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ABSTRACT

Objective: Informative presence (IP) is the phenomenon whereby the presence or absence of patient data is po-

tentially informative with respect to their health condition, with informative observation (IO) being the longitudi-

nal equivalent. These phenomena predominantly exist within routinely collected healthcare data, in which data

collection is driven by the clinical requirements of patients and clinicians. The extent to which IP and IO are con-

sidered when using such data to develop clinical prediction models (CPMs) is unknown, as is the existing meth-

odology aiming at handling these issues. This review aims to synthesize such existing methodology, thereby

helping identify an agenda for future methodological work.

Materials and Methods: A systematic literature search was conducted by 2 independent reviewers using pre-

specified keywords.

Results: Thirty-six articles were included. We categorized the methods presented within as derived predictors

(including some representation of the measurement process as a predictor in the model), modeling under IP,

and latent structures. Including missing indicators or summary measures as predictors is the most commonly

presented approach amongst the included studies (24 of 36 articles).

Discussion: This is the first review to collate the literature in this area under a prediction framework. A consider-

able body relevant of literature exists, and we present ways in which the described methods could be devel-

oped further. Guidance is required for specifying the conditions under which each method should be used to

enable applied prediction modelers to use these methods.

Conclusions: A growing recognition of IP and IO exists within the literature, and methodology is increasingly

becoming available to leverage these phenomena for prediction purposes. IP and IO should be approached dif-

ferently in a prediction context than when the primary goal is explanation. The work included in this review has

demonstrated theoretical and empirical benefits of incorporating IP and IO, and therefore we recommend that

applied health researchers consider incorporating these methods in their work.
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INTRODUCTION

Background and significance
Clinical prediction models (CPMs) estimate the risk that a patient

currently has (diagnostic), or will develop (prognostic), an outcome

of interest based on known clinical and patient measures. Such risk

models can guide clinical decision making, among other uses.

Widespread adoption of electronic health records (EHRs) facili-

tates the development of CPMs,1 as detailed clinical and patient in-

formation is collected through routine healthcare contacts. Such rich

longitudinal information provides long-term patient follow-up with-

out the need to recruit patients and conduct regular follow-up visits.

The analysis of routinely collected data is not, however, without

challenge. Observation times are not prespecified as they would be

in a typical research study (eg, in a prospective cohort study with

scheduled follow-up visits). Instead, data are collected opportunisti-

cally, in which patient and clinician decisions directly dictate

whether we observe clinical biomarkers and patient information.2

For example, general practitioner visits occur more frequently dur-

ing periods of ill health,3 and only information relevant to the par-

ticular consultation will be recorded. Equally, during inpatient care,

clinicians will adapt their monitoring frequency to the changing

needs and condition of the individual patient (see Figure 1).

We refer to the process by which visits, and hence measurements,

occur as the observation process (also known elsewhere as the visit-

ing or monitoring process). We define 2 key properties that an ob-

servation process may have, when presence of data is informative:

1. Informative presence (IP) (Figure 1A): The presence or absence of

a patient’s data at any given time point carries information about

their health status.

2. Informative observation (IO): The timing, frequency, or intensity

(rate) of a patient’s longitudinal pattern of observation carries in-

formation about their evolving health state. See Figure 1B for an

example.

IP is challenging from a statistical perspective as it implies a miss-

ing not at random process. IP is, however, conceptually different

from missingness, as in the former, there was never any intention of

collecting the data at a particular visit. IP has previously been de-

fined elsewhere,5,6 with Phelan et al5 discussing how interactions

contained within EHRs are informative with respect to patient

health.

IO is the continuous time generalization of IP: a longitudinal vis-

iting (at time t) not at random process, defined as “given data

recorded up to time t, visiting at time t is not independent of out-

come at time t.”7 By generalizing the definition of IP above, one can

draw value from how frequently a patient is observed over time.

This is especially true when no schedule exists dictating when or

how often visits should occur; we therefore focus on what an indi-

vidual’s longitudinal observation process could tell us about their

condition.

