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Abstract

Motivation: Most modern intensive care units record the physiological and vital signs of patients.

These data can be used to extract signatures, commonly known as biomarkers, that help physicians

understand the biological complexity of many syndromes. However, most biological biomarkers suffer

from either poor predictive performance or weak explanatory power. Recent developments in time ser-

ies classification focus on discovering shapelets, i.e. subsequences that are most predictive in terms of

class membership. Shapelets have the advantage of combining a high predictive performance with an

interpretable component—their shape. Currently, most shapelet discovery methods do not rely on stat-

istical tests to verify the significance of individual shapelets. Therefore, identifying associations be-

tween the shapelets of physiological biomarkers and patients that exhibit certain phenotypes of interest

enables the discovery and subsequent ranking of physiological signatures that are interpretable, statis-

tically validated and accurate predictors of clinical endpoints.

Results: We present a novel and scalable method for scanning time series and identifying discrim-

inative patterns that are statistically significant. The significance of a shapelet is evaluated while

considering the problem of multiple hypothesis testing and mitigating it by efficiently pruning un-

testable shapelet candidates with Tarone’s method. We demonstrate the utility of our method by

discovering patterns in three of a patient’s vital signs: heart rate, respiratory rate and systolic blood

pressure that are indicators of the severity of a future sepsis event, i.e. an inflammatory response

to an infective agent that can lead to organ failure and death, if not treated in time.

Availability and implementation: We make our method and the scripts that are required to repro-

duce the experiments publicly available at https://github.com/BorgwardtLab/S3M.

Contact: karsten.borgwardt@bsse.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recognizing interpretable patterns that distinguish between cases

and controls is instrumental for modern data-driven diagnostics and

biomarker discovery (Bellazzi and Zupan, 2008; Wasan et al.,

2006). Recent developments in time series classification have

focused on discovering shapelets, i.e. subsequences of a time series

with high predictive power. Shapelets have already proven useful in

various application domains, including genomics (Ghalwash and

Obradovic, 2012) and medicine (Ghalwash et al., 2013b), not only

because of their competitive classification accuracy, but also because

the most discriminative subsequence is straightforward to interpret.

A useful interpretation comes with a high descriptive power,

while a good classification accuracy is linked to a high predictive

power. However, current shapelet discovery methods do not rely on

statistical tests to verify the statistical significance of a shapelet,

which makes claims about their interpretability contestable.

We thus propose a new method, S3M (Statistically Significant

Shapelet Mining), that returns statistically significant shapelets while

maintaining a competitive classification accuracy. The significance of

a shapelet is framed as an instance of the multiple hypothesis testing

problem, which in turn is mitigated using Tarone’s method (Tarone,

1990). The relevance of S3M is demonstrated by detecting sepsis in

time series of the vital signs of intensive care unit (ICU) patients.

1.1 Sepsis
Sepsis is a heterogeneous syndrome that remains a major public

health concern due to its association with high mortality, morbidity
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and health costs (Dellinger et al., 2013; Kaukonen et al., 2014;

Peake et al., 2007; Hotchkiss et al., 2016). According to the most re-

cent Sepsis-3 definition, as described by Singer et al. (2016) and

Seymour et al. (2016), sepsis is a life-threatening organ dysfunction

caused by a dysregulated host response to infection, i.e. a severe re-

action to infection driven by physiological and pathological

mechanisms.

Up to now, the classification, i.e. distinguishing between patients

with sepsis and those without, has proven to be extremely challeng-

ing, particularly for patients in the ICU (Raith et al., 2017). If a pa-

tient is suspected to suffer from sepsis, one currently determines a

broad—and costly—range of clinical and laboratory parameters. In

practice, this means that up to 100 individual laboratory parameters

are measured per day (Biron et al., 2015; Marshall et al., 2009) be-

cause the discovery of a single robust sepsis biomarker is still an

open problem.

Clinical parameters are most extensively documented in elec-

tronic health records (EHRs) of the ICU. In recent years, several

studies have demonstrated the potential of analyzing time series of

vital parameters from ICU data (Calvert et al., 2016; Ghalwash

et al., 2013a; Shashikumar et al., 2017; Henry et al., 2015).

Studying the trajectory of frequently sampled vital parameters, such

as the heart rate, solves two challenges at once: (a) taking the tem-

poral signature into account while (b) reducing the need for add-

itional clinical and laboratory parameters.

1.2 Summary
We propose a new statistical association algorithm, S3M, and dem-

onstrate its utility on vital signs of ICU patients with and without

sepsis. The contribution of this paper is threefold:

1. Shapelets extracted by S3M guarantee a descriptive power that is

supported by a p-value.

2. Our method S3M is scalable and uses only a small set of parame-

ters: the minimum length of a shapelet, the maximum length of

shapelet and the desired significance threshold a.

3. Applying S3M to the vital signs of sepsis patients, we discover stat-

istically significant shapelets for diagnosis and biomarker discovery

that traditional shapelet discovery methods are unable to identify.

The remainder of this paper is organized as follows: first, Section 2

establishes the theoretical foundations of shapelet discovery meth-

ods and statistical pattern mining. Section 2.6 then introduces the

new methodology statistical shapelet mining and gives a detailed de-

scription of the proposed method S3M. In Section 3, S3M is applied

to the vital signs of sepsis patients from the MIMIC-III database

(Johnson et al., 2016). Furthermore, we discuss the utility of the pro-

posed method by providing a clear interpretation of the significant

shapelets and comparing S3M to traditional shapelet discovery meth-

ods. Finally, Section 4 concludes the paper and outlines future

research.

