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Simple Summary: Tissue biopsy is the gold standard for molecular genotyping in lung cancer.
However, obtaining tumor tissue is challenging due to its invasiveness, inadequate amount of tissue,
or complications. To overcome the limitations of tissue biopsy, plasma liquid biopsy using cfDNA has
been investigated extensively; however, its low sensitivity limits the clinical application. Therefore,
we used the tumor-specific DNA of extracellular vesicles (EVs) in bronchoalveolar lavage fluid (BALF)
as DNA source for EGFR genotyping. As a result, we demonstrated that EV-based BALF EGFR
testing in advanced lung NSCLC is a highly accurate rapid method overcoming low sensitivity of
plasma cfDNA-based EGFR genotyping. It can be used as an adjuvant or alternative method for lung
biopsy in cases where obtaining an adequate amount of tissue is difficult.

Abstract: To overcome the limitations of the tissue biopsy and plasma cfDNA liquid biopsy, we
performed the EV-based BALF liquid biopsy of 224 newly diagnosed stage III-IV NSCLC patients
and compared it with tissue genotyping and 110 plasma liquid biopsies. Isolation of EVs from
BALF was performed by ultracentrifugation. EGFR genotyping was performed through peptide
nucleic acid clamping-assisted fluorescence melting curve analysis. Compared with tissue-based
genotyping, BALF liquid biopsy demonstrated a sensitivity, specificity, and concordance rates of
97.8%, 96.9%, and 97.7%, respectively. The performance of BALF liquid biopsy was almost identical
to that of standard tissue-based genotyping. In contrast, plasma cfDNA-based liquid biopsy (n = 110)
demonstrated sensitivity, specificity, and concordance rates of 48.5%, 86.3%, and 63.6%, respectively.
The mean turn-around time of BALF liquid biopsy was significantly shorter (2.6 days) than that of
tissue-based genotyping (13.9 days; p < 0.001). Therefore, the use of EV-based BALF shortens the time
for confirmation of EGFR mutation status for starting EGFR-TKI treatment and can hence potentially
improve clinical outcomes. As a result, we suggest that EV-based BALF EGFR testing in advanced
lung NSCLC is a highly accurate rapid method and can be used as an alternative method for lung
tissue biopsy.

Keywords: bronchoalveolar lavage (BAL); liquid biopsy; extracellular vesicles; EGFR mutation
testing; NSCLC

1. Introduction

Testing for epidermal growth factor receptor (EGFR) mutations is an essential step
during therapeutic decision-making for patients newly diagnosed with advanced non-
small cell lung cancer (NSCLC), especially considering the remarkable clinical outcomes
of EGFR-tyrosine kinase inhibitor (TKI) treatments [1]. The most common sensitive EGFR

Cancers 2022, 14, 2744. https://doi.org/10.3390/cancers14112744 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers14112744
https://doi.org/10.3390/cancers14112744
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-8994-2891
https://orcid.org/0000-0001-6105-9899
https://orcid.org/0000-0001-7704-5942
https://orcid.org/0000-0003-4687-5593
https://doi.org/10.3390/cancers14112744
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers14112744?type=check_update&version=2


Cancers 2022, 14, 2744 2 of 11

mutations are exon 19 deletion and 21L959R. EGFR-TKIs treatment with the sensitive EGFR
mutations have demonstrated significantly improved progression-free survival rate and
objective response rate, compared with chemotherapy [2–5].

For testing EGFR mutations, using DNA extracted from tumor tissues is the gold
standard. However, obtaining tumor tissue samples is challenging, as tumors can be located
at sites that are difficult to approach using percutaneous biopsy needles; moreover, a scarce
amount of tumor tissue is obtained that is insufficient for genetic analysis. Additionally,
this method is associated with a high possibility of complications, such as hemorrhage or
pneumothorax [6]. Furthermore, it can take up to 2–3 weeks to confirm EGFR mutation
status through conventional tissue biopsy.