A recent review of CPMs developed using routinely collected

data revealed an apparent lack of understanding of, or proper han-

dling of, IP and IO.1 Moreover, much of the existing methodological

literature in this area has focused on IP and IO only in the context of

effect estimation (ie, in causal or associational studies),8–14 and has

generally viewed it as a “nuisance” (ie, a phenomenon that poten-

tially biases effect estimators and therefore needs to be corrected for

in the analysis). However, when developing a CPM, the primary fo-

cus is on achieving good predictive performance; predictor effect es-

timation is less important.

Instead, one could view IP and IO as opportunities to draw infor-

mation from the EHR that is not explicitly recorded. In this article,

we focus on informative measurement patterns in the predictors,

and we do not discuss presence or absence of outcome data. Agniel

et al15 demonstrated how the timing of a lab test better predicts

mortality than the actual result of the test. Others have illustrated

how incorporating the presence or absence of a particular test for an

individual into a CPM can improve its accuracy.16–18

Objectives
This article aims to review the literature on methodology allowing

CPMs to utilize IP or IO, both in overcoming some of the aforemen-

tioned challenges, and in harnessing information within informative

measurement patterns. In doing so, we also highlight outstanding

areas of methodological work that should be prioritized. Finally, we

summarize existing software packages capable of implementing the

methodology.

MATERIALS AND METHODS

The strategy employed in this review loosely follows a scoping re-

view framework.19 Our protocol has been registered on the Open

Science Framework.20

Search strategy
We searched MEDLINE, Embase, and Web of Science for relevant

articles using prespecified search terms. Further details of the full

search strategy (including search terms and an additional snowball-

ing stage) can be found in the Supplementary Appendix and the pub-

lished protocol.20

Study selection
We had the following inclusion criteria: any article presenting a

method that allows CPMs to incorporate IP or IO. We excluded

articles that applied existing methods that had already been pub-

lished elsewhere, and included those earlier publications instead,

nonmedical areas of application, IP and IO in outcome measures,

and methods that handle sample selection bias, imputation or cen-

soring only. See the Supplementary Appendix for further justifica-

tion of these exclusions.

We do not include textbooks within the review; while this could

mean we miss some relevant literature, searching within textbooks

is not widely feasible. Additionally, we believe that most methodo-

logical development in this area will be published in original re-

search articles rather than textbooks.

Two independent reviewers (R.S., L.L.) conducted a 2-stage

screening process. Titles and abstracts were screened first, and full

texts of remaining articles were reviewed at the second stage.

Reviewers met regularly to track agreement. Systematic differences

were translated into new inclusion and exclusion criteria, in consul-

tation with a third reviewer (G.P.M.).

Primarily, we extracted information regarding the modeling

method employed and any reported advantages and disadvantages.

We also extracted information on the form of the observation

processes, predictors, and outcome, including any clinical use cases

presented.
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Figure 1. (A) An illustration of informative presence and how this could impact the information available at prediction time. We see the longitudinal pattern of blood

pressure for 2 patients, with both their observed and unobserved values shown. Patient 1 has 1 single observed value of systolic blood pressure (BP), and this hap-

pens when their BP was at its highest. Patient 2 has no observed values, but their BP remains in the normal range—either the patient or clinician saw no clinical

need to take a blood pressure measurement at any time. (B) An illustration of informative observation, taken from the MIMIC (Medical Information Mart for Inten-

sive Care) dataset.4 Patient 1 has many more in-hospital measurements of blood glucose than patient 2 throughout their intensive care unit admission, likely due to

the fact that their blood glucose is much higher and much more variable than patient 2. A more severe condition often means more intense monitoring.
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RESULTS

Our database searches identified 6127 studies, of which 111 were

retained for full text screening. Eleven of these were deemed eligible

for inclusion. We identified a further 25 articles through forward

and backward citation searching, giving a final set of 36 included

articles (Figure 2).

Throughout this section, we will illustrate each method with the

following notation. Consider a binary outcome Y tð Þ (or Y if only

observed once) for patients i ¼ 1; . . . ; n, at time t, where Y ¼ 1

denotes that the event occurred, with marginal probability P Y ¼ 1½ �.
Define a potentially time-varying continuous covariate process XðtÞ,
with potential realizations xij for i ¼ 1; . . . ; n and j ¼ 1; . . . mi, or

simply xi if X is not time-varying. The timing of the jth realization of

X tð Þ is tij 2 R
þ. Denote R ¼ 1 if X tð Þ is ever observed, and

R ¼ 0 if not. Define rij ¼ 1 if the covariate process is observed at

time tij. We assume that Z is a completely observed time-invariant

covariate. gð:Þ represents a link function (eg, the logit function).