2 Statistical shapelet mining

The following sections briefly present some background information

on shapelets, their extraction and the significant pattern mining

paradigm. Throughout this paper, we assume that we are given a set

T of n time series T :¼ fT1, . . ., Tng. Each time series Ti consists of

m sequentially ordered measurements, i.e. Ti :¼ fti;1; . . . ; ti;mg.
Moreover, each time series Ti has an attached class label yi 2 f0; 1g
that denotes the class association (e.g. control versus case).

2.1 Shapelets
Shapelets were introduced by Ye and Keogh (2009) as a new primi-

tive for mining time series. Briefly put, a shapelet is a subsequence of

a time series that maximizes predictive power. To obtain shapelets,

one uses a sliding window of stride s and width w and extracts all

subsequences of a time series, which gives rise to d m�wþ 1ð Þ=se
subsequences of length w. Every subsequence S (we omit further in-

dices for clarity here) consists of a set of w contiguous positions ftp;

. . . ; tpþw�1g of the original time series T, with p satisfying

0 � p � m�w. Typically, one uses a stride of s¼1 in time series

analysis, meaning that consecutive windows only differ by a single

position. We follow this convention here to ensure that no signifi-

cant shapelets are being missed. Alternatively, one could use a tum-

bling window approach by setting the stride to be the window

width, i.e. s¼w, which results in a sequence of non-overlapping

windows without any gaps.

Shapelet classification methods require a distance measure for

time series dist �ð Þ, usually defined for sequences of the same length.

Since shapelets are typically shorter than the original time series, one

extends the distance calculation to all subsequences of a time series

and finds the minimum of the calculated distances. Formally, given

a time series T and a shapelet S, we define

dist S;Tð Þ :¼ min
j

dist S;T j : jþw½ �ð Þ; (1)

where T j : jþw½ � refers to the subsequence of length w starting at

position j of the time series. The distance between two sequences of

equal length, i.e. the term dist S;T j : jþw½ �ð Þ in the previous equa-

tion, is calculated as the standard Euclidean distance (also known as

the L2 distance). Using other distance metrics changes the results.

Our method thus employs the L2 distance, which is commonly used

in the shapelet literature. See Figure 1 for an illustration of the

shapelet definition.

2.2 Previous work
The original shapelet classification algorithm, as introduced by Ye

and Keogh (2009), uses an iterative procedure to detect suitable

shapelets. We briefly recount the algorithm here. First, shapelet can-

didates are created using the method outlined above. Second, given

a candidate shapelet S, its suitability for partitioning all time series is

evaluated by means of an information gain criterion. This involves

Fig. 1. Schematic illustration of a shapelet, a time series motif, and its occurrences in a data set of time series that belong to one of two phenotypic classes (left:

y¼1, right: y¼0). The shapelet is enriched in one class (y¼ 1). Note that the decision whether a shapelet occurs depends on a distance threshold
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determining the optimal split point of the shapelet with respect to

the data, i.e. a distance threshold dt for which the two classes are

best separated. A key observation in finding dt is that, instead of

checking all possible distance thresholds, it is sufficient to check

consecutive ones. More precisely, letting d0; . . . ; dn�1 be the sorted

distances from S to each of the n time series, one only has to consider

thresholds of the form di þ diþ1ð Þ=2, as the partition does

not change between consecutive distances. Choosing a threshold this

way maximizes the separation margin between the two classes.

For each of the candidate thresholds, the information gain is

evaluated, and the split point with the best information gain is

returned. Ye and Keogh (2009) obtain significant speed-ups by

abandoning the calculation of split points early if a shapelet S can-

not improve the best information gain that has been identified so

far. This is achieved by calculating bounds for the information gain.

Further efforts to reduce the computational complexity, such as the

technique by Mueen et al. (2011), exploit the reuse of computations

as well as caching strategies to speed up the process of selecting suit-

able shapelets.

As an alternative to these exact methods, various techniques em-

ploy heuristics, such as random sampling, to reduce the number of

shapelets that have to be considered. Wistuba et al. (2015) present

ultra-fast shapelets, which aim to discover relevant shapelets by fea-

ture sampling and ranking. The accuracy of this method is shown to

be on a par with previous methods, such as fast-shapelets by

Rakthanmanon and Keogh (2013). Grabocka et al. (2016) focus on

improving run-time performance by clustering similar shapelets dur-

ing shapelet extraction. Their method does not obtain the best ac-

curacy among all compared algorithms, but is several orders of

magnitude faster and permits processing extremely large datasets.

An alternative approach is taken by Grabocka et al. (2014), who

present an algorithm for learning the relevant shapelets for a given

dataset. While this method is shown to yield shapelets with a high

predictive power, the large number of parameters makes a direct ap-

plication unfeasible for now.

2.3 Significant pattern mining
The appeal of shapelet-based approaches is that they yield results

that are interpretable and meaningful. At the same time, each of

these approaches relies solely on the frequency of a pattern (i.e. a

shapelet) to determine its relevance. Especially in the life sciences,

however, it is essential to determine whether a detected pattern is

also statistically significant within a particular dataset or class. This

is the basic premise of significant pattern mining (SPM) algorithms,

which have already been successfully employed in itemset mining

and subgraph mining tasks (Llinares-López et al., 2015). Recent

work by Papaxanthos et al. (2016) demonstrated their applicability

in genome-wide association mapping.