Compared with tissue biopsy, liquid biopsy is repeatable, relatively less invasive, and
less time-consuming. Liquid biopsy using cell-free DNA (cfDNA) has been extensively in-
vestigated in the context of both diagnostic and prognostic biomarkers for lung cancer [7,8].
CfDNA in the plasma has a high specificity in detecting EGFR mutations but is associated
with a low sensitivity; this is because very small amounts of cfDNA exist in the blood as
cfDNA is released from tumor cells only during cell death and is rapidly cleared from
the circulation [9]. Thus, the application of liquid biopsy using cfDNA in clinical practice
is limited [10,11]. Extracellular vesicles (EVs) are heterogeneous, nano-sized membrane
vesicles that serve as key messengers of intracellular communication. EVs are ideal carriers
of cancer biomarkers as cancer cells secrete abundant EVs, the contents of which reflect the
molecular and genetic composition of the parental cancer cells [12,13]. These nano-sized
vesicles contain many molecules, such as nucleic acids, including tumor-specific oncogenic
mutant DNA and various subtypes of RNA, proteins, and lipids, and are involved in tumor
proliferation, progression, and metastasis [14]. Moreover, the lipid bilayer of EVs allows
for stable cargoes that are relatively difficult to degrade. These characteristics would allow
for higher sensitivity of mutation detection, making EVs ideal candidates for liquid biopsy.
However, research on EGFR genotyping using EV-derived DNA in the plasma is limited.
Previous studies have reported that the combined use of EV-derived RNA and cfDNA in
the plasma improves the sensitivity of EGFR mutation detection by 88–92% [5,15]; however,
to the best of our knowledge, the use of EV-derived DNA (EV-DNA) alone for this purpose
has not been reported.

There are several research works on the EV-based EGFR mutation detection [16–18]. To
increase the sensitivity in plasma EGFR mutation testing, the method combining the cfDNA
with DNA and RNA derived from exosomes are used [19,20]. We also previously reported
that EVs isolated from bronchoalveolar lavage fluid (BALF) of patients with NSCLC contain
abundant double-stranded DNA and both the detection and concordance rate of EGFR
mutations using BALF-EVs increase with tumor stages [21,22]. The results suggest that the
shedding of tumor-specific EVs containing mutant EGFR DNA is proportional to the tumor
burden. Although EGFR genotyping using EV-based BALF liquid biopsy was associated
with a low sensitivity in stage I NSCLC, it was successful for advanced NSCLC that requires
urgent and accurate EGFR mutation testing decisions. Therefore, we conducted a large-
scale prospective study to validate the clinical utility of EGFR mutation testing using
EV-based BALF liquid biopsy for patients with advanced non-squamous NSCLC.

2. Materials and Methods
2.1. Patients and Sample Collection

Paired tissue and BALF of 224 patients with lung cancer from June 2017 to August
2020 were prospectively collected at our hospital and included in this study. Patients
with suspected lung cancer based on chest tomography (CT) underwent bronchoscopy for
biopsy during initial lung cancer workup. BALF was obtained from the sub-segmental
bronchus site where the tumor mass was located. Bronchoscopy was performed and at least
10 mL of BALF was collected by aspiration after instillation of approximately 50–70 mL
of sterile isotonic saline by wedging the bronchoscope at the segment where the tumor
was located. BALF was collected as a residue after samples were submitted for routine
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cytological examination and microbial study. Additionally, 110 of the 224 patients had
matched blood samples collected on the same day of bronchoscopy. To confirm diagnosis,
we obtained tumor tissue by endobronchial biopsy for tumors with visible lesions. For
tumors without visible lesions, we performed blind trans bronchial lung biopsy (TBLB), CT-
guided percutaneous needle biopsy (PCNB), or surgical lung resection. Tumor staging was
based on the 8th TNM classification criteria [23]; clinical data of the enrolled patients were
reviewed by medical records. Patient demographics and clinical characteristics are detailed
in Table 1. This study was conducted in accordance with the Declaration of Helsinki
(2013) and the study protocol was approved by the institutional review board of Konkuk
University Medical Center (KUH 1010868). Written informed consent was obtained from
all patients.

Table 1. Patient demographics and clinical characteristics.

Characteristics BALF, n (%) Plasma, n (%) p-Value

Number of patients 224 110
Age (mean ± SD) 67.7 ± 11.8 67.4 ± 10.1 0.82

Sex
Male 134 (59.8) 53 (48.2)

0.19Female 90 (40.2) 57 (51.8)
Smoking history

Non-smoker 106 (47.3) 61 (55.5)
0.38Ex-smoker 58 (25.9) 24 (21.8)

Current smoker 60 (26.8) 25 (22.7)
Histology

Adenocarcinoma 187 (83.5) 95 (86.4)
0.52NSCLC 37 (16.5) 15 (13.6)