Broadly, the methods in this article cover the 3 scenarios de-

scribed in Table 1. To illustrate the prediction scenarios and meth-

ods, we consider a simplified version of the Sequential Organ

Failure Assessment score,21 used to predict mortality in critical care,

assuming that the only predictors in the model are bilirubin and

blood pressure. Of these 2 predictors, we assume that blood pressure

is completely observed for all patients, and that bilirubin is informa-

tively observed, as it has been shown to be within critical care.

Depending on the specific scenario, it may be a one-time point ob-

servation, or a longitudinal process.17

There exists a breadth of methodological literature covering sce-

nario 2 (S2) (without accounting for IP and IO), which has recently

been synthesized by Bull et al.22 We therefore focus on modeling

strategies that have specifically been proposed or extended to ac-

commodate IP or IO.

Identified approaches to handle IP and IO
We identified 3 broad categories of method based on the included

articles: (1) methods that incorporate IP or IO through derived pre-

dictors; (2) methods for modeling under IP; and (3) methods that in-

corporate IP or IO using latent structures. Within these 3 categories,

we identified 8 modeling strategies. A summary of the methods can

be found in Table 2. Table 3 summarizes the advantages, disadvan-

tages, software, and assumptions for each method—here, the

reported advantages and disadvantages were inferred by the research

team because they are not consistently mentioned in the included lit-

erature. A summary table at article level can be found in Supplemen-

tary Appendix 3.

Category 1: Derived predictors
The methods described in this section address IP or IO by deriving

some representation of the observation process and including this as

a separate predictor in the model to exploit the informativeness for

predictive value. These approaches tend to be straightforward and

have been proposed to handle both IP and IO. However, attention

must be paid to the intended use of the final model, particularly

where the model will be applied in clinical settings different to the

one in which it was developed. Where measurement protocols

change across different settings, these models may lack generaliz-

ability when transported to a new setting.57–59 This should not be a

concern where the development and application settings remain the

same.

Missing indicators or separate class

The missing indicator approach16,23–30 handles IP in a straightfor-

ward manner, by deriving a binary variable that indicates whether a

predictor has been observed at a specific time (IP) or over a defined

window of time. The indicators enter the prediction model as a

separate predictor alongside other patient and clinical information.

Figure 2. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram showing the various screening stages and reasons for ex-

clusion at each stage.
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For example, if a prediction model requires an entry for bilirubin

but this test has not been conducted, then a missing indicator would

be included as a predictor with value 1 (or 0 when observed).

For categorical variables, a separate “missing” category could in-

stead be created.

Because most prediction models require a value for every predic-

tor, the missing indicator approach is usually combined with impu-

tation at both model development and prediction time (not

necessary for categorical predictors with a separate class).The miss-

ing indicator approach results in a model of the form:

g P½Y ¼ 1jX; Z�ð Þ ¼ b0 þ b1Xþ b2Zþ cR (1)

for continuous predictors within cross-sectional prediction (S1).

Similarly, for a categorical predictor xi with k categories,

then the missing indicator approach would set xi 2 f
Cat1; . . . ; Catk; Missingg and our model would be

g P½Y ¼ 1jX; Z�ð Þ ¼ b0 þ b1Xþ b2Z (2)

The previous 2 equations could be combined to consider predic-

tion models with both continuous and categorical predictors. Alter-

natively, missing indicators and separate classes have been well

developed in tree-based prediction algorithms.28–30

Including a missing indicator or separate class is straightforward

and has demonstrated improved predictive performance over models

omitting them.17 However, their inclusion could double the number

of candidate predictors for a model. The approach also fails to cap-

ture complex representations of the measurement process.