Briefly put [see Llinares-López et al. (2015) for a more detailed

introduction], SPM algorithms measure the strength of the statistical

association using two binary variables, the class variable and the

pattern indicator variable, i.e. the variable that indicates whether a

pattern occurs in an input. After choosing a test statistic (e.g.

Fisher’s exact test) and a corresponding null distribution, the

observed value of the test statistic is compared with this null distri-

bution, yielding a p-value. The p-value represents the probability

that the test statistic takes a value that is at least as extreme as the

observed one. A pattern is deemed significant if this value falls

below a certain threshold a. Since the number of patterns is usually

extremely large, a ‘naive’ SPM approach is likely to generate a large

number of false positives, i.e. patterns that are erroneously

considered to be statistically significant. If np patterns are being

extracted and tested for association, one can expect a � np false posi-

tives, even if there are no true associations in the given dataset. Since

np � n in typical applications, an enormous number of false associ-

ations will be reported. This is also known as the multiple hypoth-

esis testing problem. One classic way of accounting for multiple

testing is controlling the family-wise error rate (FWER), which is the

probability of generating one or more false positives, i.e.

FWER dð Þ :¼ P FP dð Þð Þ � 1, where FP dð Þ refers to the number of

false positives for a given significance threshold d. A standard way

of controlling the FWER involves the well-known Bonferroni cor-

rection (Bonferroni, 1936), which adjusts the significance threshold

by dividing it by the number of all detected patterns. We thus get

dbon :¼ a=np. While easy to calculate, this procedure turns out to be

extremely conservative, often leading to either no statistically signifi-

cant patterns, or a severe loss of statistical power. Terada et al.

(2013) reported that a statistical advance by Tarone (1990) can be

employed instead. This procedure, which we will subsequently ex-

pand on, exploits the fact that all involved quantities are discrete,

such that only a finite number of p-values can be attained by a pat-

tern. Not only can this insight be exploited to reduce the multiple

hypothesis testing burden, it also results in a pruning procedure

(which we shall detail below) that speeds up our algorithm while

still yielding exact results.

2.4 Significant shapelets
Following the SPM paradigm, our method measures the degree of

statistical association between shapelet occurrence and class labels.

To obtain a p-value, we need to consider all the different ways in

which the shapelet may be used to split the dataset. More precisely,

given a candidate shapelet S, we calculate the distances to all time

series as described above. This results in a set of distance values

D :¼ fd1, . . ., dng. Any distance threshold h 2 R results in a parti-

tion of the data, i.e. T ¼ T �h ]T þh , where

T �h :¼ fTi 2 T jdist Ti; Sð Þ � hg; (2)

and T þh is defined equivalently. Since the class labels yi of each time

series Ti are known, every choice of threshold gives rise to a contin-

gency table that contains the number of objects associated to a given

partition, as well as their class labels (Table 1).

2.4.1 Assessing the significance of a shapelet

To determine the best threshold for a given pattern, i.e. the best par-

tition that can be obtained if we use it to split our data, we assess

the statistical significance of a given contingency table. The statis-

tical significance is a measure of how likely the given split is if there

were no statistical association between the split introduced by

the pattern and the data—in other words, assuming that the parti-

tion is due to chance. Commonly, statistical significance is

achieved by having a p-value (which in turn is obtained by per-

forming a statistical association test) lower than a given signifi-

cance threshold. The literature knows several association tests,

such as Fisher’s exact test (Fisher, 1922), or Pearson’s v2 test

(Pearson, 1900). We use the v2 test in this paper because it is more

appropriate for large sample sizes. Calculating a p-value from a

contingency table requires calculating the v2 test statistic Tv2 ,

which is defined as

Tv2 n; aS;bS; cS; dSð Þ :¼ n aScS � bSdSð Þ2

aS þ bSð Þ cS þ dSð Þ aS þ dSð Þ bS þ cSð Þ : (3)
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From this, we obtain the p-value as

1� Fv2 Tv2 n; aS; bS; cS; dSð Þ
� �

; (4)

where Fv2 �ð Þ denotes the cumulative density function of a v2-

distribution with one degree of freedom.

2.4.2 Addressing the multiple hypothesis testing problem

The Bonferroni correction factor t, i.e. the number of tests that we

have to account for in shapelet mining, is extremely large, as can be

shown by the following calculation. The correction factor t is a

product of three quantities, t ¼ t1 � t2 � t3, where:

• t1 :¼ n, the total number of time series in the dataset from which

we generate shapelets.
• t2 :¼

Pwmax

w¼wmin
m�wþ 1ð Þ, the number of candidate shapelets

per time series, which corresponds to all subsequences of min-

imum length wmin and maximum length wmax.
• t3 :¼ nþ 1, the total number of candidate split points that we

consider.

The Bonferroni-corrected significance threshold per test is therefore:

a ¼ ba
t
¼ ba

n nþ 1ð Þ
Pwmax

w¼wmin
m�wþ 1ð Þ

� � (5)

Hence, even in a rather small dataset with 100 time series of length

100, the number of hypothesis tests is in the order of 106, highlighting

the need to improve the statistical power of our approach. One possi-

bility to achieve this improvement is Tarone’s trick (Tarone, 1990).

