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Abstract

Motor tics are sudden, repetitive, involuntary movements representing the hallmark behav-

iors of the neurodevelopmental disease Tourette’s syndrome (TS). The primary cause of TS

remains unclear. The initial observation that dopaminergic antagonists alleviate tics led to

the development of a dopaminergic theory of TS etiology which is supported by post mortem

and in vivo studies indicating that non-physiological activation of the striatum could generate

tics. The striatum controls movement execution through the balanced activity of dopamine

receptor D1 and D2-expressing medium spiny neurons of the direct and indirect pathway,

respectively. Different neurotransmitters can activate or repress striatal activity and among

them, dopamine plays a major role. In this study we introduced a chronic dopaminergic alter-

ation in juvenile rats, in order to modify the delicate balance between direct and indirect

pathway. This manipulation was done in the dorsal striatum, that had been associated with

tic-like movements generation in animal models. The results were movements resembling

tics, which were categorized and scored according to a newly developed rating scale and

were reduced by clonidine and riluzole treatment. Finally, post mortem analyses revealed

altered RNA expression of dopaminergic receptors D1 and D2, suggesting an imbalanced

dopaminergic regulation of medium spiny neuron activity as being causally related to the

observed phenotype.

Introduction

Tics are involuntary movements or vocalizations which change in body localization, fre-

quency, intensity, duration and onset. Chronically active, tics represent the behavioral hall-

mark of Tourette’s syndrome (TS). TS is a neurodevelopmental disorder that typically

manifests at school age, affecting 0.3 to 0.9% of children. TS symptoms last throughout child-

hood and show a typical waxing and waning course, they decrease after puberty until
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eventually disappearing in the vast majority of adult patients [1–3]. Motor tics are sudden,

brief and meaningless jerks or movements that can be divided into simple tics, when a single

muscle or muscle group is involved, or complex tics, when groups of muscles are involved

[4].

The underlying mechanism which causes tic development still remains uncertain, but the

Cortico Striato Thalamo Cortical (CSTC) circuit controlling movement and behavior appears

to have a pivotal role in their progression [5–8]. Within the CSTC circuit, the striatum is com-

monly recognized as the main regulatory element and numerous studies underlined its role in

TS as well [5,9–12].

Medium Spiny Neurons (MSN) are GABAergic projection neurons that make up to 95% of

striatal neurons. The remaining 5% comprises various types of interneurons [13] that are

thought to maintain a basal state of inhibition within the striatum controlling MSN activation

[14,15]. Primates and rodents manifest tic-like movements when MSN are released from inter-

neuronal control [16–18] therefore the regulation of MSN activity could be a crucial factor tic

generation.

Multiple neuronal inputs can physiologically modulate MSN activity, but the nigrostriatal

dopaminergic system is one of the most prominent. In fact, MSNs express high levels of

dopaminergic receptors (DR), mainly the DrD1 and DrD2 subtypes. DRs appear highly seg-

regated on MSNs belonging to the direct or the indirect pathway, respectively [19–23]. These

two pathways exert their key role in movement execution by stimulating wanted movements

and blocking unwanted ones. Balanced activity of both is required for physiological move-

ment, while perturbed dopaminergic pathways are known to cause movement alterations

[24–26].

Furthermore, dopamine (DA) has been the first neurotransmitter to be associated with tics,

when administration of DRD2 antagonists such as haloperidol was observed to result in

marked tic reduction. Currently, DRD2 antagonists are the only treatments approved by the

Food and Drug administration for tics, but are not recommended as first line treatment due to

their adverse side-effect profile [27–29].

We hypothesized that a developmental imbalance in the activity of the direct and indirect

pathway in the striatum could induce tic-like phenotype in rats. To verify this hypothesis we

intervened on the dopaminergic nigrostriatal system of juvenile rats by introducing a lesion of

the dopaminergic projections to the dorsal striatum (DS), an area which has previously been

associated with tic-like movements generation in animal models [16,30,31]. Chronic stimula-

tion of the DA-deprived area with indirect-pathway agonist quinpirole resulted in altered

movements that resembled tics and were reduced by the treatment with clonidine, similarly to

what is observed in TS patients [28,29].

Materials and methods

The present study was conducted in juvenile male Wistar rats (RjHan:WI, Janvier, Le Genest

St Isle, France). Fourteen days old rats were housed in groups of 5 together with their mothers

under a 12h light and dark cycle in temperature and humidity controlled rooms and with ad
libitum access to food and water.

The surgical procedure, treatment of animals and their conditions had been approved by

the appropriate institutional governmental agency (Regierungspraesidium Tübingen, Ger-

many) and performed in an AAALAC (Association for Assessment and Accreditation of Labo-

ratory Animal Care International)-accredited facility in accordance with the European

Convention for Animal Care and Use of Laboratory Animals.

Dopamine alterations can induce tic-like movements in juvenile rats
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Experimental design

Stereotaxic surgery. Juvenile 21–22 days old rats were anesthetized with 4% isoflurane in

N2O/O2 (70: 30). Rats were adjusted on a stereotaxic frame (David Kopf Instruments, Tujunga,

CA, USA) on a flat skull position. Surgical anesthesia was maintained by reducing isoflurane

to 1.5–1.2%.

