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Abstract

In the current paper, we consider multi-derivative nonlinear fractional differential equa-
tions involving Atangana-Baleanu fractional derivative. We investigate the fundamental
results about the existence, uniqueness, boundedness and dependence of the solution on
various data. The analysis is based on a fractional integral operator due to T. R. Prabhakar
involving generalized Mittag-Leffler function, the Krasnoselskii’s fixed point theorem and
Gronwall-Bellman inequality with continuous functions.
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1 Introduction

Fractional differential equations (FDEs) [1-5] appeared as an excellent mathematical tool
for modeling of many physical phenomena appearing in various branches of science and
engineering such as viscoelasticity, self-similar protein dynamics, continuum and statistical
mechanics, dynamics of particles etc. For more details, one can refer [6—11] and further-
more articles referred in that. Crucial development about existence and uniqueness theory,
various sorts of stabilities, data dependency and the controllability results for a different
class of FDEs can be found in [12—-16] and the references cited therein.

To avoid the singularity appearing in the classical fractional differential operators many
researchers are attempting to build up the theory of fractional calculus by constructing dif-
ferent kinds of fractional derivative operators with the nonsingular kernel. In this sense,
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Caputo and Fabrizio [17] constructed a new fractional derivative which a variant of Caputo
derivative with the singular kernel replaced by the exponential function as its kernel. Atan-
gana and Baleanu in [18] introduced non singular Caputo and Riemann-Liouville version
of fractional differential operator with Mittag-Leffler function as its kernel.

Taking advantage of the non-singular Mittag Leffler kernel present in the Atangana-
Baleanu (AB)-fractional derivative operators, recently authors from various branches of
applied mathematics developed and studied mathematical models involving AB-fractional
derivative. Bonyah et al. [19] considered a mathematical model involving AB-fractional
derivative for co-infection of cancer and hepatitis diseases. They examined existence and
uniqueness, stability analysis, and reproductive number. In [20], Ahmad et al. investigated
the fractional-order tumor-immune-vitamin model with AB-fractional derivative for exist-
ence, uniqueness, and Hyres-Ulam stability. Authors in [21] did a comparative and chaotic
study of tumor and effector cells through the fractional tumor-immune dynamical model
with AB-fractional derivative. In [22], the authors utilized the fractional AB derivative
to study the numerical solution of the fractional immunogenetic tumor model. Study of
transmission dynamics of COVID-19 mathematical model under ABC-fractional-order
derivative has been dealt in [23]. Logeswari et al. [24] explored the mathematical model
for spreading of COVID-19 infection in the world with AB-fractional derivative. Further,
they created a framework that generates numerical outcomes to predict the outcome of the
infection spreading all over India. Other few important works that attempted to handle the
issue of diverse ailment modeled in the form of FDEs involving AB-fractional derivative
are [25-30]. For additional point by point concentrates on various qualitative and quantita-
tive properties of solutions to FDEs with AB-fractional derivative, the interested reader can
refer to [31-39].

On the other hand, Mohamed et al. [40], considered multi-derivative initial value prob-
lem for Caputo FDEs and studied the existence and uniqueness of the solution and obtained
numerical solution through Adomian, Picard and predictor-corrector technique. Kucche
et al. in [41] extended the work of [40] to the system of multi-derivative FDEs involving
the Caputo fractional derivative and studied existence, uniqueness and continuous depend-
ence of solution. Further, they have discussed validity, convergence, and error estimation
for Picard’s method.

Inspired by the work of [42—44], on the line of [40, 41], we consider multi-derivative
nonlinear FDEs involving Riemann-Liouville version of AB-fractional derivative (ABR
derivative) of the from:

do

- + ¢Diw(r) = f(z, (7)), 7 € J, (1.D)

0(0) = w, € R, (1.2)

where J=[0,T], T>0,0<a <1, SD‘; denotes the ABR-fractional differential operator
of order @ and f € C(J X R, R) is a non-linear function.