Tarone (1990) suggested a procedure for discrete test statistics,

which allows to gain statistical power when accounting for multiple hy-

pothesis testing. Tarone noted that, as all quantities in the contingency

table are discrete, there are only finitely many p-values. In fact, as

Terada et al. (2013) show, there is a minimum attainable p-value that

only depends on n, n1 and rS (the marginal values), but not on the count

aS in the contingency table. The key insight of Tarone (1990) is that if

the minimum attainable p-value is larger than the current adjusted sig-

nificance threshold, a pattern S can never reach statistical significance.

Hence, it can also never cause a false positive. Patterns for which this

holds are also called untestable hypotheses or untestable patterns. Let nt

denote the number of testable patterns. Then Tarone’s adjusted signifi-

cance threshold is defined as dtar :¼ maxfdjd � nt � ag, which is much

larger than dbon, leading to a gain in statistical power. As the number of

testable patterns grows during the extraction process, dtar will eventual-

ly have to be reduced to ensure that the FWER remains below the

desired significance level a. It was shown by Terada et al. (2013) that,

owing again to the discrete nature of all the quantities, this reduction

only requires us to choose the next relevant p-value from a precalculated

set of p-values. We use a closed form for the minimum attainable p-

value for fixed n and n1 (Llinares-López and Borgwardt, 2018). Letting

na :¼ min n1;n� n1ð Þ and nb :¼ max n1;n� n1ð Þ, we have

pmin rSð Þ :¼

1� Fv2 n� 1ð Þnb

na

rS

n� rS

� �
if 0 � rS < na

1� Fv2 n� 1ð Þ na

nb

n� rS

rS

� �
if na � rS <

n

2
;

1� Fv2 n� 1ð Þ na

nb

rS

n� rS

� �
if

n

2
� rS < nb;

1� Fv2 n� 1ð Þnb

na

n� rS

rS

� �
otherwise:

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

(6)

We can evaluate the preceding equation for rS 2 f0; . . . ;ng and store

the resulting values in ascending order. They describe all possible

values that the adjusted significance threshold dtar can attain. Hence,

whenever the number of testable patterns is too large to satisfy the

desired family-wise error rate, we iterate through the list and choose

the largest value for dtar such that dtar � nt � a.

2.5 Iterative pruning of shapelet candidates
Tarone’s method only helps us mitigate the multiple hypothesis test-

ing problem. A large amount of time winds up being spent on check-

ing the significance of a given shapelet over all splits. More

precisely, given a candidate shapelet S, we need to calculate the dis-

tance to every time series, with each distance giving rise to a separate

contingency table because the new distance can be used as a thresh-

old for partitioning the data, as described in Section 2.4. However,

we are only interested in the p-values associated to significant shape-

lets. Therefore, we want to abandon processing a candidate shapelet

as soon as we are certain that a p-value lower than the current sig-

nificance threshold dtar cannot be obtained. This optimization is

based on the insight that since we know how many time series are

still to be processed for a partially filled contingency table C with a

distance threshold h, we can bound the p-value that would be

achievable under the most extreme circumstances. Such a bound can

be obtained by considering two extreme cases:

• Scenario I: we assume that all the remaining time series satisfy

dist S;Tð Þ � h (if their label y ¼ 1) or dist S;Tð Þ > h (if their label

y ¼ 0).
• Scenario II: the converse situation, where we assume dist S;Tð Þ
� h for y ¼ 0, and dist S;Tð Þ > h for y ¼ 1.

Formally, we consider a contingency table C to be partially filled

whenever aS þ bS þ cS þ dS 6¼ n, i.e. the sum of its entries does not

yet add up to n. Until we have calculated the distance of a shapelet

to each time series, every contingency table that we maintain during

our algorithm is only partially filled. Since we know that the rows of

C sum to n1 and n0, we can calculate the number of time series that

have not yet been processed by our algorithm as D1 :¼ n1 � aS � bS

and D0 :¼ n0 � dS � cS, respectively. We want to abandon the calcu-

lation of a partially filled contingency table if its minimum attain-

able p-value (with D1 and D0 values still unspecified) is not

statistically significant under the current significance threshold dtar.

For this calculation, it is sufficient to consider the v2 test statistic

and show where it attains its maximum values. Using the relations

aS þ bS ¼ n1 and dS þ cS ¼ n0, we can rewrite the test statistic in

terms of aS and cS, leading to

fv2 a; cð Þ :¼ n ac� n1 � að Þ n0 � cð Þð Þ2

n1n0 a� cþ n0ð Þ c� aþ n1ð Þ : (7)

The following theorem is the foundation of our pruning strategy.