Summary measures

An extension to missing indicators, capable of incorporating both IP

and IO, is to derive a summary of the measurement process and in-

clude this as a predictor.15,24,31–44 Examples include a count of the

number of measurements (eg, throughout a critical care admis-

sion),37 weighted counts,42 combined missing indicators,31 missing-

ness rates over time,32 time intervals between measures,33–35

embedding vectors that represent missing values,36 or information

relating to hospital processes.38,39

In some cases, combined missing indicators and time intervals

also alter the relationship between a predictor and outcome. Che

et al’s24 method stipulates that the longer a measure has been miss-

ing, the less influence it should have on an individual’s prediction;

therefore, the last observed measurement is decayed toward a mean

value.

Piecewise-constant intensity models have also been proposed to

handle informatively observed predictors.40,41 Piecewise-constant

intensity models use decision trees to assign an intensity rate to the

observation process, conditional on its history (timings, values, and

events).

Define a summary measure of the observation process Q, eg, a

count of the number of times XðtÞ (whether continuous or categori-

cal) has been observed: Q ¼ mi. For cross-sectional prediction with

a time-varying covariate, we then have:

g P½Y ¼ 1jX; Zð Þ ¼ b0 þ b1Xþ b2Zþ cQ (3)

where X is a summary of XðtÞ deemed to have predictive value (eg,

the mean, most recent, or most extreme value). If XðtÞ has never

been observed, this should be imputed. Like missing indicators,

summary measures are easily derived and implemented in any pre-

diction model using standard software (since they are included as

standard predictors). Combining missing indicators into one sum-

mary, or implementing a dimension-reduction technique such as

Lasso, also overcomes the issue of including multiple missing indi-

cators. However, selecting the most appropriate summary measure

for a model requires careful consideration, and will depend on the

clinical application. No current guidance exists on how best to

choose the most appropriate summary measure. The association

between a chosen summary measure and the outcome might lack

generalizability where measurement processes vary across loca-

tions.23,39 Simple summary measures such as counts may also fail

to capture the complex relationship between the observation pro-

cess and outcome.

Category 2: Modeling under IP
While the methods in the other categories can be used to handle

both IP and IO, this category comprises methods that have specifi-

cally been proposed to handle IP.

Pattern-specific models

The pattern-specific approach45,46 derives separate models for each

missingness pattern, generalizing the missing indicator approach.

The model corresponding to the observed pattern in a new individ-

ual is then used for prediction. For example, in a model with a single

partially-observed time-invariant continuous predictor, X we would

derive the following submodels:

g P Y ¼ 1jR ¼ 1; X; Z½ �ð Þ ¼ b0;1 þ b1;1Xþ b2;1Z (4)

Table 1. A description of different prediction scenarios, covering cross-sectional vs longitudinal predictors and outcomes

Scenario Scenario name Description Example (SOFA)

S1 Cross-sectional prediction Interest lies in obtaining a single prog-

nostic estimate (prediction) using a

single value for each predictor.

Use values of bilirubin and BP obtained

upon ICU admission to predict in-hos-

pital survival (binary).

S2 Cross-sectional prediction with

longitudinal predictor measure-

ments

Interest lies in obtaining a single prog-

nostic estimate but using the longi-

tudinal history of predictor values.

Use all repeated lab tests obtained

throughout inpatient admission for bil-

irubin and BP to predict in-hospital

survival.

S3 Longitudinal prediction with longi-

tudinal predictors and outcomes

Interested in prognostic estimates at

multiple time points, potentially us-

ing the longitudinal history of pre-

dictor values.

Use all repeated measures of BP and bili-

rubin obtained throughout inpatient

and ICU admission to predict survival

at multiple future time points.

BP: blood pressure; ICU: intensive care unit; S: scenario; SOFA: Sequential Organ Failure Assessment;
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g P Y ¼ 1 jR ¼ 0; Z½ �ð Þ ¼ b0;2 þ b2;2 Z (5)

Where Z is completely observed. Note that formulas 4 and 5 can

also be combined by including interaction terms with the missing in-

dicator, illustrating how this approach extends the missing indicator

method.