We derive an equivalent fractional integral equation to ABR-FDEs (1.1)—(1.2) ana-
lytically and via Laplace transform. Using the properties of fractional integral operator
5/7,’ wwa+ We derive some supplementary results. The existence of solution is obtained by
using Krasnoselskii’s fixed point theorem. We obtain uniqueness of solution via Gronwall-
Bellman inequality as well as using the properties of fractional integral operator EZ’ doat
The boundedness and the continuous dependence of the solution is obtained through Gron-

wall-Bellman inequality for continuous function.
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We organize our work as follows: In sect. 2, we recall basic definitions and results about
AB-fractional derivative and the generalised Mittag-Leffler function. In sect. 3, we derive
an equivalent fractional integral equation to ABR-FDEs (1.1)—(1.2) analytically as well as
using the Laplace transform. In sect. 4, we derive supplementary results and existence and
uniqueness of solution. In sect. 5, we derive boundedness and data dependence of solution.
In sect. 6, an example is provided to illustrate the existence results.

2 Preliminaries

In this section, we recall basic definitions and results about AB-fractional derivative and
the generalised Mittag-Leffler function.

Definition 2.1 [31] Let p € [1, o) and  be an open subset of R, the Sobolev space H”(L2)
is defined by

H(Q) = {f € L(Q) : D'f € L*(Q), for all |p| < p}.

Definition 2.2 [18] Letw € H'(0,1) and 0 < a < 1. Then, the left Atangana-Baleanu frac-
tional derivative of w of order « in Riemann-Liouville sense (ABR derivative) is defined by

Deg(r) = 2@ d / T[Ea[— a (T—G)a]a)(a)d()',
0

T l-adr l—a
where B(a) > 0 is a normalization function satisfying B(0) = B(1) =1 and E, is one

parameter Mittag-Leffler function.

Definition 2.3 [18] Letw € H'(0,1) and 0 < a < 1. Then, the left Atangana-Baleanu frac-
tional derivative of w of order  in Caputo sense is defined by

B(a) ’ a

l—«a 0

ABC D gy(7) = E, [— (r - a)a]a)'(a)da,

l-«a

where B(a) > 0 is a normalization function satisfying B(0) = B(1) =1 and E, is one
parameter Mittag-Leffler function.

Definition 2.4 [45, 46] The generalized Mittag-Leffler function [EZ ﬂ(z) for the complex
a, f,y with Re(ar) > 0 is defined by

had k
SACED) il
where (), is the Pochhammer symbol given by
Wo=Lh=rG+D+k=1),k=12,-.
Note that
E, ;(2) = E, 52, E; () = E,(2).

We need the following results related with Laplace transformation.
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- «F
Lemma 2.1 [18] If L{f(z)ip} = F(p). then L{;D’f(z):p} = %i—@a)'
Teptt
k! a—ff dk
kat+p—1 (k) v | — P ® ()= 4
Lemma 2.2 [2]£[1 + E, ;(xaz ),p] = Qv“ia)k“’[E (r) = di[E(r).

Definition 2.5 [46, 47] Let p, u,w,y € C (Re(p), Re(u) > 0),b > a. Then, the fractional

integral operator 5; waat O @ class L(a, b) is defined by

(& s (@) = / (t =) 'E! [o(r — o) 1¢(0)do, T € [a, b].

Lemma 2.3 [46, 47] Let p, u, w,y € C (Re(p), Re(u) > 0),b > a, then the operator 5;
is bounded on Cla, b] such that

&} ar D@ < Ol

NTRORCH

where
- el k
0=@b-afwy (69N joo(b = ay*@ |t
& T(pk + p)|[(Re(p)k + Re()] Xl
Lemma 2.4 [46, 47] Let p, u,w,y € C (Re(p), Re(u) > 0), then the operator & is

. NTRONEY
invertible in the space L(a, b) and for f € L(a, b) its left inversion is given by the relation

(160 samae] )7 = (P V00 a < 7 <,

where v € C, (Re(v) > 0) and DZJJ:V is the Riemann-Liouville fractional differential opera-
tor of order u + v with lower terminal a.

