
Journal of

Clinical Medicine

Review

Irreversible Electroporation (IRE) in Locally Advanced
Pancreatic Cancer: A Review of Current Clinical Outcomes,
Mechanism of Action and Opportunities for
Synergistic Therapy

Zainab L. Rai 1,2,3,* , Roger Feakins 3 , Laura J. Pallett 4 , Derek Manas 5 and Brian R. Davidson 1,3

����������
�������

Citation: Rai, Z.L.; Feakins, R.;

Pallett, L.J.; Manas, D.; Davidson, B.R.

Irreversible Electroporation (IRE) in

Locally Advanced Pancreatic Cancer:

A Review of Current Clinical

Outcomes, Mechanism of Action and

Opportunities for Synergistic Therapy.

J. Clin. Med. 2021, 10, 1609. https://

doi.org/10.3390/jcm10081609

Academic Editor: Maria Del Pilar

Acedo Nunez

Received: 20 February 2021

Accepted: 7 April 2021

Published: 10 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centre of Surgical Innovation, Organ Regeneration and Transplantation, University College London (UCL),
London NW3 2QG, UK; b.davidson@ucl.ac.uk

2 Wellcome/EPSRC Center for Interventional and Surgical Sciences (WEISS), London W1W 7TY, UK
3 Royal Free NHS Foundation Trust, London NW3 2QG, UK; r.feakins@ucl.ac.uk
4 Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London,

London WC1E 6BT, UK; laura.pallett@ucl.ac.uk
5 Newcastle Upon Tyne NHS Foundation Trust, Newcastle-Upon-Tyne NE7 7DN, UK; derek.manas@nhs.net
* Correspondence: Zainab.rai.19@ucl.ac.uk

Abstract: Locally advanced pancreatic cancer (LAPC) accounts for 30% of patients with pancreatic
cancer. Irreversible electroporation (IRE) is a novel cancer treatment that may improve survival and
quality of life in LAPC. This narrative review will provide a perspective on the clinical experience
of pancreas IRE therapy, explore the evidence for the mode of action, assess treatment complica-
tions, and propose strategies for augmenting IRE response. A systematic search was performed
using PubMed regarding the clinical use and safety profile of IRE on pancreatic cancer, post-IRE
sequential histological changes, associated immune response, and synergistic therapies. Animal data
demonstrate that IRE induces both apoptosis and necrosis followed by fibrosis. Major complications
may result from IRE; procedure related mortality is up to 2%, with an average morbidity as high as
36%. Nevertheless, prospective and retrospective studies suggest that IRE treatment may increase
median overall survival of LAPC to as much as 30 months and provide preliminary data justifying
the well-designed trials currently underway, comparing IRE to the standard of care treatment. The
mechanism of action of IRE remains unknown, and there is a lack of data on treatment variables and
efficiency in humans. There is emerging data suggesting that IRE can be augmented with synergistic
therapies such as immunotherapy.

Keywords: irreversible electroporation; locally advanced pancreatic cancer; immunotherapy

1. Introduction

Irreversible electroporation (IRE) is a novel, non-thermal ablative therapy used to
treat solid cancers [1]. IRE treatment destroys cancer cells using electricity [2]. It is applied
by placing two or more electrodes in and around the cancer. Electrodes can be inserted
percutaneously under image guidance, laparoscopically, or through an open approach
following a midline laparotomy.

Multiple short pulses of high-voltage electrical current are applied between electrode
pairs. The application of an electric field across cell membranes is thought to initiate the
formation of nanopores in the lipid bilayer of the tumour cell’s plasma membrane, leading
to homeostatic disruption and cell death [3,4]. The mechanism of action of IRE remains
controversial. Initial studies reported apoptosis as the main mechanism of cellular death [5],
however there is increasing evidence that necrosis also contributes [6]. Apoptotic cell death
involves a number of complex intracellular signalling pathways involving mitochondria [7].
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The exact mechanism through which IRE induces apoptosis, and whether this is through
mitochondrial-mediated pathways, remains to be established.