The toxin 6-hydroxydopamine hydrobromide (Sigma-Aldrich, Germany) was dissolved in

0.02% ascorbate solution and injected at a flow rate of 0.5 μL/min into (i) left DS (8μl total

injection volume in 2 injection points, at a 2 mg/mL concentration, n = 21), (ii) anterior part

of DS (aDS) and (8 μl injection volume, at a 2 mg/mL concentration, n = 15) (iii) central part

of DS (cDS) (8 μl injection volume, at a 2 mg/mL concentration, n = 15). Coordinates are cal-

culated from bregma and scaled down from an adult rat brain [32] for the different injection

sites (in cm): (i) AP = +0.15 ML = +0.25, DV = -0.52 and AP = -0.02 ML = +0.35, DV = -0.50,

(ii) AP = +0.15 ML = +0.25, DV = -0.52, (iii) AP = -0.12 ML = +0.35, DV = -0.52. Sham rats

were injected in the left dorsal striatum (i) with ascorbate solution (n = 15). For all animals,

the needle was left in place for 3 additional minutes after injection and then retracted. Analge-

sia was provided with Meloxicam (1mg/kg SC in 2mg/ml injection volume, Boehringer Ingel-

heim Vetmedica GmbH, Germany) 20 minutes before the surgical procedure and at the end.

After recovering from surgery, animals were separated from their mothers and housed in

groups of 5 siblings to prevent isolation.

Dopamine agonist priming and phenotype score

Thirteen days after surgery chronic treatment with a solution of quinpirole (0.5 mg/kg in

saline, IP) for a total of 7 times over 15 days was initiated, as to induce and stabilize the motor

phenotype. On the last day of treatment, rats were individually observed for 1min every

30mins and their phenotype was scored according to our newly developed scale.

Drugs preparation and testing

Quinpirole hydrochloride, clonidine and riluzole were obtained from Sigma-Aldrich Chemie

GmbH, Germany. Haloperidol was purchased from Janssen-Cilag GmbH (Germany) and was

diluted in saline at the desired dose (0.1 mg/kg).

Quinpirole was freshly dissolved in saline shortly before administration (IP, 0.5mg kg).

To investigate the effect of clonidine and riluzole on quinpirole-induced motor phenotype,

drugs were injected together or after quinpirole administration in a way that the maximal

effect of the injected drug would coincide with the phase of constant tic-like phenotype, that

took place 60–120 min after quinpirole administration. Riluzole (2-amino-6-trifluoromethoxy

benzothiazole) was dissolved in 1% tween-20 solution and left overnight under magnetic stir-

ring. On the test day, riluzole was injected (6 mg/kg IP) 60 minutes after quinpirole adminis-

tration, tic-like phenotype score of quinpirole treated aDS, cDS and DS lesioned juvenile rats

was used as control. Clonidine was freshly dissolved in saline and injected together with quin-

pirole (IP, 0.5 and 0.05 mg/kg).

Haloperidol-induced catalepsy

Haloperidol-induced cataleptic immobility is a well-established measure of extrapyramidal

side effects typically associated with antipsychotic treatment [33].

After 45 min from quinpirole administration, rats (n = 8 each group) were injected with

saline as a negative control, haloperidol for positive control (0.1, 0.5 or 1 mg/kg IP) or riluzole

(6 mg/kg IP). After 15 more minutes they were placed with their forepaws on a horizontal bar

Dopamine alterations can induce tic-like movements in juvenile rats
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in bipedal position for 1min. In case the rat left the bar within the observation time, it was

replaced on it for a maximum of four times. The total time of immobility on the bar was

recorded as time of catalepsy.

Food intake measurement

During phenotype score, quinpirole treated DS lesioned juvenile rats were provided with a

previously weighed amount of food in the observation cage. After 3hrs the remaining food was

carefully removed and weighed. The difference between the initial and the final amount of

food was considered as food intake measure. The same experiment at the same circumstances

was repeated with DS lesioned juvenile rats administered with saline.

Ultrasound vocalization quantification

One hour after saline (n = 7) or quinpirole (n = 8) administration, rats were individually

placed with their cage in a sound-proof chamber. Spontaneous ultrasonic vocalizations (USV)

produced for 5mins were recorded through a condenser microphone (CM16; Avisoft Bioa-

coustic, Germany), mounted 20 cm above the rat’s cage center, by Avisoft recorder Software

(UltraSound Gate 116 USB, version 3.2 Avisoft Bioacoustics, Germany). The system was sensi-

tive to frequencies of 10–180 kHz, selected sampling frequency was 300 kHz and 16 bit was the

format chosen. The obtained WAV (.wav) file recordings were analyzed through SAS Lab pro

Software (version 4.5, Avisoft Bioacoustics) and the average number of total calls, amplitude

(in kHz), peak frequency (in kHz) and duration (in sec). Calls were further categorized into 22

kHz, 50 kHz monosyllabic and 50 kHz complex calls, representing 50 kHz calls constituted of

more than one syllable, and their average percentage was calculated over the total calls.

Post mortem analyses

RNAscope1 in situ hybridization. A total of 6 rats ware used for DRD1 and DRD2 RNA

analysis with in situ hybridization. Rats were sacrificed at PND25 (n = 3) shortly after stereo-

taxic surgery, or at PND50 (n = 3), after priming and phenotype verification. For this group, a

solution of 0.5 mg/kg of quinpirole had been administered 90mins prior to sacrifice. Rats were

deeply sedated with isoflurane and sacrificed by decapitation, the brain was readily extracted,

snap frozen in liquid nitrogen and stored at -80˚C. Samples had been moved at -20˚C on the

night before sectioning and multiple 12μm cryosections from aDS and cDS were taken, allow-

ing the same brains to be independently stained for DRD1 and DRD2 RNA.