Lemma 2.5 [46, 47] Let p, 4, w,y € C(Re(p), Re(u) > 0). If the integral equation
/ (r — a)yfle/};’M[w(T —0)*]¢p(o)do =f(r),a< 7 <D,

is solvable in the space L(a, b), then its unique solution ¢(t) is given by

(r)= (DLTVET W S)@, a<T<b,

PV, @50
where v € C, (Re(v) > 0) and DZ:V is the Riemann-Liouville fractional differential opera-

tor of order u + v with lower terminal a.

Lemma 2.6 (Krasnoselskii’s Fixed Point Theorem [15]) Let Q be a Banach space. Let S
be a bounded, closed, convex subset of Q and let F,,F, be maps of S into Q such that
Fio+ Fon € S for every pair w,n € S. If F, is contraction and F, is completely continu-
ous, then the equation

Fio+F,o=w

has a solution on S.
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Lemma 2.7 ( Gronwall-Bellman inequality [48]) Let u and f be continuous and nonnegative
functions defined on J = [a, f], and let c be a nonnegative constant. Then the inequality

u(t) < C+ / f(o)u(o)do, ,t €J,
a
implies that

u(t) < Cexp </Tf(a)d0'>, T€EJ.

3 Equivalent fractional integral equation

In this section we obtain an equivalent fractional integral equation to the ABR-FDEs (1.1)-
(1.2) by analytical method and then by using by the method of Laplace transform.

Theorem 3.1 For any function h € C(J), the function w € C(J) is a solution of ABR-FDEs

fl—? + oDio(r) = h(z),7 € J, 3.1

0(0) = w, € R, (3.2)

if and only if w is a solution of fractional integral equation

(1) = wy —

B(a()x /T [Ea[ —a (r — g)“]a)(a)do' + /T ho)do, 7 €J. (3.3)
—aJy

1 N 0

Proof 1:
Using definition of ABR-fractional derivative, Eq.(3.1) can be written as

Ba) [*
l-«a 0

E, [— L o-)“]w(o-)da) — (o), T €.
l-a

% <a)(r) +

Integrating both sides of above equation between the limits O to 7, we obtain

B(a) [*
w(t) + 1 A E, [—

L 0')“] w(6)do — w(0) = / h(o)do, 7 € J,
—a l—a 0
which gives desired fractional integral Eq.(3.3).
Conversely, if w € C(J) satisfies fractional integral Eq.(3.3), then differentiating both
sides of Eq.(3.3) with respect to 7, we obtain

do Bl d [© @ « _
E+1—a5/0 [Ea[—l_a(‘r—a) ]a)(a)da-h(r),‘re].

Using definition of ABR-fractional derivative, we get Eq. (3.1). Further putting 7 = 0 in
Eq. (3.3), we get initial condition (3.2).
Proof 2: Taking Laplace transform of both sides of Eq.(3.1), we get
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Ll (v):p] + L[ Dl wx(7)ip| = LIA(z)3p].

Then using formula for Laplace transform of ordinary and ABR-fractional derivative given

in Lemma 2.1, we get

B@) p"Wp) _ -

T—w « =Hp),
—-a pa + —_—

l-a

pW(p) - w(0) +

where W(p) = L[w(z);p] and H(p) = L[h(r);p). Using initial condition (3.2), we rewrite
the above equation as

a—1yy,
W(p) = wol — Mp—W(p)

= 1
— +H(p)-.
p 1_“P“+E p

Now taking inverse Laplace transform on both sides of above equation and using convolu-
tion theorem, Lemma 2.2, we obtain

a—1
E_I[W(p);r] = a)oll_l [l;r] - M(ﬁ_l lp—a;r] % E_I[W(p);r]>
p 1-—a pr+ —

l—a

+ L7 [H(p);r] * L] [1—17;1]

B _
=@~ 7 (_a()x ([Ea[l _aar“] * w(r)) +h(r) * 1

B oL -
=y - 1 (_“i 0 [Ea[l _“a (r - 0)“]w(a)d0' + /0 h(o)do.