Stage
III 36 (16.1) 11 (10) 0.18

IVA 97 (43.3) 48 (43.6)
IVB 91 (40.6) 51 (46.4)

Tissue EGFR mutation
Wild type 131 (58.5) 44 (40)

0.12EGFR mutation 93 (41.5) 66 (60)
Exon 19 del 52 (55.9) 43 (39.1)

L858R 33 (35.4) 18 (16.4)
Exon 19 del + T790M 2 (2) 2 (1.8)

G719C + S768I 2 (2) 2 (1.8)
L858R + G719C 1 (1) 1 (0.9)
L858R + T790M 1 (1) 0 (0)

G719C 1 (1) 0 (0)
L861Q 1 (1) 0 (0)
S768I 0 (0) 0 (0)

T790M 0 (0) 0 (0)

Abbreviations: BALF, bronchoalveolar lavage fluid; del, deletion; EGFR, epidermal growth factor receptor; NSCLC,
non-small cell lung cancer.

2.2. BALF Processing and EV Isolation

EVs were isolated from 1 mL of BALF samples within 2 h of collection. Briefly, cells
and debris were removed by centrifugation at 1000 g for 10 min at 4 ◦C. Next, the cell- and
debris-free BALF sample was spun in an ultracentrifuge tube at 200,000 g for 1 h at 4 ◦C
using a Beckman rotor (Beckman Coulter, Brea, CA, USA). The supernatant was carefully
removed and discarded, and the pellet was suspended in 200 µL of phosphate-buffered
saline. The EV pellet was then lysed by mixing lysis buffer (10 mM Tris-HCl, 20% Triton
X-100) and detergent to isolate EV-derived DNA, which was further purified using the
High Pure PCR Template Preparation Kit (Roche Diagnostics, Mannheim, Germany). The
quality and length of the purified DNA were analyzed using a 4200 Tapestion and Genomic
DNA ScreenTape (Agilent Technologies, Santa Clara, CA, USA). The concentration and
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purity of DNA samples were measured using the NanoDrop (Thermo Scientific, Waltham,
MA, USA).

2.3. EV-Based BALF EGFR Genotyping

The PANAMutyper™ R EGFR kit (Panagene, Daejeon, Korea) was used for detecting
EGFR mutations. The PANAMutyper™ R EGFR kit (PANA C-Melting™) combines peptide
nucleic acid (PNA)-based PCR clamping (PNAClamp™) [24] with multiplex fluorescence
melting curve analysis (PANA S-Melting™) using fluorescence-labeled PNA probes that
allow detection of 47 hotspot mutations in EGFR exons 18–21. PCR was performed with
a total reaction volume of 25 µL containing 70 ng template DNA, primer and PNA probe
sets, along with the master mix using the CFX96 real-time PCR detection system (Bio-Rad,
Hercules, CA, USA). A detection probe was designed for competitive hybridization with
clamping PNA on the same strand (either sense or antisense DNA strand). The PCR was
performed with two holding periods of 50 ◦C for 2 min and 95 ◦C for 15 min and then
(i) 15 cycles of 95 ◦C for 30 s, 70 ◦C for 20 s, and 63 ◦C for 60 s; and (ii) 35 cycles of 95 ◦C
for 10 s, 53 ◦C for 20 s, and 73 ◦C for 20 s. Fluorescence was measured on all four channels
(FAM, ROX, Cy5, and HEX) during PCR and melting curve analysis. Each sample was then
genotyped based on the melting temperature (Tm) that was determined from the melting
peak of each fluorescent dye [25]. In summary, two specifically designed PNA oligomers,
a clamping PNA, which suppresses the amplification of an undesired or wild-type allele,
and PNA detection probe, which has a fluorophore and a quencher group at each terminus
of the probe were used in this qPCR.

2.4. EGFR Genotyping of Tissue DNA and Plasma cfDNA

Formalin-fixed, paraffin-embedded (FFPE) tissues were prepared; tumor DNA was
extracted and purified using the TANBead OptiPure FFPE DNA Tube (Taiwan Advanced
Nanotech, Taoyuan, Taiwan). EGFR genotyping was then performed as described above.