Table 1. A 2� 2 contingency table as used by our method

Class label distðS;TÞ � h distðS;TÞ > h Row totals

y ¼ 1 aS bS n1

y ¼ 0 dS cS n0

Column totals rS qS n

Note: When calculating the minimum attainable p-value for a shapelet,

only the values rS (the number of time series in one part of the partition), n1

(the number of time series with a positive label), and n (the total number of

time series) are required.
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Theorem 1. The test statistic f�2 a; cð Þ attains its maximum value

at the boundary of its domain, i.e.

max fv2 a; cð Þ :¼ max
a02 a;aþD1½ �;c02 c;cþD0½ �

fv2 a0; c0ð Þ (8)

¼ max fv2 aþ D1; cþ D0ð Þ; fv2 a; cð Þ
� �

: (9)

PROOF. The test statistic fv2 is a function of two variables, both of

which are defined on a compact domain. Consequently, we know by

the multivariate generalization of the extreme value theorem that fv2

assumes its extreme values either within the domain or on its bound-

ary. We thus calculate the partial derivatives @fv2=@a and @fv2=@c

and set them to zero. All solutions are of the form a¼ t,

c ¼ � tn0 � n0n1ð Þ=n1, for a 2 0;n1½ �. The family of solutions con-

tains the trivial solutions a¼0, c¼n0 as well as a¼n1, c¼0. By

analyzing the determinant of the Hessian matrix, we find these solu-

tions to correspond to (local) minima. As a consequence, the func-

tion assumes its maximum at the boundary.

Of the four possible boundary cases, it suffices to consider the

two cases a0 :¼ aS þ D1; c0 :¼ cS þ D0, and a0 :¼ aS; c0 :¼ cS, which

correspond to the extreme cases of Scenario I and Scenario II as

described above. The ‘mixed’ cases that do not fall into any of the

two extreme scenarios need not be considered, as the test statistic

can always be increased in these cases by decreasing bS or dS. h

From the preceding theorem, we know that it is sufficient to

consider the two extreme cases mentioned above to calculate two

p-values. We denote the minimum of these two values by

p0min :¼ 1� Fv2 max fv2 a; cð Þ
� �

; (10)

because it reflects the possibility that the remaining time series (which

we have not seen so far) increase the cell counts in C to lower the

p-value maximally. This yields the following decision rule for the it-

erative pruning of contingency tables: given an incomplete contin-

gency table C with D1 :¼ n1 � aS � bS and D0 :¼ n0 � dS � cS and

p0min > dtar; (11)

we abandon its calculation because it will never yield a testable

shapelet. Hence, we prune the contingency table and will not update

it any more when encountering new distances. In case all contin-

gency tables of a shapelet have been pruned because they fail to sat-

isfy testability, we prune the shapelet itself because it can never

become testable. In the best case, this criterion thus helps us avoid

many (costly) calculations of distances between a shapelet and a

time series.

2.6 Significant shapelets with the S3M algorithm
Algorithm 1 presents our proposed algorithm to discover significant

shapelets. This section gives a detailed description of the S3M

method and its core subroutines.

First and foremost, the significance threshold bdtar and ba are initial-

ized to 1 and an empty list of significant shapelets and its p-values S
is created. Second, we calculate all possible minimum attainable

p-values for the respective dataset. Since for fixed n and n1 pmin rsð Þ is

symmetric around n=2 (Llinares-López and Borgwardt, 2018), we

only iterate over half of the possible values rs can take. Then, the main

routine iterates over all subsequences in a sliding window approach to

generate the candidate shapelets. For each candidate S 2 S, an empty

list of contingency tables C is initialized (Line 5). C is updated iterative-

ly with the distances dist(S,T) between the candidate S and a time ser-

ies T 2 D (Line 7). If C is filled, the list of significant shapelets is

updated using the adjusted Tarone threshold (Line 10). Finally, S3M

returns the list of significant shapelets and their p-values in S, as well

as the adjusted significance threshold bdtar.

The core of the S3M algorithm is the UPDATE routine (Lines 15-

23). This routine maintains the list of contingency tables for one

candidate shapelet. Assume that k time series have been processed in

the outer loop of Line 6. The list of contingency tables C is then

extended by a new contingency table corresponding to the new split

point (hk) introduced by the distance to the candidate shapelet S. All

remaining contingency tables Ci with thresholds hi are also updated.

Line 17 iterates over all tables in C and computes the minimum pos-

sible p-value according to Theorem 1 (Line 18; see subroutine

BOUNDARY). If the minimum possible p-value exceeds the Tarone

threshold, the corresponding table is untestable and thus removed

from the list. Finally, if C, the list of contingency tables, is empty in

Line 8, the pruning criterion sets in: regardless of the remaining time

series, shapelet S cannot be significant and thus the for loop of Line

6 breaks and the next candidate shapelet will be considered.

The subroutine TARONE in Lines 25-35 maintains the list of sig-

nificant shapelets S and adjusts the Tarone threshold bdtar. In each it-

eration, bdtar is lowered such that untestable patterns according to

Tarone are excluded. This routine is conceptually similar to Lines

18-28 of Algorithm 1 in Llinares-López et al. (2015) and follows the

multiple testing correction described in Section 2.4.2. Please note

that TARONE will perform no operation if the list of contingency

tables C is empty.

Finally, the subroutine BOUNDARY implements Theorem 1 in

that it returns the minimum p-value p0min of the two extreme cases

given a partially filled contingency table C. This routine has two im-

portant properties: first, Copt and C �opt are unique, given n and n1 as

in Table 1. Second, the routine for computing the p-value in Line 40

is modular. Here, we use the v2 test because it is better suited for

larger sample sizes than Fisher’s exact test. However, Fisher’s exact

test yielded similar results in our experiments.

3 Experiments

The performance of statistically significant shapelet mining is

assessed on real-world data from sepsis patients. First, the MIMIC-III

database, how sepsis cases and controls are extracted, and the evalu-

ation settings are described. A brief comparison of the results of the

proposed method (S3M) and a state-of-the-art comparison partner

(gRSF) follows. Finally, the statistically most significant shapelets are

interpreted and discussed.