From above equation, we have

o) = 0, — 2@ [Ea[ LA a)“]w(a)d(; + / h(o)do.
l—a 0 l-a 0
which is desired fractional integral Eq. (3.3). a

Remark 3.2 Using the definition of fractional integral operator EZ’ vt the equivalent frac-

tional integral equation (3.4) to the ABR-FDEs (3.1)-(3.2) is given by

B B(a)
1-—a

(1) = w,

€ . o)D)+ | ho)de, €.
a,l,]_ﬂ,0+ o

Theorem 3.3 For any f € C(J X R, R), the function w € C(J) is a solution of ABR-FDEs
(1.1)-(1.2) if and only if w is a solution of fractional integral equation

o(r) = wy — B(a) [Ea[ —a (r - o-)"’]a)(a)d()' + / f(o,w(o))do, T € J. (3.4)
1-—a l-a 0
Proof Proof follows by taking h(7) = f(z,w(7)), T € J, in the Theorem 3.1. O

The proof of following theorem is based on the properties of fractional integral oper-
ator & studied in [46, 47].

.50+
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4 Existence and uniqueness results

Theorem 4.1 Let 0 < a < 1. Define the function F on C(J) by

(Form = T2 (&,

a,l, == 0+

)(r), weCU), tel. @.1)
Then:

(i) F is bounded linear operator on C(J).
(i1) F satisfies Lipschitz condition.
(iii) F(S) is equicontinuous, where S is any bounded subset of C(J).
(iv) Fisinvertible and for any f € C(J), the operator equation Fw = f has unique solu-

tionin C(J) .
Proof (i) Since, by definition and Lemma 2.3, the integral operator &' e is bounded
and linear operator on C(J), such that
1
ga,l,ﬁ;(nw ‘ <Ollwl|l, z € J,
where we find
—a a k k
= ) -« S G)T et a
Q ; INak+ 1)(ak+1) k! ; Lak+2)  — “*\l-«a
we have
B B
| Feoll = ‘ @ limw‘ < Qﬂnwll, for allw € C(J).
1-a’ l—«a

Thus F is bounded linear operator on C(J).
(i) Let any w,n € C(J). Then using linearity of F and boundedness of operator

E;,l,g;m’ we find for any 7 € J,
|(Foo)(e) = (Fn(®)] = |(Flo = m)@)| = 1 B (511 a0+w n)®
B
<D - n)H<Q o= il
This gives

B(a
170~ Fnll < 0Tl =l @, 1 € CO.

Thus the operator F satisfies Lipschitz condition with Lipschitz constant
B(a) «
g l1-—a Eaz <_ r )
(iii) Let S= {w € C(J) : ||w|| £ R} be any closed, bounded subset of C(J). Then for
any w € S and any 7,, 7, € J with 7; < 7,, we find
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B B
|(Faoyr, - (Foy,| = ‘ (&l 0,0 )@ = T (£ ) (@)

- 2@ /0 E, |- = 0| wlo)do - /0 A [Ea[— (e, — 0" (oo
A ey v
B8 e
B(a) < —a \F 1 i a a
< l—a% <l—a> F(ka+1)/o )(T]_o-)k _(72_0')]( |w(o)|do
B@) < |/ —a \F| 1 i}
+1—a§ (+=3%) F(ka+1)/T |72 = )l