Blood samples (5 mL) were collected in K2-EDTA tubes; plasma was isolated via
centrifugation at 1000 g at 4 ◦C for 10 min within 2 h of collection. Plasma cfDNA was
isolated and purified using either the High Pure PCR Template Preparation Kit (Roche
Diagnostics) [26] or TANBead OptiPure cfDNA Auto Tube (Taiwan Advanced Nanotech).
EGFR genotyping was then performed as described above. The quality and length of
the purified DNA were analyzed using a 4200 Tapestion and Genomic DNA ScreenTape
(Agilent Technologies, Santa Clara, CA, USA). The concentration and purity of DNA
samples were measured using the NanoDrop (Thermo Scientific, Waltham, MA, USA).

2.5. Statistical Analysis

EGFR status assessment in the histological tumor samples was considered as the
standard reference for calculation of concordance, sensitivity, and specificity of BALF and
plasma cfDNA EGFR mutation detection. Categorical variables were summarized by calcu-
lating frequencies and percentages. Means and standard deviations were used to determine
numerical variables. The Spearman’s correlation test was used for correlation analysis
and Pearson chi-square and Fisher’s exact tests were used to determine the significance
of differences in EGFR mutation rate, sensitivity trends of BALF liquid EGFR genotyping,
and comparison with clinical parameters. The concordance rate was calculated as the sum
of positives and negatives in samples divided by the total number of matched samples.
Sensitivity was calculated as the proportion of concordant positives in samples out of the
positive tissue samples, whereas specificity was calculated as the proportion of concordant
negatives in samples out of the negative tissue samples. All statistical analyses were carried
out using SPSS version 25.0 (IBM Corp, Armonk, NY, USA), and a p-value < 0.05 was
considered statistically significant.
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3. Results
3.1. Patient Characteristics

Of the 224 newly diagnosed patients with NSCLC included in the present study,
40.2% were female, 47.3% were non-smokers, and the majority (83.5%) were histologically
classified as having adenocarcinoma. EGFR-mutant cases were identified in 93 patients
(41.5%) via tissue-based genotyping, whereas the remaining 131 patients had wild-type
EGFR (Table 1). Of the 93 patients with EGFR mutations, 52 (55.9%) showed an exon
19 deletion, 33 (35.4%) showed an exon 21 p.L858R mutation, and 6 (2.6%) had double
EGFR mutations. Additionally, 16.1%, 43.3%, and 40.6% had stage III, IVA, and IVB
NSCLC, respectively.

We also performed EGFR genotyping using plasma cfDNA from 110 patients; the
sex ratio and proportion of smokers were similar in the paired tissue, BALF, and plasma
subgroups. We did not observe significant demographic differences between the total
cohort and the plasma subgroup (Table 1).

3.2. Methods of Tissue Procurement for EGFR Genotyping

Visible endobronchial lesions were present in 20.1% of the total patients, and tis-
sue was obtained without difficulty by bronchoscopy. However, the remaining 79.9%
did not have visible endobronchial lesions, and hence transbronchial needle aspiration
(TBNA), PCNB, or surgical biopsy was performed to obtain adequate tumor tissue. Endo-
bronchial ultrasonography-TBNA for mediastinal lymph nodes was performed in 35.2% of
the patients, although the procedure is time-consuming, involves a high cost, and requires
advanced techniques and apparatus. CT-guided PCNB, which is associated with a risk
of pneumothorax and hemorrhage, was performed in 19.2% of the patients. Blind trans-
bronchial lung biopsy was performed in 9.8% of the patients as the lesions were hidden
and forceps could not be guided exactly to the right site. Surgical resection of the lung for
biopsy under general anesthesia was performed in 8.9% of the patients, whereas cytology
of pleural effusion or sputum was used in 6.7% of the patients for lung cancer diagnosis
and EGFR testing (Table 2). These data highlight the difficulties, time, effort, and cost
involved in obtaining lung tissue samples.

Table 2. Methods for tissue-based EGFR genotyping.

Biopsy Methods n %

Endobronchial lesion (+) 45 20.1
Endobronchial biopsy 29 12.9

Endobronchial biopsy + EBUS 15 6.7
Negative endobronchial biopsy + PCNB 1 0.4

Endobronchial lesion (−) 179 79.9
EBUS-TBNA 79 35.2

CT-guided PCNB 43 19.2
TBLB 22 9.8

Surgical resection 20 8.9
Cytology * 15 6.7

Endobronchial lesion (+) is defined as the existence of endobronchial nodules. Endobronchial lesion (−) is defined
as the absence of endobronchial lesions. * Cytology samples (pleural effusion, 13; sputum, 2) Abbreviations:
CT, computed tomography; EBUS, endobronchial ultrasonography; PCNB, percutaneous needle biopsy; TBLB,
transbronchial lung biopsy; TBNA, transbronchial needle aspiration.

