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Abstract
Background  Medical imaging reports play an important role in communication of diagnostic information between 
radiologists and clinicians. Head magnetic resonance imaging (MRI) reports can provide evidence that is widely used 
in the diagnosis and treatment of ischaemic stroke. The high-signal regions of diffusion-weighted imaging (DWI) 
images in MRI reports are key evidence. Correctly identifying high-signal regions of DWI images is helpful for the 
treatment of ischaemic stroke patients. Since most of the multiple signals recorded in head MRI reports appear in the 
same part, it is challenging to identify high-signal regions of DWI images from MRI reports.

Methods  We developed a deep learning model to automatically identify high-signal regions of DWI images from 
head MRI reports. We proposed a fine-grained entity typing model based on machine reading comprehension that 
transformed the traditional two-step fine-grained entity typing task into a question-answering task.

Results  To prove the validity of the model proposed, we compared it with the fine-grained entity typing model, 
of which the F1 measure was 5.9% and 3.2% higher than the F1 measures of the models based on LSTM and BERT, 
respectively.

Conclusion  In this study, we explore the automatic identification of high-signal regions of DWI images from the 
description part of a head MRI report. We transformed the identification of high-signal regions of DWI images to 
an FET task and proposed an MRC-FET model. Compared with the traditional two-step FET method, the model we 
proposed not only simplifies the task but also has better performance. The comparable result shows that the work in 
this study can contribute to improving the clinical decision support system.
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Introduction
The application of artificial intelligence technologies to 
medical images is the foundation of intelligent clinical 
decision-making support. Currently, a medical imaging 
report consists of not only timely patient data but also 
evidence-based approaches and multiparametric com-
putational and analytical methods, including patient-spe-
cific and population-based clinical, laboratory, genomic, 
demographic and quantitative data.

In clinical practice, when a patient arrives at the hos-
pital, the physician will decide what examination to per-
form and request for imaging study based on the patient’s 
information. The order will be transmitted to the radiolo-
gist through the hospital information system. Radiolo-
gists usually manually identify the important information 
needed case by case and subsequently generate the image 
report. The manual film-reading method is labour inten-
sive and inefficient. Studies report that, in some cases, an 
average radiologist must interpret one image every 3–4 s 
in an 8-hour workday to meet workload demands [1]. As 
radiology involves visual perception as well as decision-
making under uncertain conditions [2], errors are inevi-
table–especially under such constrained conditions. At 
the same time, the lack of standards in the record, such 
as the phraseology difference and writing habits of radi-
ologists, leads to the misunderstanding between the 
radiologist and the physician. With the development 
and application of deep learning technology in medical 
imaging, different artificial intelligence technologies have 
been applied to computer-aided medical film reading [3]
[4], management options with probabilities grounded in 
evidence-based appropriate-use criteria can be presented 
to physicians so they can make better clinical deci-
sions. Meanwhile, the feedback of the physicians and the 

radiologists will help to improve the performance of the 
deep learning algorithms, as shown in Fig. 1.

MRI of the head, as a key category of medical imag-
ing reports, using a powerful magnetic field, radio waves 
and a computer to produce detailed pictures of the brain 
and other cranial structures, is widely used in clinics 
[5]. Common head MRI sequences T1-weighted imag-
ing (T1WI), T2-weighted imaging (T2WI), fluid attenu-
ated inversion recovery (FLAIR), DWI and so on, among 
which DWI is used to detect the Brownian motion of 
water molecules in human tissues [6]. When the diffusion 
of water molecules in tissues is normal, the image has an 
equal signal, while when diffusion is limited, abnormally 
high-intensity signals are observed in DWI images. The 
signal intensity of DWI images depends on T2WI and the 
apparent diffusion coefficient (ADC), and the formula is 
as follows:

	 IDWI ∝ IT 2WI × e−b×ADC

In the above formula, b represents the diffusion sensitiv-
ity factor. The larger b is, the greater the detection abil-
ity of the diffusion function. The greater the contrast 
between the lesion and normal tissue is, the higher the 
sensitivity. The causes of high signal intensity in DWI 
images are the prolongation of the T2WI signal (such 
as T2 shine-through) and the decrease in ADC. Many 
diseases, such as ischaemic stroke, brain tumours, 
brain abscesses, and lymphoma, show high signals in 
DWI. High signal intensity in DWI is the most sensitive 
sequence for detecting the infarct focus of acute isch-
aemic stroke, also known as the “stroke sequence“[7][8]
[9]. Therefore, the identification of high-signal regions 

Fig. 1  Information flow of a medical imaging report
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in DWI is helpful for the treatment of ischaemic stroke 
patients.