RB(@) wa [ a \F . "
= 1—a2<1—a> F(ka+1)/ (@ =0~ (7 —0)"}do

RB(a) 1 2 a
T Z(l—a) F(ka+1)/,l (s = 0)do

RB(@) @ [ a \ 1 « « « a
< ( ) ST {_(Tz — e Téc +1_ T{c oy (ry — 1)) +1}

<RB(‘1)i< o )k 1 Tka+1_1ka+l}
ST-a &\T-a) Tha+2) " A

From above inequality it follows that, if |7, — 7,| — O then |(Fw)7, — (Fw)7,| — 0. This
prove that F(S) is equicontinious on J.
(iv) Using Lemma 2.4 and Lemma 2.5, for any f € C(J), we have

(5;1,%;04.1‘)_1@) = ( 0r Eap 2 Oj)(r) t € (a,b), 4.2)

where g € C, with Re(f) > 0.
Then using definition of operator F and Eq. (4.2), we have

(7 lf)()—< “0+f> ()—B()(DHﬂ ;1 a0+f>(r)'r€(ab)

This prove that F is invertible on C(J) and the operator equation

(Fo)(z) = f(z), T € J,

B@) o

has the unique solution

o) = (F'f)@) = ;( )< (1)1”5‘ﬂ . (Hf)(r) 7 € (a,b).

We have the following existence theorem for the particular case of ABR-FDEs (1.1)
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Theorem 4.2 If the function f € C(J X R,R), then ABR-FDEs SDZCO(T) =f(r, (1)),
T € J is solvable in C(J) and has solution in C(J) given by

a
l-a

o) = 55 (DL€} 07 )0 2 €.

where € C,(Re(f) > 0) and f(r) = fOTf(O',a)(O'))dU, Tel.
Proof The equivalent integral equation of ABR-FDE
sDo(r) = f(z,0(c)), 7 € J,

is given by

A

1 a (r - 0')“]60(0')030' = / f(o,w(0))do, T € J.
—a 0
Using definition of operator F defined in Eq. (4.1), above equation can be written as
(Fo)(z) = / flo,w(0))do =f(r), T €J. (4.3)
0

By Theorem 4.1, the operator Eq. (4.3) is solvable and has a solution in C(J) given by

(z) = g(‘a‘)" (D€} g ) (@) 7 €038 € C.Re(p) > 0.

Now we derive existence and uniqueness results to the ABR-FDEs (1.1)—(1.2).

Theorem 4.3 (Existence Theorem.) Let the function f € C(J X R,R) satisfies Lipschitz
type condition

If(T’w) _f(T’ ﬂ)l S p(T)lw - '7|’ w,n € C(J),
where p i J — R*, with L =supp(z). If 0 < L < min { 1L } then ABR-FDEs (1.1)—

Te]

(1.2) has a solution in C(J) provided

2B(a)TE, (iT“)
A\ice” ) (4.4)
1l-—a
Proof Define,
log| + M, T

R = s wherer = srlépj)[f(r,O)L

B@)TE,, ( LT )

l1—a

1-LT -

By the choice of L and condition (4.4), we have R > 0.
Consider the set,

S={weCl): ||loll <R}
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One can verify that S is closed, convex and bounded subset of Banach space Q. Consider
the operators 7| : S - Qand F, : S — Q defined by,

(Flo)(t) = wy + /Tf(a, w(o))do, T € J,
0
(Fo)(t) = —(Fo)(z), T € J,

where we take F as defined in the Eq.(4.1). The equivalent fractional integral Eq.(3.4) to
the ABR— FDEs (1.1)—(1.2) can be written as operator equation in the following form

o =Fw+Fo oe CJ).

We prove that the operators F; and F, satisfies conditions of Lemma 2.6. The proof of the
same have been given in following steps.

Step 1) F is contraction.

Using Lipschitz condition on f, for any w,n € C(J) and r € J we obtain,

| F(z, w(1)) = Fz,n(r))| < p(0)|ew(r) —n(r)| < Ll|lo-1l],
This gives,
|F 0 — Finll < LT|lo - nll, w,n € C(J).

