role in optimal
immune homeostasis (Wu and Wu, 2012).

Gut-lung axis communicates through a bi-directional pathway
in which endotoxins, or microbial metabolites, may affect the
lung through the blood and, conversely, the lung inflammation
affects the gut microbiota. To further support this axis in
pathological contexts, it has been demonstrated a link between
bowel and lung inflammatory diseases (Wypych et al., 2019;
Raftery et al., 2020). This axis is established because there
can be a direct seeding of intestinal bacteria into the lung
through reflux and aspiration, but also because some products
of the intestinal bacterial metabolism and nutrition can influence
the composition and functionality of the lung microbiota.
The production of SCFAs from dietary fiber by the intestinal
microbiota increases the presence in the lung of dendritic
cells with high phagocytic capacity and reduces the ability to
promote the effector function of Th2 cells, thereby improving the
allergic airway inflammation (Trompette et al., 2014). Multiple
mechanisms could be postulated to explain how gut microbiota
modulates lung immune responses. In this regard, it has been
shown that human lung tissues expressed SCFAs receptor, free
fatty acids receptor 2 and 3 (FFAR2 and FFAR3) (Liu et al., 2021),
and the activation of these receptors influences the expression
interleukin-1β (IL-1β) and in turn lung immune tone (Mizuta
et al., 2020) and airway hyperactivity. Some micronutrients exert
a relevant effect on gut microbiota leading to the production
of specific metabolites that affect immune systems and in turn
chronic disease development or evolution (Espírito Santo et al.,
2021). High fiber intake can limit emphysema progression and
mitigates the inflammatory response in cigarette smoke-exposed
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emphysema mice (Jang et al., 2021). A systematic review (Gabriel
and Fantuzzi, 2019) analyses the relationship between SCFAs
and leptin metabolism: it concludes that body fat, rather than
SCFAs, remains the main driver for leptin synthesis in vivo
and that the activation of FFAR3 increases leptin release and
expression in vitro.

Furthermore, a cross-sectional study design (Yang et al.,
2017) reports that the gut microbiota is associated with
cardiorespiratory fitness in women, regardless of age and dietary
intakes, with increased Eubacterium rectale-Clostridium coccoides
(EreC) and Enterobacteria but lower Bacteroides and with low
aerobic fitness and low maximum oxygen uptake (VO2 max).
While VO2 max is negatively correlated with fat percentage and
leptin, EreC is positively associated with fat percentage and leptin,
but the relationship between VO2 max and EreC is confused
by body fatness as the observed differences disappeared after
adjusting of the fat percentage.

Recent evidence supports a relevant role of gut-lung axis
in acute respiratory distress syndrome (ARDS) (Dickson
et al., 2016), COVID-19 (Allali et al., 2021), and chronic
obstructive pulmonary disease (COPD) pathogenesis (Lai
et al., 2021). Several current studies are elucidating the
mechanisms of how microbiota regulate lung inflammation and
are providing useful information for considering the use of
probiotic, prebiotic, and postbiotic therapies for lung disease,
such as COVID-19 (Tsai et al., 2019; Gasmi et al., 2021).
Microbial-derived components (postbiotics) elicit the activation
of downstream cascades capable to modulate both local and
systemic immune responses.

LEPTIN, RESPIRATORY HEALTH, AND
SARS-CoV-2 INFECTION

According to increasing scientific evidence, leptin can
modulate respiratory health through pleiotropic actions

(Jutant et al., 2021). First, leptin has been reported to play a role
in lung development and in the maturation of fetal lungs, as it
seems to be involved in surfactant proteins production by fetal
type II cells (Torday et al., 2002). In addition, leptin can modulate
bronchial diameter, by counteracting the parasympathetic effect
on the airways (Arteaga-Solis et al., 2013). Finally, congenital
leptin-deficient patients show defects in immunity and are at
risk of death due to infections (Díez et al., 2008). Dysregulated
leptin production and activity could be involved in the
pathogenesis of several pulmonary diseases, such as COPD,
idiopathic pulmonary fibrosis, lung cancer, and pulmonary
arterial hypertension. Interestingly, its role appears to be both
protective through bronchodilation and negative by promoting
inflammation in patients with asthma. Furthermore, leptin
appears to be protective against respiratory infections. In
patients hospitalized for pneumonia, leptin levels were inversely
correlated with markers of inflammation (Jutant et al., 2021).
More recently, a significant association between high plasma
leptin levels and risk of severe respiratory infections was found in
a cohort of ambulatory patients, independent on BMI and other
risk factors (Ubags et al., 2016). In obese patients with a viral
infection, altered leptin sensitivity may contribute to a dramatic
pro-inflammatory cytokine response and to an inefficient
response to infection (Alti et al., 2018). It has been suggested
that leptin could be involved in the etiology of several effects
commonly observed in patients with COVID-19. For instance,
the frequently reported anosmia (Gane et al., 2020) may be partly
ascribed to the ability of leptin to alter the olfactory epithelium
(Savigner et al., 2009). One study recently reported a positive
correlation between serum leptin levels and BMI of adult patients
infected with SARS-CoV-2 (van der Voort et al., 2020). Wang
et al. observed that patients with COVID-19 with a high BMI
had significantly high levels of leptin, which were associated with
inflammatory mediators and disease severity in such patients.
Of note, leptin levels are increased in patients with COVID-19
compared with controls as well as in severe patients with