Similar submodels could be derived for categorical and continu-

ous predictors. Saar-Tsechansky and Provost45 proposed using all

available data to train each submodel, whereas Fletcher et al46 rec-

ommended that only individuals in each observed pattern be used in

the derivation of that pattern’s submodel (also illustrated by Janssen

et al).60 The latter approach does not require knowledge of the miss-

ingness mechanism.

The pattern-specific approach is flexible, as it can be applied to

any form of prediction algorithm. However, a practical limitation is

that the number of candidate submodels becomes intractable as the

number of predictors increases.

Likelihood-based methods

A different approach assumes that missingness in the predictors is

nonignorable, and incorporates this into parameter estimates via

likelihood-based methods.47,48 The model formulation would take,

for example, the same form as equation 2, with parameter estimates

obtained according to estimation procedures detailed in the following

examples. Escarela et al47 assumed a bivariate copula-based probabil-

ity function for the missing covariates and the missingness mechanism.

Kirkham48 instead applied the “method of weights,” which assumes a

parametric model for the missingness mechanism and incorporates

this into the maximum likelihood estimation of parameter estimates.

Table 3. Summary of (subjective assessments of) advantages, disadvantages, software, and assumptions for each method described in this

review

Modeling approach Advantages Disadvantages Software Assumptions

Missing indicators & Sepa-

rate class

Straightforward

Flexible

Low computational cost

Easy to communicate

Potentially doubles no. of

predictors

Too simplistic for complex

relationships between

missingness and outcome

Assumes discrete time inter-

vals

Easily applied in common

statistical software

Assumes absence is a proxy

for some unmeasured pa-

tient feature

Linear relationship with

outcome

Summary measures Straightforward

Flexible

Low computational cost

Easy to communicate

Generalizability of models

across centers may be

questioned

May fail to capture com-

plex relationships be-

tween observation

process and outcome

Easily applied in common

statistical software

Assumes observation pro-

cess is a proxy for some

unmeasured patient fea-

ture

Largely assumes linear rela-

tionship with outcome

Pattern-specific models Straightforward

Flexible

Number of models becomes

large as no. of predictors

increases

Easily applied in common

statistical software

No assumptions placed on

how missingness relates

to observed or unob-

served variables

Assumes same functional

form for all pattern-spe-

cific models

Likelihood-based methods Also allows for imputation Computationally intensive None provided Assumes absence is related

to the unobserved value

Similarity measures Flexible Computationally intensive None provided None provided

Latent variable Improved performance over

methods not incorporat-

ing informative presence

Computationally intensive R code provided by Coley

and Hubbard

Association between out-

come and observation

process is captured

through latent variable

and other predictors

HMMs Using a Hawkes process for

intensity allows for time-

varying intensity

Complex and computation-

ally intensive

None provided Assumes longitudinal pre-

dictors are normally dis-

tributed

Joint modeling/shared ran-

dom effects

Flexible to different forms

of outcome and observa-

tion process

Complex

Computationally intensive

Often requires indepen-

dence assumption be-

tween processes given

random effects

Frailtypack in R, Win-

BUGS, merlin in STATA

for flexible user-defined

models.

Assumes processes (out-

come, observation) are

independent conditional

on random effects

Existing methods assume

constant intensity of

observation

HMM: hidden Markov model.
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Escarela et al47 described how their missing not at random model

can also be used to impute missing values. However, this does not

remove the need to make untestable assumptions on the missing

data mechanism.

Category 3: Latent structures
Similarity measures

Patient similarity measures apply a sequencing algorithm to estab-

lish the alignment of 2 sequences of patient data (eg, longitudinal

EHR data). Sha et al49 presented a novel similarity measure, which

recognizes that the type of tests ordered and the time between tests

can be indicative of patient condition. Their metric is therefore

based on a distance measure incorporating the type, timings and

results of tests and they assume that more intense monitoring indi-

cates a more severe condition.

The sequencing algorithm produces a similarity matrix, defining

the similarity between each pair of patients. We do not present the

model formulation for this method since there are various

approaches to using this matrix in prediction (described by Shara-

foddini et al.)61 One such method defines cohorts of “similar”

patients within which to develop separate models. This approach

can be viewed as an extension of the pattern submodel approach

with longitudinally and irregularly measured predictors, in which

the patterns are defined by similar longitudinal sequences.