Unlike other ablative techniques, such as microwave ablation (MWA), cryotherapy
and radiofrequency ablation (RFA), IRE is thought to exert its cytotoxic effect without
relying on thermal injury [8]. Multiple studies report that IRE spares blood vessels and bile
ducts [9–11]. Furthermore, IRE is not susceptible to the “heat sink” effect, a phenomenon
where blood flowing in vessels adjacent to the cancer being treated prevents the area of
ablation from reaching effective temperatures for cellular damage, leaving viable tumour
cells [12]; a concern with ablative methods reliant on thermal injury.

Electrical pulses have been known to be cytotoxic since the mid 20th century and
have been used in food and water sanitisation programmes [13,14]. In the 1960s Sale
and Hamilton reported detecting leakage of intracellular contents following electrical
application and postulated that the application of an electrical field resulted in an increase
in membrane potential resulting in the loss of cellular integrity [15]. A decade later the
term “electroporation” was coined by Neumann and Rosenheck, who demonstrated that
the changes in the membrane permeability were temporary and could be reversed [16].
This is now known as reversible electroporation (RE). RE provided a therapeutic route into
cells and has been used in recent years to deliver gene therapy (gene electro-transfer) [17]
and to target chemotherapeutic agents to cancerous cells (electrochemotherapy) [18].

Irreversible electroporation was largely ignored in oncology until 2005 when Davalos
et al. demonstrated that by increasing the electrical field strength and duration of pulses,
the changes in membrane permeability were permanent and could therefore induce cell
death [19]. In vivo [20,21] and in vitro [22] studies of cancer cells treated with IRE con-
firmed its cytotoxic effect. Animal studies observing the effect of IRE in healthy organs
such as pig pancreas, liver, kidney, and murine liver followed [23–27].

In 2012, Martin et al. published the first human pilot study assessing IRE treatment in
pancreatic cancer [28]. Since then, several studies have reported on pancreas IRE [29–43].
Unlike liver IRE therapy [44], pancreas IRE therapy has no established protocol. Most
studies to date have used 90 pulses per treatment cycle, with each pulse length lasting
70–90 µs and between 1400–2000 V/cm being delivered [45].

IRE therapy for cancer is associated with procedure related complications, the severity
of which relate to the site and size of cancer. For pancreatic cancer (PC) the risks are high
because the cancer is surrounded by vital structures, such as the coeliac axis and other
large blood vessels, and key biliary and pancreatic structures. There is no consensus on
how to avoid damage to the adjacent healthy tissues.

IRE treatment protocols used in clinical practice to date have varied [45], and in part
have been developed using data from animal studies. However, the animal and human
pancreas are significantly different in cellular composition [46] and electrical impedance,
which will likely impact IRE efficacy [47]. Similarly, a cancerous pancreas is different
in cellular composition and electrical properties compared to a non-cancerous pancreas,
which may further impact the success of IRE therapy [48,49]. Variability in current IRE
treatment protocols, such as inter-electrode distance, strength of the voltage applied,
and the individual electrical properties of the tissue being ablated all have an impact
on treatment efficiency and the area of ablation [23,47,50]. Evaluation of the histological
changes and clinical benefit following IRE are needed in both human healthy pancreatic
and pancreatic cancer tissue, in order to establish appropriate treatment protocols.

A number of retrospective and prospective human clinical studies on pancreas cancer
IRE have suggested a survival benefit [29–31,33,37,51,52]. However, IRE is not in routine
clinical practice in the United Kingdom for a number of reasons. First, evidence from
randomised controlled trails (RCT) is awaited, to support the benefits suggested in selected
patient cohorts. Second, there is no consensus on the optimal IRE treatment protocol [45]
nor the approach needed to protect adjoining pancreatic tissue.