Woo et al.[10] used convolutional neural networks 
(CNNs) to identify high-signal regions in DWI images 
to automatically segment acute ischaemic lesions and 
compared them with conventional algorithms. The 
results showed that the CNN algorithm had superior 
performance compared to the other conventional algo-
rithms. Based on previous studies, Chang et al.[11] used 
the advanced 3D U-Net neural network to automati-
cally identify high-signal regions from DWI images, and 
the intraclass correlation coefficient of the recognition 
results on the test set reached 0.974. Meanwhile, natu-
ral language processing (NLP) technologies have been 
applied to identify subjects from radiology reports. Kim 
et al.[12] used NLP and machine learning algorithms to 
identify acute ischaemic stroke from brain MRI reports. 
Carrodeguas E et al.[13] used traditional machine learn-
ing and deep learning models to identify follow-up rec-
ommendations in radiology reports. Kang et al.[14] used 
NLP technology to identify incidental lung nodules in 
radiology reports to assess management recommenda-
tions. However, as far as we know, there is no research 
on the automatic extraction of the high-signal regions 
of DWI images from head MRI reports. The application 

of natural language processing technology in the medi-
cal field, especially in the structured processing of MRI 
reports, shows great advantages[15] and provides an 
opportunity to obtain the high-signal regions of DWI 
images from MRI reports.

The head MRI reports used in this study are from the 
electronic medical record (EMR) system of Beijing Tian-
tan Hospital, Capital Medical University. An example of 
an MRI report is shown in Fig. 2. In traditional medical 
natural language processing tasks, named-entity rec-
ognition technology is usually used to identify diseases, 
body parts, etc.[18, 16]). However, as the report in Fig. 2 
shows, an MRI report records not only the high-signal 
regions of DWI images but also the high-signal regions 
from FLAIR, long-signal regions from T2WI, and some 
other regions but also high/long-signal regions from 
other MRI sequences, which causes considerable lin-
guistic interference when using NER technologies to 
identify the high-signal regions of DWI images. Owing 
to the above factors, we transform the task of identifying 
the high-signal regions of DWI images to a fine-grained 
entity typing task.

Related work
According to the different granularities of entity types, 
there are mainly two kinds of tasks in academia: named-
entity recognition (NER) [17] [18]and fine-grained entity 
typing (FET) [19]. The former task extracts the mention 
from the text and predicts its type in the context, which is 
usually coarse-grained, such as diseases and body parts. 
Therefore, the subtask of predicting the type of mentions 
can be regarded as coarse-grained entity typing. The lat-
ter task predicts the entity type according to the mention 
type given. For example, the high-signal region in DWI is 
a subtype of the body part. Figure 3 shows the input and 
output of a traditional FET system. We therefore define 
the task as a combination of NER and FET tasks.

From the output of the example, we can divide the task 
of high-signal region recognition in DWI into two stages: 
first, recognizing all the body parts in an MRI report, 
namely, an NER task, and second, dividing the identified 
parts into high-signal regions of DWI images and other 
regions, namely, an FET task.

The BiLSTM-CRF model is one of the most widely used 
technologies in the named-entity recognition task [19–
21]. In comparison with the CRF, BiLSTM and BiLSTM-
CRF models in English EMRs, the BiLSTM-CRF model 
performed best[22]. With the development of pretraining 
language models such as BERT[23], the performance of 
NLP tasks has been further improved. Zhang et al.[24] 
used the BERT-based BiLSTM-CRF model to identify 
breast cancer from progress notes and discharge summa-
ries of 100 breast cancer patients, for which the F1 score 
reached 93.53%, better than that of the BiLSTM-CRF 