3.1 Experimental setup
Our analysis is based on version 1.4 of the MIMIC-III

(Multiparameter Intelligent Monitoring in Intensive Care) database

(Johnson et al., 2016). It includes over 45 000 de-identified critical

care patients and data from over 50 000 ICU stays. We base our

queries on examples from the MIMIC code repository [Johnson et al.

(2018), see public repository], to extract the vital signs of 355 ICU

stays that resulted in sepsis episodes from 352 individual patients. We

limit the application of our algorithm to heart rate, respiratory rate,

and systolic blood pressure, because these parameters are routinely

measured in ICU stays for monitoring a patient’s stability, but also

play an important role in the assessment of sepsis-related organ fail-

ure; see for example the qSOFA score (Singer et al., 2016).
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3.1.1 Preprocessing

For the sepsis cases, we consider patients for which both of the fol-

lowing two criteria are met:

1. A suspected infection (SI) that started later than four hours after

admission to the ICU and before ICU discharge. The SI criterion

manifests in antibiotic administration and sampling of body fluid

cultures.

2. An increase of two points of the SOFA score (Vincent et al.,

1996) around the time of SI, comparing the maximum of two

time frames: One between five to two days before SI, the other

between two days before to one day after SI.

These two conditions are adapted from the definition of

Seymour et al. (2016), which was employed in a retrospective study

design for the assessment of clinical criteria for sepsis.

The control cohort consists of all ICU episodes during which no

sepsis was encountered. Note that the set of controls may therefore

include edge cases that meet only one of the two criteria including

patients whose sepsis episode was before or immediately after the

ICU stay. Defining an exhaustive control group makes the task more

challenging but also more realistic. In contrast, a more restrictive

case-control selection, neglecting edge cases, would tend to overesti-

mate the classification accuracy.

The experimental setup requires additional filtering of the raw

MIMIC-III database: First, patients that fall below the age of 15 and

patients where no chart values were available, are excluded. Second,

patients where ICU stays are logged via the CareVue system are

excluded, because CareVue underreports negative microbiology lab

values that are essential to the Sepsis-3 definition [for details, see

Desautels et al. (2016)]. Third, in order to not extract most shapelets

from few very long ICU stays, we restricted our analysis to only con-

sider the first 75 hours. Fourth, to ensure pairwise comparability, we

used forward filling and backward filling to upsample aperiodically

reported vital signs to a rate of 30 minutes. Finally, to balance the

dataset, we downsampled the 21 079 (34.26%) controls to the num-

ber of cases (355, 0.58%).

Applying these criteria to all 61 195 ICU stays, the resulting co-

hort consisted of 355 cases and 355 controls. Please refer to our

public repository that provides additional details about the method,

the data and how to reproduce the results.

3.1.2 Parameters

In the following, we use S3M to extract shapelets of length 4-6

resulting in subsequences that range from two hours to three hours.

Longer window sizes are possible but may not be useful in a diag-

nostic setting, according to our domain experts. We enforced a sig-

nificance level of ba ¼ 0:01. Furthermore, we only consider a

random sample (containing 75 cases and 75 controls) of the systolic

blood pressure data because the time series are not sufficiently dis-

tinct from each other, resulting in many shapelets that are virtually

identical and do not offer more insight.

3.1.3 Comparison baseline

Since our method is the first shapelet-based method that employs a

statistical measure, there are no canonical comparison partners. We

thus select a recent and very strong (in terms of predictive perform-

ance) baseline algorithm, namely generalized random shapelet for-

ests (gRSF) (Karlsson et al., 2016), and assess its statistical

performance in a post-processing step: for each shapelet S returned

by the baseline algorithm, we compute its p-value pS using the v2

test on the contingency table of the test set. We then follow the

decision rule pS < a for assessing the statistical significance of the

shapelet, where a :¼ ba=#Candidates extends the significance thresh-

old from Equation (5) by the number of candidates that have been

Algorithm 1 S3M (Statistically Significant Shapelet Mining)

Input: Data D, target FWER a
Output: Significant shapelets S, threshold dtar

1: procedure S3M(D; a)

2: Initialize global bdtar ¼ 1, global ba  1, and S to be

empty.

3: P  GENERATE ALL MIN P VALUES(jDj)
4: for subsequence S in D do

5: C¼ø

6: for Time series T 2 D do

7: UPDATE(C;distðS;TÞ)
8: break if C is empty

9: end for

10: S; dtar  TARONE ðP;S; SÞ
11: end for

12: return S; dtar

13: end procedure

14:

15: procedure UPDATE(C, d)

16: Update contingency tables C with d

17: for C 2 C do

18: pmin  BOUNDARY(C)

19: if pmin > bdtar then

20: Remove C from C
21: end if

22: end for

23: end procedure

24:

25: procedure TARONE(P; S, S)

26: S  S [ fSg; ba ¼ bdtar � jSj
27: if ba > a then

28: repeat

29: bdtar  next value from P
30: Remove untestable patterns from S
31: ba ¼ bdtar � jSj
32: until ba � a
33: end if

34: return S; bdtar

35: end procedure

36:

37: procedure BOUNDARY(C)

38: Fill Copt with remaining T 2 D in aS and cS

39: Fill C �opt with remaining T 2 D in bS and dS

40: return minfpðCoptÞ;pðC �opt Þg
41: end procedure

42:

43: procedure GENERATE_ALL_MIN_P_VALUES(n)

44: P ¼ ø

45: for rs 2 ½0; . . . ; bn2c þ 1� do

46: P  P[ pmin(rs) following Equation (6)

47: end for

48: Sort P in descending order

49: return P
50: end procedure
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considered. Note that the additional Bonferroni correction needs to

be employed for all possible candidates, even if some have been

pruned, because they are still tested implicitly.