FIGURE 2 | Role of leptin in increasing the severity of COVID-19 in obese subjects. The altered expression of leptin/leptin receptor pathway and the increase of
leptin resistance in obese subjects, together with the alteration of microbiota, induces inflammation, and impairs the function of the immune system. In this context,
leptin and dysbiosis could be key factors associated with increased severity of COVID-19 in obese subjects.
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COVID-19 compared with mild patients (Wang et al., 2021).
Therefore, it seems that, upon infection, patients with excessive
fat mass are prone to produce more leptin, which in turn
activates monocytes promoting that cytokine storm that has been
recognized to contribute to severe respiratory distress syndrome
and multiple-organ failure in COVID-19. Furthermore, leptin is
inhibited by ACE-2 via alamandine production and activation
of the MrgD-receptor/c/Src/p38MAPK pathway (Uchiyama
et al., 2017). Therefore, it has been hypothesized that in obese
patients infected by SARS-CoV-2, the impaired ACE-2 function
after the viral binding may increase leptin levels. This may
contribute to the hyperinflammatory pulmonary response
frequently observed in obese patients infected with SARS-CoV-2
(Guglielmi et al., 2021).

In summary, a weakened immune response can end in a
heightened cytokine release that can prove fatal. However, the
role of leptin in the pathogenesis of SARS-CoV-2 needs further
investigation to be fully clarified.

DISCUSSION AND CONCLUSION

The COVID-19 pandemic continues to represent the worst health
threat worldwide and to cause morbidity and mortality with more
than 5,000,000 death cases reported to the WHO by November
2021.1

It has been assessed that the healthy microbiota of upper
and lower respiratory tract plays several important roles in the
development and maintenance of respiratory tract and whole
organism homeostasis and the viral infections, such as that
caused by SARS-CoV-2 may perpetuate a systemic inflammation
via gut-lung axis (Banerjee et al., 2020; Belanger et al., 2020;
Gheblawi et al., 2020). Indeed, gut dysbiosis may be linked
to the onset of several pulmonary diseases, such as asthma
(Huang et al., 2021.), COPD (Raftery et al., 2020), cystic fibrosis
(Thavamani et al., 2021), and lung infections (Bajinka et al.,
2021). A connection between the lungs and gut has been widely
demonstrated in both human and mouse studies. Inducible
bronchus-associated lymphoid tissue (iBALT) and gut-associated
lymphoid tissue (GALT) are strictly interconnected and both
leptin and microbiota are important factors responsible for
interactions between these two sites (Figure 1B).

Leptin could represent an important player in the gut-
lung axis (Di Renzo et al., 2020). It has been hypothesized
that in obese patients infected by SARS-CoV-2, the impaired
ACE-2 function after the viral binding may increase leptin
levels, thereby contributing to the hyperinflammatory pulmonary
response (Guglielmi et al., 2021). This framework may explain
the occurrence of respiratory failure which has been commonly
observed in overweight/obese patients. It has been widely
assessed that obesity has an adverse effect on respiratory
physiology both for mechanical factors and for impaired
adipocyte-mediated immune function by increased levels of pro-
inflammatory cytokines and by decreased anti-inflammatory
adipokines. Majority of the observational and retrospective

1https://covid19.who.int

cohort studies on thousands of patients with COVID-19 report
that obese subjects are at increased risk of severe disease
and increased mortality due to COVID-19 (Asare et al.,
2020; Gazzaruso et al., 2020; Pettit et al., 2020; Guerson-
Gil et al., 2021; Rapp et al., 2021). Since respiratory failure
usually takes place at 8–12 days from the initial signs of
infection, there would be a window of opportunity to intervene,
for instance by downregulating the leptin production (van
der Voort et al., 2020). A relevant aspect also concerns
the role of the leptin-immune axis, as leptin can impair
antibodies production and class switching of immunoglobulin.
Indeed, increased leptin levels are recognized as the mediating
factor linking metabolism and immunity and are thought to
predispose to increased morbidity and mortality for SARS-CoV-
2 infection through an impairment of the immune response
(Rebello et al., 2020).

On the basis of the evidence here provided, it could be possible
to hypothesize a relevant role of leptin in the increased levels of
pro-inflammatory mediators in the obese patients with COVID-
19. Leptin can disrupt the release of anti-inflammatory cytokines
and anti-inflammatory adipokines, leading to the impairment of
the normal immune function and perpetuating the progression
and the severity of chronic diseases as well as infections, such as
COVID-19. However, nowadays, it is still to be explored whether
leptin could be used in clinical practice as a pro-inflammatory
biomarker of disease progression and severity to predict the
patient prognosis (Wang et al., 2021).

At the same time, the interest of the scientific pre-clinical
and clinical research in gut microbiota is growing, but the
experimental studies in this field are still at the beginning.
Our review is illustrative and aim to focus the next-future
research for lung diseases and COVID-19 specifically in the
field of the interaction between leptin and microbiota, as both
widely involved in the regulation and immune and inflammatory
systems. Anyway, the presence of the functional leptin receptor
in the lung together with evidence of local leptin production,
supports the concept that leptin plays an important role in lung
health (Vernooy et al., 2013).

In conclusion, obesity-associate chronic inflammation impairs
immune function and increases ACE-2 expression resulting in
an increased disease severity and worse clinical outcome in
obese subjects with COVID-19. The goal in this field is to
understand the contribution of pro-inflammatory adipocytokine
as leptin, together with the host microbiota in modulating
the immune system. We strongly suggest that the next
prospective studies in lung infections may be integrated and
be given an interdisciplinary approach, included nutritional
status, and gut microbiota, as these new insights could be
translated into preventive and therapeutic measures for COVID-
19 (Figure 2).
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