We can compare pancreas IRE therapy with the IDEAL-D framework [53,54], a model
developed by expert consensus to describe the stages through which a new medical
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device should progress (idea, development, exploration, assessment long-term for medical
devices). IRE is currently in the nascent stage of 2a [53], as IRE studies have focused on the
measurement and comparison of clinical safety, technical, and procedural success through
prospective and case series studies. The UK-IRE users group treated 33 patients with
pancreatic cancer (85% with pancreatic adenocarcinoma and 12% with neuro-endocrine
tumour of the pancreas, median tumour size of 4 cm) between 2014 and 2017 across three
UK sites: King’s College Hospital, London; Newcastle upon Tyne Hospital; and Leeds
Teaching Hospital. In this unpublished data set patients had a median length of stay in
hospital of 5 days and a 30-day survival of 98%, with a single death reported [55]. This
preliminary UK data, in addition to data from published cohort studies, justifies the need
for a feasibility randomised trial to further investigate pancreas IRE in the UK. Feasibility
randomised clinical trials are needed that aim to assess safety, short term clinical outcomes,
and patient centred outcomes, such as quality of life, in order to progress to the next stage
in the IDEAL-D framework.

The aim of this narrative review is to provide a relevant and comprehensive overview
on the clinical outcome of IRE for unresectable locally advanced pancreas cancer, an
analysis of mechanistic studies, and the risks and limitations of current therapy.

2. Current UK Management of Locally Advanced Pancreatic Cancer (LAPC)

Pancreatic cancer (PC) is a biologically aggressive tumour. It has a five-year survival
rate of less than 6% and an incidence that is increasing in the United Kingdom [56].
Pancreatic resection is the only potentially curative treatment. However, only 10 to 20%
of patients are eligible for surgery [57]. Even in those selected patients with early-stage
disease who are offered surgery, the 5-year survival is only 20% [58].

Approximately 30% of all patients have locally advanced pancreatic cancer (LAPC) at
diagnosis and are not considered for surgical resection [59]. In patients with unresectable
LAPC there is local involvement of the coeliac axis or its branches, the superior mesenteric
artery (SMA), or extensive portal vein involvement precluding resection and reconstruction,
but an absence of distant metastases [58]. Currently, the recommended treatment for
LAPC is systemic chemotherapy [59,60]. However, despite advances in drug therapy for
pancreatic cancer over the last 20 years, overall survival (OS) and progression free survival
(PFS) have not significantly improved [61] with a median PFS of just 15 months [62].

2.1. Chemotherapy in Unresectable Locally Advanced Pancreatic Cancer (LAPC)

In 2011, Conroy et al. reported the results of the ACCORD11/PRODIGE4 trial, a land-
mark study on chemotherapy in pancreatic cancer that demonstrated that 5-FluoroUracil,
Leucovorin, Irinotecan, and Oxaliplatin (FOLFIRINOX) treatment had a survival advan-
tage over gemcitabine therapy, albeit with a higher toxicity profile (median OS in the
FOLFIRINOX group was 11.1 months compared to 6.8 months in the Gemcitabine group,
p < 0.001) [63]. In the UK, National Institute of Clinical Excellence (NICE) guidelines
published in 2018 recommend systemic combination chemotherapy for both locally unre-
sectable and metastatic pancreatic cancer [64]. NICE recommends first-line combination
chemotherapy with FOLFIRINOX in otherwise fit patients (Eastern Cooperative Oncology
Group (ECOG)) performance status of 0–1) [65]. In patients with a poor baseline, or those
unable to tolerate this regime, NICE recommends gemcitabine alone. Despite showing
the best objective response in pancreatic cancer, FOLFIRINOX [66,67] is associated with
more frequent and severe side effects, including neutropoenia, diarrhoea, and peripheral
neuropathy [62]. A systematic review in 2016 reported that LAPC patients treated with
FOLFIRINOX had a median PFS of 15 months (range: 3 to 20 months) [62].

Following chemotherapy for LAPC, staging is repeated to assess response and to again
review the technical feasibility of surgical resection. In patients with LAPC undergoing
first line treatment with FOLFIRINOX a meta-analysis demonstrated that 25.9% underwent
resection following chemotherapy and in this cohort, an impressive 78.4% of patients had
R0 resection [62]. This is in comparison to the 67% of R0 resection in patients treated
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with upfront surgery reported by a meta-analysis in 2018 [68]. Studies have reported that
neoadjuvant therapy is safe [69–71], and two systematic reviews reported that no deaths
have been attributed to FOLFIRINOX specifically in the neoadjuvant setting [62,72].