3.3. EGFR Mutation Detection Rate in Liquid Biopsy Using BALF and Plasma and Tissue Samples

The sensitivity, specificity, positive predictive value (PPV), negative predictive value
(NPV), and concordance rate for BALF liquid EGFR genotyping were compared with
those for tissue-based EGFR genotyping and were 97.8%, 97.7%, 96.8%, 98.4%, and 97.7%,
respectively. The false negative rate was 2.1% (2/93), whereas the false positive rate was
2.3% (3/131), suggesting that the performance of BALF liquid EGFR genotyping was
comparable to that of tissue-based EGFR genotyping. Similarly, the sensitivity, specificity,
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PPV, NPV, and concordance rate for plasma cfDNA-based liquid biopsy (n = 110) were
compared with those of tissue-based EGFR genotyping and were 48.5%, 86.3%, 84.2%,
52.7%, and 63.6%, respectively. The sensitivity, specificity, and concordance rate for plasma
cfDNA-based liquid biopsy in comparison to those of tissue-based EGFR genotyping were
markedly lower than those of BALF liquid EGFR genotyping (Table 3).

Table 3. Comparison of EGFR mutation detection rate in liquid biopsy between BALF and plasma.

EGFR Genotype Tissue
BALF (n = 224)

Tissue
Plasma (n = 110)

Mutant Wild Type Mutant Wild Type

Mutant type 93 91 2 66 32 34

Wild type 131 3 128 44 6 38

Sensitivity 97.8% (91/93) (95% CI, 92.4–99.7) 48.5% (32/66) (95% CI, 35.9–61.1)
Specificity 97.7% (128/131) (95% CI, 93.5–99.5) 86.3% (38/44) (95% CI, 72.6–94.8)

PPV 96.8% (91/94) (95% CI, 90.8–98.9) 84.2% (32/38) (95% CI, 70.8–92.1)
NPV 98.4% (128/130) (95% CI, 93.5–99.5) 52.7% (38/72) (95% CI, 46.2–72.6)

Concordance rate 97.7% ((91 + 128)/224) (95% CI, 94.8–99.2) 63.6% ((32 + 38)/110) (95% CI, 53.9–72.6)

Abbreviations: BALF, bronchoalveolar lavage fluid; CI, confidence interval; EGFR, epidermal growth factor
receptor; PPV, positive predictive value; NPV, negative predictive value.

3.4. Concordance Rate for EGFR Genotyping among Tissue Biopsy, BALF, and Plasma Liquid
Biopsy (n = 110)

Next, we compared the concordance rates of EGFR genotyping in matched tissues,
BALF, and plasma of the 110 patients. The concordance rate between BALF and tissue was
99.1%, whereas the concordance rate between tissue and plasma cfDNA was only 63.6%.
(Figure 1). The false positive rate of plasma liquid biopsy was 13.6% (6/44) whereas the
false positive rate of BALF liquid biopsy was 0%. The false negative rate of plasma liquid
biopsy was 51.5% (34/66) while the false negative of BALF liquid biopsy was 1.5% (1/66)
(Supplementary Table S1). These results suggest that BALF liquid EGFR genotyping is
more sensitive and accurate than plasma cfDNA-based EGFR genotyping.

Figure 1. Concordance rate for EGFR genotyping among tissue biopsy, BALF liquid and plasma
liquid biopsy (n = 110) (double colors mean double EGFR mutation).

3.5. Comparison of Sensitivity between BALF and Plasma Liquid Biopsy Depending on Presence
of Metastasis

We compared the sensitivity of EGFR mutation testing using plasma and BALF de-
pending on the tumor stage in Figure 2. The tumor stages are classified with the type
of metastasis [23]. In plasma cfDNA-based liquid biopsy, the sensitivity increased with
the extent of the disease and was 19.2%, 40%, and 62.5% in stages M1a, M1b, and M1c,
respectively. Noticeably, the sensitivity of plasma cfDNA-based liquid biopsy in stage IVB
associated with extensive metastatic spread was only 62.5%. The sensitivity of plasma
cfDNA-based liquid biopsy was only 19–33% in intrathoracic disease where cancer is
confined to the thorax and approximately 40–62% in extrathoracic cases associated with
extensive spread. In contrast, the sensitivity of BALF liquid biopsy for EGFR genotyping
was nearly 100%, regardless of the extent of the metastasis (Figure 2). In other words,
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the BALF liquid biopsy was superior to cf DNA test in the aspect of detection of EGFR
mutation in intrathoracic metastasis (100% vs. 19.2 %, p < 0.001).