For each timepoint, 3 different sections (in correspondence with aDS and cDS injection

sites, and an intermediate section), were used for quantification, for a total of 9 sections quan-

tified for DRD1 and DRD2. One aDS section was later excluded from quantification because

of its damage during the procedure.

In situ hybridization was performed using the RNAscope1 2.5 HD Red Chromogenic

Reagent Kit (Advanced Cell Diagnostics, Hayward, CA ACD#322350), that allowed detection

of target RNA at single cell level. Probes for rat DRD1 (RNAscope1 Probe- Rn-Drd1a ACD#

317031) and DRD2 (RNAscope1 Probe- Rn-DRD2 ACD# 315641) were designed and pro-

vided by the manufacturer and the experimental procedure followed the manufacturer’s

instructions for single plex assay. Briefly, frozen cryosections were fixed by immersion in 4%

PFA at 4˚C for 15 mins. The tissue was dehydrated in EtOH (50%, 70% and 100%), permeabi-

lized with RNAscope1 Hydrogen Peroxide for 10 minutes at RT (ACD# 322335) and pre-

treated RNAscope1 Protease IV (ACD# 322336) for 30 minutes at room temperature.

Target probes for DRD1 and DRD2 were independently hybridized for 2 h at 40˚C and the

signal was later amplified through 6 consecutive steps. A chromogenic enzymatic reaction

Dopamine alterations can induce tic-like movements in juvenile rats
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produced a red signal in correspondence with the hybridized probe, while hematoxylin was

used for nuclear counterstaining. Images were acquired using ZEISS Axio Scan.Z1 and ana-

lyzed with HALO image analysis platform (Indica labs). For quantitative evaluation, the areas

of interest were manually selected: on the lesioned side the analyzed area corresponded with

the lesion (the area was chosen through comparison with tyrosine hydroxylase immunostain-

ing) and an analogous area was selected on the control side. HALO software segregates cells

into negative (only hematoxylin staining) and positive cells for hematoxylin and DrD1 or

DrD2 probes based on the nuclear optical density (minimal OD 0,338). Positive cells were

reported as percentage of the total cells.

Immunohistochemistry. The presence of tyrosine hydroxylase (TH) the rate-limiting

enzyme for DA synthesis was analyzed by immunohistochemistry to detect the lesioned area

in the DS of PND56 days old rats. After phenotype verification, at PND50 deeply anesthetized

rats were transcardially perfused with saline and by 4% ice-cold paraformaldehyde. Brains

were rapidly extracted, post-fixed in the same solution for 3 hours and then stored in 30%

sucrose at 4˚C. After the samples had sunk in the sucrose solution they were frozen with dry

ice and stored at -80˚C until use. Coronal sections of 12μm thick of aDS and cDS regions were

sectioned using a cryostat at −20˚C. After fixation for 20mins in 4% paraformaldehyde slides

were blocked for 2h with a solution of 1% bovine serum albumin, 0.045% fish gelatin and 0.1%

saponine. Samples were incubated overnight with mouse monoclonal anti-TH primary anti-

body (1:400, Millipore Cat# MAB5280, RRID: AB_2201526), of which the specificity is rou-

tinely assessed by the manufacturer. After washing, the primary antibody was detected with

Alexa Fluor1 488 (Thermo Scientific, Molecular Probes Cat# A-11017, RRID: AB_143160).

Fluorescent brain images were taken through Typhoon™ 9400 Variable Mode Imager (GE

Healthcare).

Statistical analyses

All statistical analyses were performed using GraphPad Prism 7 (GraphPad Software, San

Diego, CA, USA). Data are expressed as mean ± SEM and P values equal to or less than 0.05

were considered to be statistically significant. All time-effect data were analyzed for statisti-

cal significance using two-way analysis of variance (ANOVA) followed by Sidak´s test for

multiple comparison. Phenotype components in aDS cDS and DS was analyzed through

one-way ANOVA and Dunn´s multiple comparison tests. DrD1 and DrD2 RNA expression

and cell density variations between PND25 and PND50 were analyzed with repeated mea-

sures two-way ANOVA corrected by Sidak´s multiple comparison´s test. Total cell density

in lesioned versus control side and food intake of quinpirole or saline treatment rats were

compared with paired Student’s t test. Number, duration, frequency and amplitude of ultra-

sonic vocalizations as well as time of catalepsy were analyzed with one-way ANOVA and

Dunn’s test for multiple comparisons. Types of USV are expressed in percentage of the total

number and are analyzed with two-way ANOVA followed by Tukey´s test for multiple

comparisons.

Results

Quinpirole chronic treatment of juvenile rats lesioned with 6-OHDA in

dorsal striatum induced tic-like movements

Chronic DRD2/ DRD3 agonist quinpirole administration to juvenile rats lesioned with 6-

OHDA in the dorsal striatum (DS) (Fig 1) gave raise to abnormal movements that were care-

fully observed and summarized in Table 1.

Dopamine alterations can induce tic-like movements in juvenile rats
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Abnormal movements followed quinpirole pharmacokinetics and started quickly after

quinpirole administration, peaking in intensity between 30- 150mins and slowly reducing to

an end around 4hrs after administration.

Movements appeared sudden, fast and occurred in bouts during observation time but their

overall score remained almost constant for more than 2hrs after quinpirole administration

and before progressively declining. Abnormal movements did not impair the physiological

behavior of the animal that was normally able to eat and drink (S1 Fig), walk (except fora very

mild contralateral rotation behavior), and engage in social behavior if reunited with its

siblings.