Step 2) F, is completely continuous.

Using Ascoli-Arzela theorem and Theorem 4.1, one can easily verify that the operator
F, = —F is completely continuous.

Step 3) Flwo+ Fon € S, forw,n € S.

For any w,n € S, using Theorem 4.1, we obtain

|(Fro+ Fom) ()] < [(Fio) ()| + [(Fn)(o)]
<lool+ [ 1o 0toldo + L TE (1) n)

< Icoo|+/ If (o, w(0)) — f (o, 0)|da+/ lf (o, O)Ido+ B@) T[E (liaT">R

i B
< |wyl +L/ |lo(o))|do +Mf/ do+ 2@ T[Eaz( T")R
0 " Jo 1- l-a
B
< |wy| + LRz + M7 + 1(—“)T[Ea,2< = T"’)R
B
< |@y| + LRT + M,T + T (@ T[EM(1 T"‘)R
4.5)
By definition of R i.e. condition(4.4), we get
B(a)TE,, ( = T")
lwg| + M, T =R 1 — LT — 7 (4.6)
-

We write from inequalities (4.5) and (4.6)
I(Fio+ Fom)(@)| <R, 7 €J.

This gives
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|F 0+ Fonll <R, forall w, n €S.

This shows that 0 + F,n € S, forw,n € S.
From steps 1 to 3, it follows that all the conditions of Lemma 2.6 are satisfied. Therefore
by applying it, the operator equation

o= Fo+ Fo,

has a fixed point in S, which is a solution of ABR-FDEs (1.1)—(1.2). This completes the
proof of the theorem. O

In the following theorem we prove the uniqueness of solution to ABR-FDEs (1.1)-(1.2)
in two different ways. Firstly we give the proof via properties of fractional integral operator
1 . . .
Ea L2 0 and then by using the Gronwall-Bellman inequality.
Theorem 4.4 (Uniqueness Result) Under the assumptions of Theorem 4.3, the ABR-FDEs
(1.1)—(1.2) has unique solution in C(J).

Proof 1:
The equivalent fractional integral equation to ABR-FDEs (1.1)—(1.2) can be written in
operator equation form as

g0, @) =] (@), T €, @.7)

where
f()— — <600 w(T)+/f(6 w(G))d6>

By Theorem 4.3, the operator Eq.(4.7) is solvable in C(J). Therefore by applying Lemma
2.5, the operator equation Eq.(4.7) has unique solution in C(J), which is the unique solu-
tion of ABR-FDEs (1.1)—(1.2).

Proof 2:

Let w,n be two solutions of ABR-FDEs (1.1)—(1.2). Using linearity of fractional inte-
gral operator, we find for any 7 € J

B
<a)0 (@ (51 e 0+a))(*r)+/ f(o, a)(o'))da)

—(wo Tl @)+ /0 f<a,n(a))do>

B(a)
<7

lo(z) — n(7)| =

g,z (@ =MD

+/ [f(e. (o)) — f(o,n(o))ldo
0

B _ T
< 2 tEa< (e =¥ )o@ - ndn + [ p@loto) - oo
—-aJy l-«a 0
B T T
<= [Ea( 1) (o) = n(@)ldo + | p(o)loo) = n(o)ldo
-« 1- 0
B
/ [1 (“) BT )+p(o)] (o) = n(@)]do.
-
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658 S.T. Sutar, K. D. Kucche

Applying Lemma 2.7, we get
|o(z) —n(7)| <0, 7 € J,

which shows that w(z) = x(z), for all = € J. This proves the uniqueness of solution of
ABR-FDEs (1.1)~(1.2).