Fig. 2  Example head MRI report. The paragraph in the dotted box is the 
detailed examination description. The text in red means the high signal 
regions on DWI, and the text in dark blue means the other region parts. 
The text in purple means the statement of DWI, while the text in light blue 
means statement of the other modalities
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model. On the other hand, FET is mainly used in the gen-
eral field and rarely in the medical field. The essence of 
fine-grained name-entity typing is a multilabel classifica-
tion problem. When the entity and its context are known, 
the entity can be classified into a specific category. The 
commonly used structure of the fine-grained named 
entity typing model is shown in Fig. 4. Generally, it is a 

three-layer structure. The first layer is the text input layer, 
which transforms the text into the form of a character 
vector or word vector as the input of the second layer. 
The second layer is the representation layer of entity and 
context, and the CNN, LSTM, and BERT models and 
attention mechanism are commonly used for feature 
extraction to obtain vector representations of an entity 

Fig. 4  General structure of the fine-grained entity typing model

 

Fig. 3  Example of fine-grained entity typing task input and output
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and entity context, respectively. The third layer is the pre-
diction layer, which predicts the entity category[25][26]. 
Lee et al. [27] compared the performances of fine-grained 
entity typing models based on LSTM and BERT on a 
Chinese corpus, and the results showed that the perfor-
mance of the latter is much better than that of the former. 
If we simply combine the NER model and the FET model, 
errors will accumulate, which will lead to poor perfor-
mance. Li et al.[28] recently proposed a machine read-
ing comprehension method to transform the traditional 
NER task (sequence labelling) into a question-answering 
task. Since the problem itself could provide additional 
information, this method could be introduced into an 
FET task. Therefore, we used the machine reading com-
prehension method to identify the high-signal regions of 
DWI images in this study.

Method
Dataset
The head MRI reports used in this study are from Bei-
jing Tiantan Hospital, Capital Medical University. There 
were 2527 head MRI reports of 2527 patients, as shown 
in Fig.  2. MRI reports included patient ID, examination 
time, examination item, examination category, exami-
nation description and examination conclusion. The 
description of the DWI signal is mainly recorded in 
the examination description. Therefore, we chose the 
description part of the report to identify the high-sig-
nal regions of DWI images. After removing spaces and 
line breaks and converting upper-case English letters 
to lower-case English letters, we used the open-source 
software BRAT[29] to annotate the data. The annota-
tion process is divided into two stages. The first stage is 
to annotate all body parts. The semiautomatic annotation 
method was adopted. First, 200 reports were manually 
annotated. All body parts appearing in the description 
part of MRI reports were annotated in the 200 reports 
(without identifying the high-signal regions of DWI 
images from other parts). The double-blind annotation 
method has been adopted for the annotation of body 
parts in the 200 MRI reports. Two junior radiologists are 
involved in the first round of annotation. For the incon-
sistent annotation results, an audit expert senior radiolo-
gist, with ten-years working experience, was invited to 
compare and determine the final answer, which acts as 
golden standard of the annotation results. From the feed-
back of the audit expert, the main inconsistency between 
the two annotators is the omission of some body parts.

Then, we trained a BiLSTM-CRF model to iden-
tify body parts of MRI reports with the 200 annotated 
reports, which was performed to automatically annotate 
the remaining 2327 reports. To ensure the accuracy of 
the corpus, the same audit expert was invited to check 
the annotation results identified by the BiLSTM-CRF 

model. The audit expert modified 331 annotated body 
parts and added 43 body parts annotations. This semiau-
tomatic annotation method greatly reduces the annota-
tion workload in the first stage. Based on the first stage, 
we manually annotated parts in the description part of 
the MRI report as the high-signal regions of DWI images 
and other parts in the second stage. After annotation, 
clinical experts were also invited to review the corpus 
annotation and they approved the annotation results. 
Therefore, we obtained the final labelled corpus.

A total of 4369 high-signal regions of DWI images 
and 19260 other parts were annotated in the annotated 
corpus set. The average numbers of high-signal regions 
of DWI images and other parts in each examination 
description part of the report were 2 and 8, respectively. 
90% of the examination descriptions in the reports did 
not contain any parts. The average length of each exami-
nation description was 170 Chinese characters, and the 
longest one consisted of 525 Chinese characters, while 
the shortest one consisted of only 2 Chinese characters. 
Then, we divided the corpus, all the annotated examina-
tion descriptions of the reports, into a training set and 
a testing set according to a ratio of 8:2. The training set 
contained 2022 examination descriptions of reports, 
including 3506 high-signal regions of DWI images and 
15352 other parts. The testing set contained 505 exami-
nation descriptions of reports, including 863 high-signal 
regions of DWI images and 3908 other parts. The tagging 
scheme we used in this study is BIOES[30], in which B 
stands for ‘beginning’ (signifying the beginning of an 
entity), I stands for ‘inside’ (signifying that the charac-
ter is inside an entity), O stands for ‘outside’ (signifying 
that the character is just a regular character outside of an 
entity), E stands for ‘end’ (signifying that the character is 
the end of an entity), and S stands for ‘singleton’ (signify-
ing that the single character is an entity).