To quantify tic like movements we needed to develop a rating scale as no rating system for

tic-like movements in rodent models existed. For this purpose, we adapted the Yale Global Tic

Fig 1. Experimental design. The degeneration of nigrostriatal dopaminergic projections on the dorsal striatum was achieved through stereotaxic injection of the

toxin 6-hydroxydopamine (6-OHDA) at postnatal day 21 (PND21). After recovery, rats were chronically administered with the DA agonist quinpirole that induced

a tic-like motor phenotype that was quantified on PND48 and used for drug testing. The entire experimental procedure was concluded before puberty (~PND60-

70).

https://doi.org/10.1371/journal.pone.0196515.g001

Table 1. Tic-like movements observed in 6-OHDA lesioned juvenile rats chronically administered with quinpir-

ole. Simple tic-like movements involve the mouth, neck and limb contralateral to the lesion. Complex tic-like move-

ments are movements of the mouth, neck and limb that occur simultaneously in a repeated and fixed pattern.

Movements resembling TICS

Sudden jerks or movements that recur in

bouts and involve a single muscle or muscle

group (SIMPLE TICS)

Sudden jerks or movements involving multiple

body parts recurring in a clear and repeated

pattern (COMPLEX TICS)

Mouth • biting

• sniffing

• tongue protrusion

• licking

• biting (and/or)

• tongue protrusion

+

• side to side head twitching

+

• side-to-side movements of the contralateral

front paw under the chin (and/or) opening and

closing movement of the contralateral paw

Neck • side to side head twitching

Contralateral

limb

• side-to-side movements of the contralateral

front paw under the chin

• opening and closing movement of the

contralateral paw

Other movements

• Contralateral rotations

• Dystonic postures

https://doi.org/10.1371/journal.pone.0196515.t001

Dopamine alterations can induce tic-like movements in juvenile rats

PLOS ONE | https://doi.org/10.1371/journal.pone.0196515 April 26, 2018 6 / 23

https://doi.org/10.1371/journal.pone.0196515.g001
https://doi.org/10.1371/journal.pone.0196515.t001
https://doi.org/10.1371/journal.pone.0196515


Severity Scale (YGTTS) used for TS patients to our rodent model. The YGTTS takes into

account five separate aspects of motor tics: number, frequency, intensity, complexity, and

interference with normal activities. The same parameters were taken into account for tic quan-

tification in our animal model, except for frequency and intensity that in our case form a single

parameter because of the inducible nature of the model.

Three body parts were identified as candidates to show tic-like movements: mouth, neck

and the paw contralateral to the lesion. The frequency/ intensity represents the duration of tic

bouts over pauses, when the animal continues its natural behavior (walking, eating, grooming

etc.). This parameter is calculated independently for each of the body parts involved as follows:

0 = tic-like movements are absent, 1 = mild (present in less than 40% of time, long pauses

interpolate few tic bouts), 2 = frequent (present in 40–70% of time, tic bouts and pauses equally

alternate) 3 = continuous (almost present at all times with only short spontaneous interrup-

tions), 4 = compulsive (always present with no interruptions).

One body part can show tic-like movements alone or at the same time with other body

parts but independently, similarly to simple tics in patients which involve single muscles or

muscle groups. Furthermore, we observed repetitive movements of more than one body part

together which were repeated in a clear pattern. We recorded these as complex tics.

The overall degree of complexity of tic-like movements was measured as follows: 0 = only

simple tics present, 1 = complex tics appear but represent less than 30% of the total time spent

performing tics, 2 = complex tics represent less than 60% of the total time spent performing

tics, 3 = continuous presence of complex tics with rare and short spontaneous interruptions

(60–90% of the total tics), 4 = compulsive complex tics cannot be interrupted by the animal or

by external stimuli.

Finally, the interference of tics with normal rat´s behavior is taken into account and consid-

ered as value of impairment of the phenotype. This parameter was rated as follows: 0 = the

animal is able to freely alternate tic behavior with his natural behavior, 1 = the animal is exclu-

sively engaged in tic-like activity that lasts for less than half of the observation time (less than

30sec) with no interruption, and/or it shows strong axial torsion for less than 20sec in total,

and/or shows continued rotational behavior for less than 15 consecutive seconds. 2 = points

the animal is exclusively engaged in tic activity for more than half of the observation time with

no interruption and/or it shows strong axial torsion for more than 20sec in total, and/or shows

continued rotational behavior for more than 15 consecutive seconds.

The total tic-like movement score is calculated as a sum of the number of body parts (0 to 3

points), the average of the frequency/ intensity of the different body parts (0 to 4 points), com-

plexity of tics (0 to 4 points) and impairment (0 to 2 points) as shown in Table 2. Borderline

scores such as 1.5, 2.5 and 3.5 are allowed for frequency/intensity and complexity parameters

to improve the sensitivity of the scale.

The rating scale was tested to quantify the phenotype associated with quinpirole treatment

in juvenile rats with lesion of dopaminergic nigrostriatal projections on the DS. Results show

significantly different tic-like movements score between sham and DS rats (F(1,28) = 204.6,

p<0.0001) and between time points (F(9,252) = 65.40, p<0.0001), with a significant interaction

between groups and time (F(9,252) = 40.03, p<0.0001). (Fig 2).