5 Estimate on solution and data dependence

Theorem 5.1 Under the assumptions of Theorem 4.3, if w(t) is a solution of ABR-FDEs
(1.1)—(1.2), then

B
|lo(z)] < {|w0| +MfT} exp (/ [1 (_az, g ﬁT&) + p(o)

do), relJ. (5.1)

Proof If w(7) is a solution of ABR-FDEs (1.1)—(1.2), then it satisfies equivalent intgeral
Eq.(3.4). Hence we write for any 7 € J,

e
-

lo(7)] < | + B(a) [Ea< 1 >|a)(a)|d6+/ |f (6, w(0))|do
- 0

< ool + IB(“; (]fa(r—a)“)|w<a>|da+/ (0. (o)) - f(0.0)|do
0 0
+/ lf(c,0)|do
<l 0|+ B(a) / p(0)|a)(0)|d6+MfT
B
_{|a)0|+MfT}+/ [1(_“i —aT")+p(6) lw(0)|do

Applying Lemma 2.7, we obtain

|a)(‘r)|<{|a)o|+MfT}exp</ [B(“) ) ﬁr") +p(6)]d0'>,1€].

l-a
O
In order to discuss the data dependence result, we consider ABR-FDEs
dl’] * Ty iy
=+ (D) = (@) T €, (52)
n(0) =n, € R. (5.3)
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Theorem 5.2 Assume the conditions of Theorem 4.3 holds. Let €; > 0, i = 1,2 be any two
real numbers such that,

lwy — 1ol < €y, If(z,n(0)) = f(z.n(2)| < €, T € J,

where n(t) is a solution of ABR-FDEs (5.2)—(5.3). Then, the solution w(z) of (1.1)-(1.2)
depends continuously on the function involved on the right side of Eq. (1.1).

Proof Since w,n are the solutions of ABR-FDEs (1.1)—(1.2) and (5.2)—(5.3) receptively.
We find for any 7 € J

(wo -2/ (e -0 koo + / e, w(a))da)

B 4 - T_
—<’10 - @ [Ea< (r- 6)”)11(6)616 + /0 f(a,n(a))dtf)

I-a /y l-a

Ba) [*
Sle_ﬂ0|+1_aAEa<l

+ /0 [f (o, (o)) = f (o, n(0))do

lo(z) = n(0)| =

-

(t-o0)*

> lw(e) — n(o)ldo

B T
< oy = ol + (“)/ E, (2= = 0" ) o0) - n(@)ldo
0

l-—a l-a

+/ V(U,w(a))—f(m'l(ﬂ))ld6+/ [f (o, 0(0)) ~ f(o,n(o))|do
0 0

<e+ f?(oc) [E,,<1 i‘ T"’)|w(0') —n(o)|do +/ p(o)|w(c) —n(o)|do + 62/ do
0 a 0 0

-

" [ B(a) a .
§€1+€2T+'/0 [l—a[E"'(l—aT >+p(0')]|a)(6)—r](6)|d6.

Applying Lemma 2.7, we get

lo(2) = n(0)| < (€ +&,T) exp (/ [B(“) [Ea( * aT“) +p((7)]d0'),f el
A —

l-—a 1
54
From Eq. (5.4) we observe that the solution w(z) of ABR-FDEs (1.1)-(1.2) depends con-
tinuously on the function involved the right side of Eq. (1.1). a

Remark 5.3 Theorem 5.2 gives the dependency of the solution of the ABR-FDEs (1.1)—
(1.2) simultaneously on the initial condition and the functions involved on the right-hand
side. If e, = 0 then it gives the dependency of solution on the function involved on right
hand side, if €, = 0 then it gives the dependency of solution on initial condition and if
€, = 0 and e, = 0 it gives the uniqueness of solution.

Let any 6, 6, € R and consider the following system of ABR-FDEs

Z—w + oDio(r) = g(z,0(7),8), 7 € J, (0) = wy € R, (5.5)
T
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fl—w + ¢Dio(r) = (r,w(r), 50), re€J, w0)=w, €R. (5.6)

The following theorem shows dependency of solution of ABR-FDEs (5.5) and (5.6) on

parameters.