The benefit of this method is that, as with others, it can be ap-

plied to any form of prediction framework. Drawbacks include the

computational burden of rederiving multiple models, and requiring

access to the training data at prediction time to train a model using

similar patients.

Latent variable

A simple way of representing a latent clinical condition is to use a

single (partially) latent binary variable, representing 1 of 2 states.

This approach was used by Coley et al50 and Hubbard et al51 in

which IP and IO are incorporated by allowing the measurement pro-

cess to infer a latent patient condition under a hierarchical structure.

Define the partially latent binary outcome YL � BernðgÞ rep-

resenting 1 of 2 patient states, where only 1 state is entirely ob-

served. In Coley et al50’s example, “true” cancer state (aggressive vs

indolent) is the outcome, but is only observed for a subset of patients

who underwent surgery. We then assume that the value of the out-

come can influence the presence of xi within the hierarchical model.

R YL; Z � Bern P R ¼ 1 YL; Z; b
� �� �

(6)

We have not provided the outcome model formulation since pre-

dictions are obtained by sampling from the posterior of the full hier-

archical model.

Both studies note improved predictive performance in which the

measurement process influences predictions compared with a model

that ignores IP and IO. These models can, however, be computation-

ally intensive to fit.

Hidden Markov models

Hidden Markov models extend the latent variable approach by

allowing a time-varying latent process. Zheng et al52 and Alaa et

al53 used hidden Markov models to capture IO, but the way they in-

corporated the observation process differs. Hidden Markov model–

based prediction models incorporate IO by allowing the measure-

ment frequency or rate to infer the clinical state at any given time.

Alaa et al53 proposed a latent semi-Markov process to capture a

patient’s evolving clinical state. The “state” variable,

YL tð Þ 2 f1; . . . ; 4g, ranges from clinical stability to clinical deteri-

oration, where stability (state 1) and deterioration (state 4) are ob-

served states, but intermittent states are latent. Here the model aims

to predict eventual clinical deterioration, that is, P½Y 1ð Þ ¼ 4�. The

observation process (ie, timings) of XðtÞ is used to infer this clinical

state, in which it is assumed that increased monitoring indicates a

less stable condition. A marked point process model (in this case a

Hawkes process) is adopted to model the rate of patient monitoring,

with the marks corresponding to the observed value. IO is captured

through state-specific intensity functions for the monitoring fre-

quency as follows:

kðt jYLðtÞ ¼ 1Þ ¼ k1 þ a1

X

s< tm < t

e�b1 t�tmð Þ (7)

. . .

kðt jYLðtÞ ¼ 4Þ ¼ k4 þ a4

X

s< tm < t

e�b4 t�tmð Þ (8)

k1; . . . ; k4; a1; . . . ; a4; b1; . . . ; b4 are state-specific parameters to

be estimated. tm is the time of the last measure of XðtÞ. s is the time

of the most recent change in YLðtÞ, which is only observed if the

state is absorbing. Details of the learning and prediction algorithm

are presented in more detail in their article.

A key advantage is that the Hawkes process allows for a time-

varying intensity in the observation process. Model fitting and inter-

pretation are, however, complex because there are multiple compo-

nents to be estimated simultaneously.

Joint modeling

Joint modeling has been developed extensively within the prediction

context, particularly for dynamic prediction, that is, incorporating

time-updated variables (S2 in Table 1).62–65 Joint modeling can be

extended to handling IP and IO, by linking the outcome to the ob-

servation process via a shared random effect,54–56 which can be seen

as an alternative approach to modeling latent variables. Separate

models are defined for the outcome occurrence and the observation

process, each of them containing an individual-level random effect

representing individual “frailty.” By sharing these random effects

across the 2 models, the outcome and observation processes are

linked. Liang et al54 and Choi et al56 both allow for irregularly ob-

served visits, and therefore specify a hazard or intensity function

that defines how often visits occur. The random effect, or frailty

term, controls how an individual’s visit rate differs from average. As

this effect also appears in the model for the outcome, the visit rate

indirectly affects the prediction for the outcome.