Model
We proposed an FET model based on the machine read-
ing comprehension (MRC-FET) method, which simplifies 
the original two-step fine-grained entity typing task into 
one step and compared the result with the work of Lee et 
al.[27] The traditional fine-grained entity typing task con-
sists of two steps: NER and entity typing.

The structure of MRC-FET is shown in Fig.  5. The 
model consists of three layers. The first layer is the text 
layer. In the MRC-FET experiment, the question is “找
出报告中DWI 高信号部位” (to find high-signal regions 
of DWI images in the MRI report), and the answer is 
high-signal regions of DWI images. First, we transform 
the MRI report into the format that the machine read-
ing comprehension method in BERT needs, such as 
(CLS, q1, q2, . . . , qm, SEP, x1, x2, . . . , xn), in which qi  is 
the question character and xi  is the MRI report character. 
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Since the question shows what the experiment is to do, it 
can provide more information than the traditional fine-
grained entity typing methods. The second layer is the 
BERT layer, and the output is matrix E ∈ Rn×d , where n 
is the length of the MRI report description and d is the 
vector dimension of the last layer of the BERT model. The 
third layer is the span layer, which is mainly used to pre-
dict the start and end positions of the high-signal regions 
of DWI images in MRI reports according to the output 
of the BERT model. Start position prediction predicts the 
possibility that each character in the MRI report is the 
start position of the high-signal region of DWI images 
based on the matrix E  output by BERT. The calculation 
formula is as follows:

	 Pstart = (softmaxeachrow(E • Tstart)) ∈ Rn×2

where Tstart  is the parameter that the model needs to 
learn. Each line of Pstart represents the possibility that 
each character in the MRI report is the start position of 
the high-signal region of the DWI image. For example, 
if the first line of Pstart is [0.3,0.7], the first character is 
not the start position of the high-signal region of the 
DWI image. If the second line of Pstart is [0.8,0.2], the 
second character may be the start position of the high-
signal region of the DWI image. Similarly, end position 
prediction predicts the possibility that each character 
in the MRI report is the end position of the high-signal 
region of the DWI image based on the matrix E  output 
by BERT. The calculation formula is as follows:

	 Pend = (softmaxeachrow(E • Tend)) ∈ Rn×2

where Tend  is the parameter that the model needs to 
learn. Each line of Pend represents the possibility that 
each character in the MRI report is the end position 

of the high-signal region of the DWI image. Then, the 
argmax function acts on Pstart and Pend, and two 0–1 
sequences of length n Istart  and Iend  are obtained. If the 
i-th position is 1, then the i-th character may be the start 
or end position of the high-signal region of the DWI 
image.

	 Istart = (argmaxeachrow (Pstart))

	 Iend = (argmaxeachrow (Pend))

After obtaining Istart  and Iend , we match the start position 
and the end position according to the order of characters, 
and then, we obtain the position of the high-signal region 
of the DWI image in the MRI report. For example, if Istart  
is [0,1,0,0,0,0,0,1,0,0] and Iend  is [0,0,0,1,0,0,0,0,0,0,0,0,1], 
then the locations of the high-signal regions of the DWI 
images are [2, 4] and [7, 10], respectively, because the 
start positions of the high-signal regions of the DWI 
images are 2 and 7 in Istart  and the end positions are 4 
and 10 in Iend , respectively. Thus, the positions of the 
high-signal regions of the DWI images in the description 
part of the MRI report are obtained by matching the start 
and end positions in sequence.

In the model training stage, we used two losses, the 
start position loss and the end position loss, which are 
defined as follows:

	 Lstart = Cross_Entropy(Pstart,Ystart)

	 Lend = Cross_Entropy(Pend,Yend)

The cross entropy between the predicted and real results 
is determined, and then, the start position loss is added 
to the end position loss to obtain the final loss.