Theorem 5.4 Let the function g satisfies conditions of Theorem 4.3. Suppose there exists
p.q € C(J,R") such that

Ig(T7 , 6) - g(T, n, 5)' Sp(T)lCU - ’7|’
8(z, @, 6) — g(z,w,6))| < q(7)[6 — 6,

If w,, w, are the solutions of ABR-FDE: s (5.5) and (5.6) respectively, then

le(T)—wz(T)lSQT|5—50|6XP</ [f(“)[a,( « T“)+p(o>]da),re1,
0 —a l-a

where Q = sup q(7).

Tel

Proof We find for any = € J

|CU1(T) - w2(7)|

B T _ T
:’<w0- 1(_”‘31 / [Ea<l_aa(r—a)")w1(a)da+/0 g(a,wl(a),é)dcf)

—<a)0— Ble) Ea( __aa(f—a)“)wz(a)d0'+ /0 g(a,wz(o),éo)dcr)

1-—a /gy 1

. B@

< a(r—a)“)(—w1(6)+w2(6))d6

=
0 1-

< B@ T[E,,(
0

l—a

N / 18(6.,(6).6) — g(0, (). 5p)ldo
0

1_—aa (r=o)

> |, (o) — wy(0)do + /0 18(c, @, (0),6) — g(o, w,(0), 6)|do

+ / 18(6. 3(0). 6) — g( (), 5y)\do
0

B : '
< 1(_“; 0 Eu( == 0" ) 01(0) — an(@)ldo + /0 P(©@)|@,(0) = 0(0)|do
+/ q(0)|6 — &|do
0
B T
</ <_“i Eu( 751" 01(0) — @(0)ldo + / POl (0) — y(@)ldo + 015 = 50'/ a0
/[B(a) « >+P(rr)]|w1(") ®y(0)ldo + OT|5 = 6.

Applying Lemma 2.7, we get

TMug(L
“\1

| (7) — w,(7)| < OT[6 — 5| exp (/ [] Ta) + p(o)
0 -

d0'>, T EeJ.
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6 Example

Consider a nonlinear ABR-FDEs of the form

%§+;Dimﬂ=f@¢mﬂxreJ=[Qm, 6.1)

w(0) =1, (6.2)
where f : J X R — R is a continuous nonlinear function such that

|o(7)| + 1

(@, 0(r) = 2

+p(), tE€J,

and

o =8(3) (o) v () o1}

We observe that for any w, 7 € R and for any = € J,

anﬁmWn{<m+lﬂmO—(W+'ﬂmﬁ'

2 2
= 21l = bl < Slo =1,

Thus the function f satisfies Lipschitz condition with Lipschitz constant L = % Compare
with Theorem 4.3, we have a = % and T = 2. Then the condition (4.4) reduces to

! 1
E (2*)3(-) 1.
8 1 2 7 <
This implies
()< ——
E (2*)
8 1 2
If we choose a normalizing function B(a) satisfying above condition, then by applying
Theorem 4.3, ABR-FDEs (6.1)-(6.2) has unique solution. One can verify that ABR-FDEs
(6.1)-(6.2) has the unique solution

mn=%+hremgL

7 Conclusion

Because of the presence of the nonsingular kernel in the equivalent fractional integral
equation to FDEs involving AB derivatives, we can reasonably apply the Gronwall-Bell-
man inequality with continuous real valued functions to investigate the qualitative proper-
ties. Of Course, special attention needs in the case of complex valued functions. Further,
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one can acquire various qualitative properties of the higher class of fractional integrodif-
ferential equations involving the AB fractional derivative in the sense of Caputo and Rie-
mann-Liouville through the inequalities derived by B. G. Pachpatte [48]. But Pachpatte’s
inequalities can be applied only when the normalization function B(«) is strictly positive
satisfying B(0) = B(1) = 1.
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