3.1.4 Evaluation

In every experiment, we divided the 355 cases and 355 controls into

a training and test set with a ratio of 2:1. The performance of exist-

ing shapelet-based methods is typically measured in terms of accur-

acy or similar classification metrics. While these metrics are

commonly used to evaluate predictive performance, they do not ne-

cessarily yield insights into the descriptive power of the features or

shapelets. Hence, we also evaluate the statistical significance, name-

ly the p-value of the extracted shapelets. As we shall see below,

existing methods do not discover statistically significant patterns be-

cause they do not take into account the multiple hypothesis testing

problem.

3.2 Results
Table 2 summarizes the number of detected significant shapelets

and shows that our proposed S3M method identifies a plethora of

statistically significant shapelets for all considered vital signs where-

as the comparison baseline detects none.

Prior to describing the individual shapelets, we first give an over-

view of all the shapelets detected by our method. We use the heart

rate dataset as an example; refer to Supplementary Figures S1 and

S2 for the remaining datasets. Following the terminology of Section

2.6, we visualize the contingency table corresponding to the best p-

value of a candidate shapelet. Being represented by its counts aS, bS,

cS, and dS, we map each table to the coordinates x1 ¼ aS � bSð Þ=
aS þ bSð Þ and x0 ¼ cS � dSð Þ= cS þ dSð Þ. The x1 coordinate thus

measures the presence of the shapelet in cases (y¼1), while the x0

coordinate measures its absence in controls (y¼0). In an ideal scen-

ario, x1;x0ð Þ 	 1; 1ð Þ would imply that aS � bS and cS � dS, i.e. the

shapelet occurred in cases while being absent in controls. Figure 2

depicts the contingency tables of all candidate shapelets (gray) in the

heart rate dataset. We observe that the subset of statistically signifi-

cant shapelets (red) is distinctly scattered in the upper-right part of

the visualization. This implies that they are predominantly present

in cases and absent in controls. Similar results hold for the remaining

datasets. The contingency tables of the statistically most significant

shapelet in each dataset (Table 3) also exhibit this property; in every

table, the counts satisfy aS � bS and cS � dS.

Interestingly, when we randomly permute the labels of our time

series (Supplementary Fig. S3), we observe that (i) our method does

not detect any statistically significant shapelets, which gives add-

itional credibility to the shapelets that we identified in the nonper-

muted data, and (ii) all candidate shapelets in the visualization move

closer to the dashed line (meaning that they are more weakly associ-

ated with the class labels), and start to appear on both sides of the

line (meaning that some shapelets are associated with supposed con-

trols as well).

Next, we focus only on the statistically most significant shapelet

(i.e. among the significant shapelets, the one with the lowest p-value

on the test set), in order to discuss the biomedical insights our shape-

lets reveal. Figure 3 depicts the statistically most significant shape-

lets of the three datasets within the context of the time series they

originated from, along with their p-value on the test dataset. Prior to

addressing the biomedical relevance of our shapelets, we briefly as-

sess their predictive accuracy on the test dataset. Table 4 shows that

the accuracy of a single shapelet (the statistically most significant

one) is comparable to the baseline method (gRSF), which employs

over 3000 statistically insignificant shapelets. We hence observe that

Table 3. The contingency tables of the statistically most significant

shapelets identified by S3M for the three datasets"
163 74

69 168

# "
154 83

55 182

# "
71 4

29 46

#
(a) Heart rate (b) Respiratory rate (c) Systolic blood pressure

Note: Each table follows the notation from Table 1, i.e. aS, bS in the top

and dS, cS in the bottom row.

Table 2. Number of statistically significant shapelets after adjusting

for multiple hypothesis testing

Vital sign S3M dtar gRSF a

Heart rate 200 2.51� 10�10 0 1.28� 10�15

Respiratory rate 514 4.47� 10�10 0 1.33� 10�15

Systolic blood pressure 58 2.55� 10�9 0 4.35� 10�14

Note: Our proposed method S3M returns many significant shapelets, in

contrast to the baseline competitor gRSF, which does not yield any significant

shapelets. We denote the significance threshold reached by our method as dtar,

and the Bonferroni correction factor by a.

Table 4. Classification accuracy of S3M versus gRSF (average out

of 10 repetitions) on the test set

Vital sign S3M # Shapelets gRSF # Shapelets

Heart rate 0.70 1 0.74 3030

Respiratory rate 0.71 1 0.76 3406

Systolic blood pressure 0.75 1 0.74 971

Bold values are used to highlight the best predictive performance (accuracy)

of the compared methods.

Note: The proposed S3M method only uses one shapelet, whereas gRSF con-

structs a decision tree based on multiple shapelets.

Fig. 2. Following Section 3.2, we generate the coordinates from the contin-

gency table of each shapelet such that the axes represent a relative measure

of the degree to which a shapelet is present in cases (x1) and absent in con-

trols (x0). This results in a point cloud of all shapelets (gray). The statistically

significant shapelets (red) identified by the proposed S3M method form a dis-

tinct subset. Their coordinates indicate that they are predominantly present in

cases and absent in controls
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the use of statistically significant shapelets may also result in a com-

petitive classification accuracy.