All methods were performed in accordance with the 
relevant guidelines and regulations.

Experiment
Evaluation criteria
In this study, we used the precision, recall and F1 mea-
sure to evaluate the models. We took the result predicted 
by the model on the test set as Pre=[p1, p2, . . . , pi ] and 
the result of manual annotation as Gol=[g1, g2, . . . , gj

]. The set element is a mention of the high-signal 
regions of DWI images and is represented by triple 
< d, posstart, posend > , where d is the serial number of 
the corpus, and posstart  and posend  represent the start 
and end positions of high-signal regions in DWI images, 
respectively. When

	 pi.d = gj.d

	 pi.posstart = gj.posstart

Fig. 5  Structure of MRC-FET
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	 pi.posend = gj.posend

the equation pi = gj  holds, and the precision, recall and 
F1 measure are calculated as follows:

	
P =

|intersection(Pre,Gol )|
|Pre|

	
R =

|intersection(Pre,Gol )|
|Gol|

	
F1 =

2PR
P + R

Experimental parameters
The experimental code of this study is based on the 
PyTorch deep learning framework. The parameter set-
tings of MRC-FET, BERT-BiLSTM-CRF, FET based on 

LSTM (LSTM-FET), and the FET model based on BERT 
(BERT-FET) are shown in Table  1, and the parameters 
except the character length in the last two models are 
consistent with those in Lee et al.[27]. Through our sta-
tistics, the character length of over 95% of MRI reports 
we obtained was less than 400. Then, we set the character 
length to 400.

Results
In the research of Jagannatha et al.[22] and Zhang et 
al.[24], the BERT and BiLSTM models were widely used 
in NER tasks and had good performance. Therefore, in 
the comparative experiments, the BERT-BiLSTM-CRF 
model identifying all parts in the MRI report descrip-
tion part was used in the first step. The BiLSTM-based 
FET model and BERT-based FET model were used in the 
entity typing task in the second step.

Table  2 shows that the MRC-FET model proposed in 
this study has the best performance on the testing set, 
with precision, recall and F1 measure values reaching 
97.27%, 93.62% and 95.41%, respectively. The F1 mea-
sure is 5.9% and 3.2% higher than that of BiLSTM-FET 
and that of BERT-FET, respectively. We also report the 
error bars of the three models in Fig. 6. It can be seen that 
the error bar of the MRC-FET model we proposed is the 
shortest, which indicates that the model has better iden-
tification performance and stability.

The result shows that the MRC-FET model can not 
only simplify the task of identifying high-signal regions in 
DWI but also improve the performance.

Table 1  Model parameter settings
Model Char-

acter 
length

learning 
rate

batch 
size

epoch opti-
mizer

MRC-FET 400 0.00003 32 5 Adam

BERT-BiLSTM-CRF 400 0.00003 32 5 Adam

BiLSTM-FET 400 0.001 256 15 Adam

BERT-FET 400 0.00003 32 5 Adam

Table 2  Results of identifying high-signal regions in DWI
Model Precision (%) Recall (%) F1 measure (%)
BiLSTM-FET 86.39 92.7 89.44

BERT-FET 93.44 90.84 92.12

MRC-FET 97.27 93.62 95.41

Fig. 6  Error bars of the three models
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Discussion
We analyse the reasons why the MRC-FET model per-
forms well. First, the MRC-FET model is based on the 
BERT pretrained model, which can obtain bidirectional 
representations of deep-seated text and greatly improve 
the performance of downstream natural language pro-
cessing tasks. Second, it draws lessons from the question-
answering method in machine reading comprehension 
tasks and can clearly describe the task in question, trans-
forming the traditional NER task (sequence labelling) 
into a question-answering task, “找出报告中DWI 高信
号部位” (to find high-signal regions of DWI images in the 
MRI report), with the high-signal regions of DWI images 
as answers, which contributes to deal with the consider-
able linguistic interferences when using traditional NER 
technologies to identify the high-signal regions of DWI 
images, and also provides a new idea to solve fine-grained 
entity typing tasks. Finally, the MRC-FET model simpli-
fies the traditional FET task and avoids the error accumu-
lation of the original models.