The method outlined in Zhang et al55 only allows for scheduled,

regular observations. Therefore, rather than specifying a model for

the intensity/hazard of visiting, the “observation process” model is a

repeated measures logistic regression model, in which the outcome

indicates whether an individual provided data at a specific time point.

Joint models take many different forms and provide the most

general framework. We present an example of a trivariate joint

model, with submodels for the repeatedly and informatively

measured covariate, the binary outcome, and the observation pro-

cess of the covariate xij. Assuming that measurement times are

regular (, tij ¼ tj 8 i; j).

X ¼ a0 þ a1Zþ a2t þ U (9)
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g P½Y ¼ 1jZ; U; V�ð Þ ¼ b1Zþ b2U þ b3V (10)

h P Rj ¼ 1jU; V; Z
� �� �

¼ d0U þ V þ d1Rj�1 þ d2Z (11)

Here, U and V are independent subject-specific random

effects, and g :ð Þ and hð:Þ are link functions. b2 and d1 control the

relationships between the longitudinal predictor and the outcome,

and the longitudinal predictor and the observation process, respec-

tively. b3 controls the association between the outcome and the

missingness process. Missingness at time t depends on missingness at

the previous measurement time.

The listed examples illustrate the flexibility of joint modeling, as

the models for both the observation outcome processes can take dif-

ferent functional forms. Complex dependencies between the pro-

cesses can be specified. However, fitting these models can be

computationally intensive, and the interpretation of random effects

in a prediction model can be challenging, especially for end users.54

DISCUSSION

This study has identified 3 broad categories of approaches to incor-

porate IP or IO into clinical prediction models: derived predictors,

modeling under informed presence, and latent structures. This is a

growing area of research, and much of the included literature illus-

trates that IP and IO can be incorporated into clinical prediction

models in a meaningful way. Where missing data and nonrandom

visit processes have been seen as a nuisance in effect estimation, a

more positive outlook is possible when the goal is prediction. Al-

though methodology allowing CPMs to accommodate IP and IO are

emerging, further challenges remain, which will be discussed later.

Pullenayegum and Lim7 and Neuhaus et al9 have previously

reviewed methods for handling IO in studies in which the primary

aim is to recover unbiased effect estimates. Both articles assume that

the outcome is informatively observed, which differs from the focus

of our work in which we assume informatively measured predictors.

Phelan et al5 presented a set of design considerations for EHR-based

studies that could help to attenuate issues caused by IP and IO by

carefully considering and defining the population of interest (eg, in

which part of the care system patient interactions occur) and how

health status could affect patient interactions. None of these articles

explicitly discuss prediction, in which we anticipate that the most

appropriate methods will differ from those for effect estimation.

Empirical studies37,66 have compared methods capable of han-

dling repeatedly measured predictors in CPMs, and many of these

methods can be extended to accommodate IO, such as summarizing

the process into a single measure (eg, the mean or maximum mea-

surement patterns as predictors) or into more complex latent process

methods. Both studies found that joint modeling provided little ben-

efit in predictive performance when compared with simple summary

measures, but care should be taken in selecting an appropriate sum-

mary measure suited to the clinical context. Bull et al22 also recom-

mended 3 key considerations when choosing the most suitable

method for harnessing a longitudinally measured predictor: the type

and amount of information available at prediction time, how the

CPM can benefit from the longitudinal information and the validity

of assumptions for the particular application. We expect that these

considerations will also be relevant to selecting the most appropriate

means of incorporating IO.

To our knowledge, this is the first attempt at synthesizing the

methodology available to handle IP and IO specifically for predic-

tion purposes. We have achieved this through a systematic search of

the literature. A potential limitation is that only the health and bio-

medical literature was considered; as such, our search potentially

did not capture methods that have been developed for use in other

fields. Defining relevant terminology around IP and IO is challeng-

ing, as the nomenclature differs across the literature. This is illus-

trated by the fact that a minority (n ¼ 11 of 36) of included articles

were discovered directly through database searches. However, this is

a common challenge with methodological reviews.67,68 It is possible

that methods were missed as a result, but we aimed to mitigate

against this by conducting a backward and forward citation search

on articles identified through the search strategy and on a set identi-

fied as relevant a priori.