3.3 Medical interpretation of the most significant

shapelets
Univariate time series of three vital signs (heart rate, respiratory rate

and systolic blood pressure) in septic and non-septic ICU patients

have been analyzed using the proposed S3M algorithm. S3M extracts

a set of statistically significant shapelets for each of the datasets.

First, observing the shapelets in the visualization (Fig. 2) are

mostly present in the first quadrant (upper-right corner) as opposed

to the third one (lower-left corner), our conjecture is that the span of

the shapelet search space is different for cases and controls.

Second, many previous EHR analyses distinguish themselves by

reporting predictive accuracies. However, statistically more elabor-

ate approaches too often are being evaluated by predictive scoring

alone which might hinder interpretability and deeper domain-

specific insight. In the following, we discuss how statistically signifi-

cant shapelets help obtain insights into biomedical time series by

providing interpretable and statistically significant patterns.

Figure 3a depicts the most significant heart rate shapelet. A com-

parison with Table 3a shows that this episode of transient instability

predominantly occurred in case time series. Since this observation

appears to contradict recent findings on heart rate variability—

which is supposed to decrease with increasing sepsis severity (de

Castilho et al., 2017; Ahmad et al., 2009)— further elaborate on it:

the common notion of heart rate variability (HRV) is crucially dif-

ferent from our setting. HRV is defined as a measure of varying

inter-beat (RR) intervals in the electrocardiogram (ECG). Typically,

it is measured in sub-second resolution over long time periods. By

contrast, we study heart rate frequency, i.e. beats per minute, with a

sampling frequency of 30 minutes. Moreover, the proposed ap-

proach identifies significant localized episodes of heart rate variation

(occurring within a period of few hours), whereas ECG summary

statistics fail to capture them. While conventional HRV (measured

every second on a high-frequency scale) can indicate healthy auto-

nomic regulation, our findings suggest that episodes of low-

frequency variability (measured every 30 minutes and observed over

few hours) could be relevant for sepsis, for instance as a sign of sud-

den hemodynamic instability. This suggests that the S3M method

is able to capture and reveal pathophysiologically relevant

mechanisms.

Figure 3b depicts the result for respiratory rate. It is already well

established that several septic pathomechanisms lead to an increased

respiratory rate (e.g. lactate acidosis, pulmonary edema, damaged

respiratory center). However, in this plot, the statistically most sig-

nificant respiratory rate shapelet tends to exploit a sudden transient

drop to a low absolute level. Table 3b, the corresponding contin-

gency table, shows that the pattern is associated with cases.

Interestingly, such a pattern is independent of the established under-

standing of increased respiratory rate in septic patients.

Finally, Figure 3c shows the most significant systolic blood pres-

sure shapelet. Here, the shapelet does not merely distinguish be-

tween higher and lower levels of blood pressure (associated with

circulatory failure), but rather constitutes a specifically shaped, pre-

dictive spike, which is statistically significantly enriched in case time

series (Table 3c).

These insights still remain in the hypothesis-generating realm

and require further investigation. Nevertheless, they demonstrate

the utility of our method for the analysis of challenging biomedical

datasets: using a computationally efficient and statistically sound

approach, our S3M method is able to automatically retrieve statistic-

ally significant, predictive, and interpretable patterns that permit a

deeper understanding of a high-impact clinical field.

4 Conclusion

In this work, we have introduced a scalable method for the identifi-

cation of statistically significant patterns in biomedical time series.

The proposed S3M methodology uses shapelets (short subsequences

of a time series) and assesses their statistical significance by means

of association testing. We employ a statistical method introduced by

Tarone (1990) to mitigate the multiple hypothesis testing problem

and to improve the run-time by pruning untestable shapelets. In the

experimental part of this work, we analyzed time series of vital signs

of patients suffering from sepsis. We demonstrated the biomedical

relevance of shapelets extracted from the heart rate, the respiratory

rate, and the systolic blood pressure, which state-of-the-art compet-

ing methods are unable to identify.

The concept of statistically significant shapelets results in pat-

terns that (i) have a meaningful interpretation, and (ii) are computa-

tionally efficient to obtain. In contrast, in the traditional setting,

none of the shapelets are deemed statistically significant due to a

lack of statistical power. We also showed how a modification of the

ideas of Tarone (1990) can be used to yield additional computation-

al advantages when considering contingency tables that are only

partially filled. In many cases, this permits our algorithm to skip a

large part of the search space without sacrificing its exactness.

Given the competitive predictive performance of the identified

patterns, post-processing of significant shapelets will be an exciting

route for future research. A next step could involve their clustering.

In this context, the statistical significance of our patterns helps avoid

the issues with clustering subsequences, as outlined by Keogh and

Lin (2005). Moreover, the significant shapelets we discovered in

(a)

(b)

(c)

Fig. 3. The three most statistically significant shapelets that our algorithm

extracted for the three datasets (a-c). Each shapelet is shown within the

context of the time series it is extracted from. The x-axis depicts the hour

since ICU admission
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sepsis patients have a clear medical interpretation. This demon-

strates that statistically significant shapelet mining can also be

employed for diagnostic purposes and biomarker discovery in future

work.
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