During the observation period, juvenile rats were engaged in simple and complex tic-like

movements of the contralateral limb, neck and mouth that did not interfere with food con-

sumption (S1 Fig). In contrast to mouth and limb movements, neck movements did not

appear as simple tic-like movements; rather they only appeared in concert with limb and

mouth movements to form complex tic-like movements.

Quinpirole-induced repetitive chewing and biting movements in sham-lesioned group

suggesting that DRD2 activation alone can be sufficient for oral movements induction, in

Dopamine alterations can induce tic-like movements in juvenile rats
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Table 2. Tics rating parameters and related scores. The rating parameters used are translated from the YGTSS used for patients, and include the number of body parts,

frequency of the tic-like movement, complexity and impairment of the normal rats’ behavior.

Number of body parts

0–3 points

Frequency

0–4 points

Complexity

0–4 points

Impairment

0–2 points

• Limb (+1) Calculated as average of:

• Limb frequency/ intensity:

0 = none

1 = mild

2 = frequent

3 = continuous

4 = compulsive

0 = none

1 = mild

2 = moderate

3 = marked

4 = compulsive

0 = none

1 = mild

2 = strong

• Neck (+1) • Neck frequency/ intensity:

0 = none

1 = mild

2 = frequent

3 = continuous

4 = compulsive

• Mouth (+1) • Mouth frequency/ intensity:

0 = none

1 = mild

2 = frequent

3 = continuous

4 = compulsive

https://doi.org/10.1371/journal.pone.0196515.t002

Fig 2. Time course of tic-like movements score of quinpirole-treated juvenile rats lesioned in the dorsal striatum (DS) and unlesioned rats. On observation

day, tic-like movements score is taken every 30 min after quinpirole administration (0.5 mg/kg) and is calculated as the total number of body parts + average

frequency + complexity + impairment scores. A significant difference between tic-like score in quinpirole treated lesioned and sham rats is indicated as �p< 0.05.

https://doi.org/10.1371/journal.pone.0196515.g002
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agreement with previous reports [34–36] (Fig 3), but no difference in the type, number, dura-

tion, frequency and amplitude of USV was registered between DS lesioned and sham rats

treated with quinpirole (S2 Fig).

Anterior and central dorsal striatum differentially contribute to the motor

phenotype

The phenotype described above was achieved by two separate injections of 6-OHDA: one in

the anterior part (aDS) and the second in the central part (cDS) of the DS (S4 and S5 Figs). As

the striatum reflects the topographic organization of the movement circuit [37], we decided to

investigate the two injection sites independently and observe their contribution to the motor

phenotype.

Total tic-like movements score in aDS was significantly milder than in cDS lesioned juve-

nile rats (F(9,280) = 281.0, p<0.0001) and between time points (F(1,280) = 133.6, p<0.0001),

with a significant interaction between groups and time (F(9,280) = 10.12, p<0.0001) (Fig 4)

Juvenile rats lesioned in aDS showed a mild phenotype consisting of simple tic-like move-

ments of the mouth and the limb (Fig 5).

CDS lesioned juvenile rats showed an intense and complex phenotype similar to DS

lesioned juvenile rats but with a significantly shorter duration (time points 150 and 180 min

men diff = 2, p<0.005 for 150min and mean diff = 1.7, p<0.01. Figs 2 and 4). The phenotype

of all considered body parts of cDS lesioned juvenile rats was intermediate to this of aDS and

DS lesioned juvenile rats, and in all three groups the tic-like phenotype did not impact on the

normal rats’ behavior (Fig 5).

Fig 3. Average frequency scores of the body parts involved in tic-like movements. Average frequency scores of limb, neck, mouth movements and complex tic-

like movements during the phase of maximal abnormal motor manifestation (60-120min after quinpirole administration) on dorsal striatum-lesioned rats (A) or

sham-lesioned rats (B).

https://doi.org/10.1371/journal.pone.0196515.g003
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DRD1 but not DRD2 RNA expression is reduced in pre-pubertal rats

lesioned in the dorsal striatum

We hypothesized that motor tic-like phenotype was associated with a dopaminergic imbalance

which influences activation and functioning of the direct and indirect pathway in the develop-

ing striatum. For this reason, we investigated the level of DRD1 or DRD2 RNA expression in

juvenile rats at PND25 shortly after 6-OHDA lesion in DS at PND21, and at PND50, in pre-

pubertal rats with a stable tic-like phenotype. We addressed this question via high resolution

RNAscope1 technology, which allowed for marking of postsynaptic cell nuclei with hematox-

ylin (blue dots), and to visualize and quantify cells expressing the RNA of interest (red dots

and positive nuclear staining) at a single cell level (Figs 6 and 7).

The injection of 6-OHDA in the DS, performed at PND21, left an edema that is visible at

PND25. At this timepoint, an increase in cell number in the lesioned side compared to control

side is observed (mean diff. 1496, p<0.0001), but a reduction of DrD1 (mean difference 23.88,

p<0.0001) and DRD2 positive cells (mean diff 22.59, p<0.0001) is observed in the area adja-

cent to the injection site compared to an analogous area of the control side (Figs 8 and 9). At

PND50 there is no visible trace of the lesioned area (Figs 6 and 7), but there is a significant

lower number of DrD1 in the lesioned side compared to control side (mean diff. 9.95, p<0.05)

(Fig 8), that is not due to a lower cell number in the lesioned side (Fig 9) while no difference in

DrD2 is encountered (Fig 8).