Many of the methods discussed herein remain underdeveloped

and future studies should investigate the degree to which these meth-

odological choices matter for prediction contexts. We have identi-

fied multiple avenues for further research. Missing indicators,

capable of handling both IP and IO, is the most common approach

(in terms of number of studies included) to incorporating the obser-

vation process. Although this method is straightforward and adapt-

able to any type of prediction model, key challenges remain,

including but not limited to the requirement to impute missing val-

ues when developing and applying the model. Under most prediction

frameworks, a value must be entered for any predictor in the model

when a prediction is made. The impact of using different imputation

techniques at model development and prediction time should be

established.

Pattern-specific models present a promising extension to the

missing indicator approach, and do not require imputation at either

model development or application. Further development should ex-

plore ways to borrow strength across models, or pool together sets

of patterns, to overcome the issue of developing models with few

data points for rarely observed missingness patterns.

Most methods capable of handling IO fall under the “summary

measures” category (16 articles). The simplicity of this approach is

attractive but is also a concern. Simple summaries of the entire pro-

cess do not capture important changes in the observation process

over time, such as a sudden increase in monitoring frequency which

indicates worsening state. Latent structure approaches (eg, modeling

measurement times via a nonhomogeneous point process) may be

better suited to capturing longitudinal variability but are computa-

tionally intensive. Developing a more sophisticated representation

of the observation process to use as a predictor is a promising ave-

nue of further research, offering a potential trade-off between the

simplicity of summary measures and the sophistication of joint

modeling. These more complex measures should be compared with

both joint modeling techniques and simple summary measures to as-

sess their added benefit in terms of predictive performance and com-

putational efficiency. We plan to perform such comparisons in a

separate full empirical study.

There already exists a vast body of literature on joint modeling

for prediction, particularly covering S2 (incorporating longitudinal

predictors). Such methods have also recently been extended to func-

tional data,69 allowing them to accommodate complex structures in

longitudinal predictors. Joint models have also been proposed to

handle IO under an inferential framework,8,9,70,71 so it follows that

there is scope to extend joint models further to exploit IO for predic-

tive benefit, as this review revealed that the method remains under-

developed for this particular purpose.

There are broader challenges associated with exploiting IP and

IO for prediction. First, because the association between the obser-

vation process and outcome is unlikely to be causal, this relationship
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may not generalize well to different settings. For example, clinicians’

monitoring behaviors are likely to vary across units or clinical guide-

lines could recommend changes in the way patients are observed.

This is particularly true following the introduction of a CPM into

clinical practice; once this happens, the predictor variables in the

model are far more likely to be observed. The predictive utility of

any model incorporating the observation process should therefore

be regularly validated and potentially updated.

A second challenge described by Alaa et al53 concerns models

that use the observation process to inform predictions, but also up-

date predictions as new information becomes available. An issue

arises when clinicians change their monitoring behavior based on

predictions produced by the model; any changes in the way they

monitor patients will be fed back into future predictions via the ob-

servation process. This should be accounted for to avoid the feed-

back loop, potentially by developing causal models to account for

the possible time-varying confounding,72 or by explicitly modeling

the effects of previous predicted values.

Despite these challenges, we view IP and IO as opportunities to

improve the performance of predictive models, as opposed to a nui-

sance. The literature is divided on this point; much of the work in

this review proposes methods that “overcome” the challenges of IP

and IO, whereas others illustrate the added benefit of incorporating

informative measurement patterns. Missing data have typically been

seen as a threat to the estimation of parameters, but because this is

not the key focus of prediction research, it may be useful to move

away from terms such as missingness and instead focus on what the

presence of an observation can tell us.

CONCLUSION

We have demonstrated that there is a growing recognition of both IP

and IO within prediction research. Although parallels exist with

missing data, IP should not be considered the same way, especially

within the context of prediction and routinely collected data in

which there is no prespecified observation process. By synthesizing

the available methods and software that could be applied to incor-

porate IO and IP into CPMs, this article can assist applied research-

ers in adopting suitable methods. Future research should investigate

the challenges presented herein, which will require the development

of formal guidelines and making existing methodology more

accessible.
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