In the comparative experiment, the two stages of BERT-
FET are both based on the BERT pretrained model. 
Before the experiment, we speculated that the F1 scores 
of the BERT-FET and MRC-FET models on the testing 
set should have a small difference, which was 3.2%. We 
then conducted an experiment to analyse the reasons 
for the large difference. We used the MRC-FET model 
to identify all parts in the description part of the MRI 
report in the first step of fine-grained entity typing. In 
MRC-FET, we changed the question to “to find all parts 
in the MRI report” (origin is “to find high-signal regions 
of DWI images in the MRI report”). The precision, recall 
and F1 measure of the MRC-FET model were 95.93%, 
96.70% and 96.31%, respectively, while those of the 
BERT-BiLSTM-CRF model were 94.91%, 93.37%, 94.13%, 
respectively. The F1 measure of the BERT-BiLSTM-CRF 
model is 2.18% worse than that of the MRC-FET model 
in recognizing all parts in the first step, which is the main 
reason why the performance of body part recognition is 
poor in the first step. On the other hand, the MRC-FET 
model proposed in this study can not only achieve good 
performance in the FET task but also perform well in the 
traditional NER task, which unifies NER and FET tasks. 
In addition, introducing machine reading comprehension 

methods into sequence annotation can inspire the devel-
opment of other natural language processing tasks.

Finally, we analysed the reasons for the error in MRC-
FET prediction, which can be divided into three catego-
ries, as shown in Table 3. The first is due to the broken 
writing of MRI reports; in “脑桥双底节放射冠双额”, the 
standard writing is “脑桥、双底节、放射冠、双额”, 
the model only identifies the “脑桥”, the “双底节”, “放射
冠” and “双额” were not identified, “双侧丘脑底节放射
冠” is a similar situation, the standard writing is “双侧
丘脑、底节、放射冠”, and the model also only identi-
fied the “双侧丘脑”. To address this issue, we can expand 
the dataset or strictly regulate the writing of MRI reports 
from the source to make improvements. The second rea-
son is semantic similarity. For example, one of the test-
ing sets describes “DWI等高信号” (“DWI等信号”) as its 
similarity with the high-signal region of the DWI image, 
and the model identifies some parts from the report that 
do not have to be identified. For this error, we expect a 
much stronger language model than BERT to appear in 
the future to help understand the context. The third type 
is caused by the few appearances of words in the corpus, 
such as “右侧脑室体部旁脑白质”, which only appears 
once in the training set and results in incomplete learning 
of the training model and poor scores in the testing set. 
For these errors, we can expand the scale of the training 
set and add more regular expressions in future research.

Conclusion
In this study, we were the first to explore the automatic 
identification of high-signal regions of DWI images from 
the description part of a head MRI report. Considering 
the construction of the report, we transformed the iden-
tification of high-signal regions of DWI images to an FET 
task and proposed an MRC-FET model. Compared with 
the traditional two-step FET method, the model we pro-
posed not only simplifies the task but also has better per-
formance, with an F1 measure that is 9% and 3. 2% higher 
than the F1 measures of the LSTM-FET and BERT-FET 
models, respectively. In the future, we will expand the 
dataset and use regular expressions and a more advanced 
pretrained language model to improve the performance 
of identifying the accuracy of high-signal regions of DWI 
images from Chinese head MRI reports.

List of abbreviations
T1WI	� T1-weighted imaging.
T2WI	� T2-weighted imaging.
FLAIR	� fluid attenuated inversion recovery.
DWI	� diffusion-weighted imaging.
ADC	� apparent diffusion coefficient.
EMR	� electronic medical record.
NER	� named-entity recognition.
FET	� fine-grained entity typing.
MRC-FET	� fine-grained entity typing model based on machine reading 

comprehension.
LSTM-FET	� fine-grained entity typing model based on LSTM.

Table 3  Error examples of the MRC-FET model’s prediction 
results on the testing set
Error type Example

Origin text Gold standard Prediction
broken 
writing

脑桥双底节放射冠双额 脑桥,双底节,放
射冠,双额

脑桥

semantic 
similarity

xxxDWI等高信号xxx None Several 
regions

rare 右侧脑室体部旁脑白质 右侧脑室体部
旁脑白质

None
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BERT-FET	� fine-grained entity typing model based on BERT.
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