Fig 4. Time course of tic-like movements score in aDS and cDS. Tic-like movements score is taken every 30 min after quinpirole

administration and is calculated as the total of number of body parts + average frequency + complexity + impairment scores. Significant

difference is indicated as ����p<0.001.

https://doi.org/10.1371/journal.pone.0196515.g004
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Preliminary results obtained with samples from aDS (n = 3) and cDS (n = 3) seem to indi-

cate that DrD1 reduction in DS of PND50 rats is significant only in its anterior part (F(3,8) =

23.64, p = 0.0002) (Fig 10).

Glutamatergic modulation with riluzole effectively reduces tic-like

phenotype

Glutamatergic corticostriatal projections are major activators of MSN activity and their activity

is tightly interconnected with this of dopaminergic nigrostriatal neurons. Their possible role in

the pathophysiology of tics and TS has been supported by clinical and preclinical data and

anti-glutamatergic therapy has been suggested but remains poorly investigated [38–41].

We decided to investigate the effect of riluzole, a glutamatergic modulator, on DS-lesioned

rats chronically administered with quinpirole.

At first, predictive validity was checked with clonidine an α2-adrenergic receptor agonist

that is commonly used as a therapy for TS. A preliminary experiment with a higher dose of clo-

nidine (0.5 mg/kg) was executed, but the high reduction of phenotype score observed appeared

to be associated with signs of catalepsy, like rigidity and immobility (experimental observa-

tions) (S3 Fig). At a lower dose of clonidine (0.05 mg/kg), phenotype score was significantly

different across treatment groups (F(1,198) = 19.76, p<0.0001) and time points (F(8,198) = 37.98,

Fig 5. Phenotype components in DS, aDS and cDS lesioned juvenile rats. The average frequency scores, the average complexity score and the average

impairment score are calculated during the phase of maximal phenotype score (60- 120mins after quinpirole administration) for the different body parts involved

in tic-like movements: limb (A), neck (B), mouth (C), complex tic-like movements (D) and impairment score (E). Significant difference is indicated as �p<0.05
��p<0.01 ����p<0.001.

https://doi.org/10.1371/journal.pone.0196515.g005
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p<0.0001) with a significant interaction between treatment and time (F(8,198) = 8.8,

p = 0.0016) (Fig 11). In this case we did not observe sign of catalepsy.

Glutamatergic modulation with riluzole (6 mg/kg), administered 60 minutes after quinpir-

ole due to its different pharmacokinetics, showed a rapid, significant reduction in tic-like

movements score (F(1,26) = 86.58, p<) 0.0001and no cataleptic effects (Fig 11 and S6 Fig)

Fig 6. In situ hybridization reveals DrD1 RNA expression in aDS and cDS of 6-OHDA lesioned rats, evaluated at PND25 and PND50. In all panels, red dots

result from a chromogenic reaction indicating the presence of the target RNA, while blue dots represent the nuclear marker; aDS PND25 (top left), cDS PND25

(bottom left), aDS PND50 (top right), cDS PND50 (bottom right). The orange circle approximately indicates the area taken into account for quantitative analysis.

https://doi.org/10.1371/journal.pone.0196515.g006
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Discussion

This work aimed at understanding the role of dopaminergic alterations in the juvenile stria-

tum, a brain region which is causally related to behavioral deficits of neurodevelopmental dis-

order Tourette’s syndrome (TS) [10,11,38]. In particular, we focused our attention on the

Fig 7. In situ hybridization reveals DrD2 RNA expression in aDS and cDS of 6-OHDA lesioned rats, evaluated at PND25 and PND50. In all panels, red dots

result from a chromogenic reaction indicating the presence of the target RNA, while blue dots represent the nuclear marker; aDS PND25 (top left), cDS PND25

(bottom left), aDS PND50 (top right), cDS PND50 (bottom right). The orange circle approximately indicates the area taken into account for quantitative analysis.

https://doi.org/10.1371/journal.pone.0196515.g007
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dorsal region of the striatum which takes part in different aspects of motor function, including

planning, learning and execution [37]. Alterations in this region have been previously associ-

ated with the generation of motor tics [16,30,31]. Consistent with literature findings [12,42],

vocal tics, the other defining feature of TS, do not seem to be related to dorsal striatum abnor-

malities (S2 Fig).

Physiological movements are considered the result of a balanced integration of all compo-

nents of the CSTC circuit, with particular relevance of the striatum as primary regulator of the

Fig 8. Percentage of DRD1 and DRD2 positive cells in DS. The number of positive cells for DRD1 RNA and nuclear staining (A) or DRD2

RNA and nuclear staining (B) in the lesioned and in the corresponding area on the control side of PND25 and PND50 rats is reported in

percentages of the total number of nuclear staining-positive cells. Significant total difference is indicated as ����p<0.001, ��p<0.01, �p<0.05.

https://doi.org/10.1371/journal.pone.0196515.g008

Fig 9. Total cell density in the lesioned area at PND25 and PND50. The total cell density in the area that had been

interested by the lesion was calculated as number of nuclear staining-positive cells/ um2 of tissue in 18 samples taken

from rats sacrificed after the lesion at PND25 or at PND50 after phenotype validation. Significant difference is

indicated as ��p<0.01, ����p<0.001.

https://doi.org/10.1371/journal.pone.0196515.g009
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circuit. A failure of physiological processes for selection of wanted movements to promote

their execution could cause movement abnormalities [24,26,37].