Figure 2. Comparison of sensitivity between BALF and plasma liquid biopsy depending on metastatic
tumor stage. * Indicates statistically significant difference (p < 0.05). (M0: no metastasis; M1a: in-
trathoracic metastasis; M1b: single extrathoracic metastasis; M1c: multiple extrathoracic metastasis).

3.6. Turnaround Time of EGFR Mutation Testing in BALF-Based and Tissue-Based Genotyping

The turn-around time of tissue/cytology-based EGFR mutation testing was approxi-
mately 13.9 days at Konkuk University Medical Center (95% CI, 9.4–15.5 days). However,
compared to tissue-based genotyping, BALF liquid EGFR testing had a significantly lower
turnaround time (approximately 2.6 days; 95% CI, 1.8–2.9 days; p < 0.001) (Table 4), sug-
gesting that BALF liquid EGFR testing is a rapid method for assessing EGFR mutation
status and can lead to efficient treatment decision-making. The time-consuming paraffin
fixation is required for tissue-based EGFR mutation testing. Using fresh tissue samples to
save paraffin fixation time is not realistic or appropriate for advanced lung cancer patients,
considering that only a very small amount of sample can be obtained from them. BALF
EGFR mutation testing does not require paraffin fixation time of tissue so it can save the
time for EGFR mutation testing.

Table 4. Comparison of the turnaround time of EGFR mutation testing using BALF vs. tissue samples.

Sample Type Mean (Days) Median (Days) p-Value

BALF 2.6 ± 2.03 2
<0.001Tissue 13.9 ± 12.4 12

4. Discussion

Tissue biopsy is the gold standard for molecular genotyping in lung cancer; however,
it is an invasive procedure that often causes complications. To circumvent the limitations
of tissue biopsy, such as inadequate sample and invasiveness, liquid biopsy using plasma
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cfDNA has been investigated extensively. However, the low sensitivity of liquid biopsy
due to the short half-life and intrinsic instability of plasma cfDNA poses a challenge in its
clinical application. BALF has emerged as an alternative liquid biopsy source with high
sensitivity, because it contains cellular and non-cellular components directly released by
tumor cells and the tumor microenvironment. EVs isolated from BALF contain double-
stranded DNA [21,27] and can thus be utilized as an alternative to tumor tissue for EGFR
genotyping [28]. EVs are 30–200-nm-sized nanoparticles enclosed by bilayer lipid mem-
branes, which carry RNA, DNA, proteins, lipids, and other diverse bioactive molecules and
are involved in intercellular communication [29]. EVs are actively released by cancer cells
and are produced in greater quantities by cancer cells than normal cells; EV production
increases with the extent of the disease [30]. EV-DNA presents several advantages over
plasma cfDNA, as EV biogenesis is an active process in tumor cells that reflects the state of
tumor progression and DNA encapsulated by the lipid bilayer of EVs is extremely stable
and protected from degradation by external factors, unlike cfDNA, which is fragmented,
free-floating, and a product of apoptosis [31,32]. Additionally, recent next-generation se-
quencing studies have demonstrated that EV-DNA can serve as good reserves of cancer
biomarkers [33–35]. These findings highlight the potential application of EV-based liquid
biopsy for EGFR genotyping in patients with advanced NSCLC.