The dopaminergic nigrostriatal system regulates movement through a continuous and strict

balance of the striatal direct and indirect pathway dichotomy [24,26]. For these reasons, we

introduced a dopaminergic imbalance in juvenile rats at the dorsal striatal level via lesion of

the nigrostriatal terminals (S4 and S5 Figs) followed by a chronic administration of DrD2

Fig 10. Preliminary analysis of DrD1 and DrD2 RNA positive cells in aDS and cDS of rats sacrificed at PND50.

Cells positive for DrD1 RNA and nuclear staining (A) or DrD2 RNA and nuclear staining (B) were quantified in

lesioned versus control side in aDS (n = 2) or cDS (n = 3) of DS lesioned rats and are reported as percentage of positive

cells compared to total cells. Significant difference is indicated as ���� p<0.001.

https://doi.org/10.1371/journal.pone.0196515.g010

Fig 11. Time course of tic-like movements score after clonidine and riluzole administration. Clonidine (0.05 mg/kg IP) was administered together with

quinpirole (A). Riluzole (6mg/kg IP) was administered 60min after quinpirole (indicated by an arrow) (B). Significant reduction of phenotype score compared to

the score obtained during quinpirole treatment by the same animals is indicated as �p<0.05, ��p<0.01.

https://doi.org/10.1371/journal.pone.0196515.g011
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agonist quinpirole. The protocol was developed to cover the phase of neurodevelopmental

plasticity during the prepubertal phase in rats, in order to mimic the human condition [1,3].

Shortly after 6-OHDA injection in the DS, at PND25, the lesioned area appears character-

ized by tissue damage probably resulting from edema [43,44] and by increased cell number

that likely reflects ongoing inflammatory processes [45]. Levels of both DrD1 and DrD2

mRNA expressing cells were markedly reduced (Figs 6 and 7), however, it is worth mentioning

that no behavioral abnormality was observed at this time point. Movement alterations were

first associated with the beginning of quinpirole chronic treatment, and became consistent

after 6 quinpirole administrations on alternate days. The majority of movements appeared to

be involuntary, fast, and patterned, similarly to tics in patients and we defined them tic-like

movements (Table 1).

It is important to underline that the presence of face validity in rodent models of tics mostly

rely on their adherence to the definition of tics established for humans (sudden, rapid, recur-

rent, nonrhythmic motor movements or vocalizations). The consideration of fast, repetitive

and recurring movements as tic-like movements is a generally accepted compromise consider-

ing the fact that the identifying feature of tics in TS- waxing and waning course and their antic-

ipation by sensory phenomena- are hard to be translated into preclinical models. However, as

a consequence, different types of movements may fall under this definition and a careful obser-

vation is needed for their characterization and distinction. For instance, in patients, tics can be

confounded with stereotypies, which are characterized by the execution of extremely rigid

sequences of involuntary movements. In animal models, a well-described stereotype is the

increase in chained grooming [31,46], that is now considered a rodent expression of compul-

sive behavior and was not observed in our animal model.

While the major components of the CSTC are conserved, the great differences in the move-

ment repertoire of humans and rodents are likely to lead to a different manifestation of tics

[47,48].

For this reason, we first carefully categorized abnormal movement manifestations and

described those similar to tics, (Table 1) that represented the major phenotype.

Tic-like movements were shown to involve the paw and the mouth independently or form

complex patterned movements also involving the neck (S1 Video) reflecting the distinction

between simple and complex tics in patients. Other motor phenotypes like mild axial torsion

and contralateral rotations were occasionally observed in DS and cDS lesioned rats, but did

not represent a major phenotype. Contralateral rotation is considered as an effect of the intra-

hemispheric difference of dopaminergic input introduced with the lesion [49]. Axial dystonia

is a typical component of the dyskinetic phenotype of adult rats lesioned with 6-OHDA in the

medial forebrain bundle. Our model shows very low signs of axial torsion, probably because of

the relatively small lesion area. As the coexistence of TS and dystonia has been reported in the

literature [50,51], DS or cDS lesioned rats could be a useful tool in the investigation of this

condition.

As a rating scale for tic-like movements in animal models was missing but needed [52], we

developed a new one by translating the one in use for patients.

The new rating system is focusing on movements with tic-like features in order to increase

its translatable potential, while minor phenotypes were indirectly taken into account as impair-

ing factors (Table 2). The distinction between simple and complex tic-like movements repre-

sents an innovative point of our rating system.

In our characterization we moved forward to determine the role of the anterior and the cen-

tral DS in phenotype formation, knowing that the dorsal striatum is topographically organized

[16,17,37]. We observed that aDS lesioned juvenile rats exclusively show mild simple tic-like

movements of the mouth and the paw, while cDS lesioned juvenile rats have a more complex
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and marked phenotype, similarly to the full DS lesioned juvenile rats involving simple and

complex movements of the paw, mouth and neck (Fig 5). This result may indicate that both

DS regions are equally implicated in mouth movements, while mainly cDS is involved in neck

and limb movements.

Bronfeld and colleagues showed tic-like movements evoked by microinjection of GABA

antagonist bicuculline in the DS [16]. In their observations, mild facial movements were

reported after both injections in the anterior and in the dorsal striatum, consistent with our

findings. The major phenotypes they described were strong tic-like movements of forelimbs

and hindlimbs depending on whether the area of injection was anterior dorsal striatum or pos-

terior dorsal striatum respectively. We did not investigate the posterior dorsal striatum and

did not observe hindlimb tic-like movements, but we reported forelimb tic-like movements

associated with aDS as well, and cDS. Bicuculline is a GABA antagonist which is considered to

relieve striatal MSN near the injection site from interneuronal inhibition. Consequently, stria-

tal projection neurons become more susceptible to abnormal firing when stimulated by the

premotor cortex. Our model acts at a different level of the CSTC circuit: by removing the con-

trol held by nigrostriatal DA projections on cortico-striatal synapses. We reckon that in both

cases MSN are more easily subjected to abnormal firing, possibly causing tic-like movements.