Previously, we reported on the usefulness of EV-based BALF liquid biopsy for EGFR
genotyping in patients with NSCLC [22]. The sensitivity and specificity of BALF EV-based
EGFR genotyping in all stages were 76% and 87%, respectively, and the sensitivity was
increased significantly according to each TNM stage reaching to 100% in stage IV metastatic
NSCLC patients [26]. However, the clinical application of this novel platform was limited
by the small sample size of only 95 advanced NSCLC cases. Thus, in the present study, we
aimed to validate EV-based BALF EGFR genotyping prospectively for a large sample size in
a real clinical setting of 224 patients with advanced non-squamous NSCLC who need urgent
therapeutic intervention. Herein, the sensitivity of BALF liquid EGFR testing was 96.8–100%
regardless of the presence of extrathoracic metastasis, while the sensitivity of plasma liquid
biopsy was 19.2–33% in cases with intrathoracic metastasis and only 40.0–62.5% even in
cases with extrathoracic metastasis. The concordance rate between BALF- and tissue-
based EGFR genotyping was 98.5%, compared to 43.9% between plasma cfDNA- and
tissue-based EGFR genotyping, highlighting the potential of BALF liquid EGFR testing as
a replacement for conventional tissue-based genotyping, at least in patients with advanced
non-squamous NSCLC. Additionally, EGFR status was rapidly assessed via BALF liquid
biopsy at least 10 days earlier than with conventional tissue-based genotyping. Considering
the immediate symptomatic improvement with the correct EGFR-TKI treatment, the ultra-
rapid turnaround time of BALF liquid biopsy is potentially beneficial for advanced NSCLC
patients who need urgent therapeutic intervention, especially symptomatic or critically ill
patients. Currently, it might be challenging to prescribe the anticancer agent based only
on oncogenic mutants without histologic confirmation; however, given its high sensitivity
and specificity, liquid biopsy can be reasonably and feasibly used to guide therapeutic
decision. We expect that this study will contribute to support the paradigm shift from
current histology-based lung cancer diagnosis to genetic or molecular liquid biopsy-based
lung cancer diagnosis.

Ground glass opacity, air bronchogram, pleural retraction, and vascular convergence
are significantly more prevalent in EGFR-mutant NSCLC [36] and are factors that negatively
affect safe tissue biopsy. Hence, surgical biopsy is infrequently recommended in such cases.
Additionally, waiting for enough tumor growth to target for tissue biopsy can lead to
a diagnostic delay. Active mutations in the EGFR-tyrosine kinase domain, such as exon
19 deletion and exon 21L858R, are found specifically in lung cancer and are not common
in other cancers; for example, the frequency of EGFR mutations in colon cancer is 3% and
lung-cancer-specific mutations are rare [37]. Therefore, detection of lung-cancer-specific
mutant EGFR DNA in BALF along with compatible CT findings suggesting malignancy
may be sufficient to diagnose EGFR-mutant lung cancer to guide EGFR-TKI treatment. In
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East Asian countries, the prevalence of EGFR-mutant NSCLC is 30–40% and as high as 65%
in females, never smokers, and minimally exposed ex-smokers [38]. Bronchoscopy is one
of the basic procedures for initial diagnostic workup in patients with suspected malignancy.
The procedure is inexpensive and BALF can be safely collected during bronchoscopy.
Therefore, BALF liquid EGFR testing has various advantages, especially in patients with
EGFR mutation-associated factors, such as East Asian ethnicity, female, never smoker or
minimally exposed ex-smoker status, and peripheral tumors, allowing for ultra-rapid and
accurate diagnosis that can guide treatment. Therefore, further validation and development
of BALF liquid biopsy for use in the clinical setting is required.

This study had some limitations. First, it was a single-center study; hence, multi-
center, large-scale prospective clinical trials are required to validate our results. Second,
standardization of EV isolation and EV-DNA extraction is required for application in
routine clinical practice. Although we used ultracentrifugation, which is one of the standard
methods for EV isolation, it might be difficult to apply in routine practice, necessitating the
development of a one-step kit. Additionally, BALF sample collection and storage should be
standardized. Third, technical aspects of the BAL procedure, such as contamination with
blood due to touch bleeding, amount of infused saline, and BALF retrieval efficiency due
to the patient’s position and tumor location, especially in the upper lobe posterior segment
and lower lobe superior segment, might affect BALF liquid biopsy outcomes. However, in
our experience, tumor location does not necessarily affect BALF liquid biopsy results in
advanced NSCLC, as peri-tumoral fibrosis results in easy retrieval of lavage fluids due to
the applied negative pressure, while retrieval efficiency in normal compliant lung is usually
decreased due to collapse.

5. Conclusions

We demonstrated that EV-based BALF EGFR testing in advanced lung NSCLC is
a highly accurate and rapid method, which can overcome the low sensitivity of plasma
cfDNA-based EGFR genotyping and can be used as an adjuvant or alternative method for
lung biopsy in cases where obtaining an adequate amount of tissue is difficult. Additionally,
the use of EV-based BALF may shorten the time for confirmation of EGFR mutation status
for starting EGFR-TKI treatment and can hence potentially improve clinical outcomes.
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