In post mortem samples obtained from DS lesioned juvenile rats at PND50, the absence of

DA afferent fibers to DS indicated the successful ablation of nigrostriatal neurons. At the stria-

tal level, recovery of both DrD1 and DrD2 mRNA expression between PND25 and PND50

can be observed, although at a different extent: while the expression level of DrD2 mRNA at

PND50 is comparable between lesioned and unlesioned side, DrD1 mRNA expression on the

lesioned side is still significantly lower than on its control side (Fig 9). The majority of the stud-

ies investigating the expression level of DrD1 and DrD2 receptors at a late timepoint after

6-OHDA was mainly done in adult rats [23,53–56]. Fewer studies analyzed DRD1 and DRD2

expression in adult rats that received 6-OHDA as neonates [57–60] showing that the precise

age at which the lesion was performed and the time between lesion and testing determine the

experimental outcome. Our investigations covered a critical period for striatal development

that takes place between PND20 and PND60, during which the number of DrD1 and DrD2

positive neurons is subjected to a continuous variation [60–63]. It is known that 6-OHDA

lesions and receptor stimulation can interfere with the physiological development of DA

receptors in the striatum [54,60,64]. For this reason, we think that the continuous agonism of

DrD2 trough quinpirole could have supported DrD2 but not DrD1 expression, that remained

lower in the lesioned side. The resulting imbalanced activation of direct and indirect pathway

could represent the basis of the motor phenotype observed. In support of our results, DrD1

mRNA levels were reported to be reduced in TS patients by one of the few available post mor-
tem investigations [65].

Furthermore, several studies suggested DRD2 as a candidate gene for TS [66–68], while

imaging and post mortem studies supported abnormality of DrD2 expression in the striatum

[69] or in other brain areas [70,71]. However, it needs to be mentioned that other studies failed

to replicate these results [72,73] and the involvement of DrD2 in TS is still under debate.

On the other hand, it is clear that therapeutics targeting DrD2 effectively alleviate tics Cur-

rently they represent one of the few FDA-approved treatments for TS, although they are not

the drug of choice of physicians because of their strong side effects [29,74].

We decided to address the role of glutamatergic regulation as possible strategy for tic reduc-

tion after increasing lines of evidence showed the involvement of the glutamatergic system in

TS [39,41,75]. The glutamatergic modulator riluzole was shown to have a safe profile and was

investigated in numerous child-onset psychiatric disorders with successful outcome [76–79].

In TS patients a single preliminary study showed tic reduction associated at a comparable
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extent to riluzole and placebo treatment. Because of intrinsic limitations of the study such as

low number of participants and limited time-duration, the authors strongly recommend fur-

ther investigations [79]. Riluzole has been successfully used as off label therapy for tic reduc-

tion, and for this reason we decided to support its investigation in our tic-like movements

model.

Predictive validity was first tested in the presence of the alpha-adrenergic agonist clonidine,

a therapeutic option for tics and comorbid attention deficit/ hyperactivity disorder in patients

[80,81] that effectively reduced tic-like phenotype in quinpirole-treated DS-lesioned rats

(Fig 3).

Upon riluzole treatment we observed a strong reduction of tic-like movements (Fig 11) that

could result from a partial restoration of the delicate balance between dopamine and glutamate

at the cortico-striatal projections level or to a compensatory action at the thalamo-cortical

level. In our observations, animals were able to move freely and showed no sign of catalepsy

thus suggesting that glutamatergic modulation could represent a safe therapeutic option for TS

patients.

Supporting information

S1 Fig. Food intake of DS lesioned rats administered with quinpirole and saline.

(TIF)

S2 Fig. Ultrasonic vocalizations produced by rats treated with quinpirole. USV produced

by DS (n = 15), aDS (n = 15), cDS (n = 15) and sham (n = 15) lesioned rats administered with

quinpirole are characterized according to their number (A) duration (B) average frequency

(C) amplitude (D) and call types expressed in percentage of the total number (E). Significant

difference between groups is indicated as �p<0.05.

(TIF)

S3 Fig. Time course of tic-like phenotype of quinpirole treaded DS lesioned rats adminis-

tered with 0.5 mg/kg of clonidine.

(TIF)

S4 Fig. Lesion of the anterior DS. The lesioned area could be observed through tyrosine

hydroxylase (TH) immunostaining, revealing loss of dopaminergic TH positive projections in

6-OHDA lesioned aDS.

(TIF)

S5 Fig. Lesion of the cDS. The lesioned area could be observed through tyrosine hydroxylase

(TH) immunostaining, revealing loss of dopaminergic TH positive projections in 6-OHDA

lesioned cDS.

(JPG)

S6 Fig. Catalepsy is not associated to riluzole treatment in rats. DS lesioned rats were

administered with saline, HA (0.1, 0.5 and 1 mg/kg) and riluzole (6 mg/kg) 45 min after quin-

pirole administration. Time of catalepsy was calculated as time the animals spent on a horizon-

tal bar without movement, for a maximum of one minute. Significant difference between

groups is indicated as: �p<0.05, ��p<0.01, ���p<0.005 and ����p<0.01.

(TIF)

S1 Video. Example of simple tic-like movements.

(AVI)
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