The SCALOP I trial, a randomised multi-centre trial comparing LAPC patients treated
with induction chemotherapy (12 weeks of Gemcitabine and Capecitabine) followed either
by Gemcitabine and radiotherapy (GEM Rx) or Capecitabine and radiotherapy (CAP Rx).
The median OS was 17 and 14 months for CAP Rx and GEM Rx, respectively. Although the
study did not report on the exact number of patients that proceeded to surgical resection it
demonstrated that 44.5% of patients with pancreatic cancer treated with initial systemic
chemotherapy developed distant metastases and 33.3% developed progression of local
disease [73]. There is therefore a major unmet need for improved treatment of locally
advanced but unresectable pancreas cancer following first line systemic chemotherapy.

2.2. IRE Treatment for Locally Advanced Pancreas Cancer

The main objective of IRE in the treatment of LAPC would be to extend survival
and prospective and retrospective studies report a median OS of up to 30 months [31].
In addition to improved survival, other possible benefits of treating LAPC with IRE
include local control of tumour progression, symptom relief, and improved quality of life
(QoL). There are several validated QoL scores that are routinely used in PC [74], but none
specifically modified for IRE treatment.

A single-centre prospective study evaluating the QoL pre and post IRE in patients
with LAPC demonstrated that IRE had no adverse effects on QoL but failed to show
an improvement [75]. It is important to note that the study did not take into account
concomitant treatment with chemotherapy after IRE and this may confound the results.

Local treatments may seem an attractive option in the treatment of pancreatic cancer
in view of the large number of patients presenting with locally advanced disease. However,
it is important to note that PC is often a systemic disease from the earliest stages [76], and
therefore local treatments alone are likely to be inadequate. Combination treatments in-
volving IRE in conjunction with chemotherapy and immunotherapy may offer an approach
that tackles both the systemic and local impacts of the disease progression.

One consideration for IRE is the timing of treatment in relation to chemotherapy.
Studies that have delivered IRE before chemotherapy have shown only a modest increase
in median OS [29,36]. Mansson et al. treated patients with IRE as a first line therapy and
reported a median OS of 13 months compared to 9.9 month for patients on the National
Quality Registry for Pancreatic and Peri-ampullary Cancer registry (p = 0.511) [36]. In
contrast, studies using IRE after induction chemotherapy offered a greater clinical benefit,
with a median OS rate of 27 months, according to a systematic review in 2019 [1].

2.3. Immunotherapy in Pancreatic Cancer

Over recent years immune checkpoint blockade agents such as programmed death
ligand 1 (PD-L1) and PD-1 inhibitors have been increasingly used as successful therapies
for many solid tumours [77]. However, phase I and II clinical trials have so far failed
to demonstrate any clinical benefit in patients with pancreatic cancer [78]. The immune
resistance observed may be attributed to pancreatic cancer’s tumour microenvironment
(TME) [79]. Unlike other solid tumours, where immunotherapy has yielded a successful
response, the TME in pancreatic cancer is characterised by desmoplasia, a rigid stroma,
with cell components accounting for only 10–30% of the tumour mass [80]. The dense
extracellular matrix (ECM) [81] forms a rigid barrier and results in elevated tumour inter-
stitial pressure and reduced vascularization and diffusion [82]. The rigid ECM may act
as a physical barrier denying immunotherapeutic agents access to the tumour environ-
ment and limiting efficacy. Interestingly, in studies where chemotherapy was combined
with immunotherapy the results were more promising, suggesting a possible synergistic
effect [83].
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3. Systematic Review of IRE in Human Pancreas Cancer

A systematic search was performed using PubMed regarding the clinical use and
safety profile of IRE on pancreatic cancer in humans for studies published in English from
January 2010 to November 2020. Further studies were identified by reviewing appropriate
references from review articles. Case reports, studies reporting on less than 10 patients,
and those that did not report on median OS were excluded.

4. Clinical Outcomes of IRE for LAPC

There have been no prospective randomised trials evaluating the harms and benefits
of IRE therapy in LAPC. The survival figures reported for IRE in LAPC are summarised in
Table 1. Availability of the new treatment, reflected in the countries that have reported on
IRE, demonstrates that it is a technology available across Europe, Asia, and North America.
The published median OS range in patients undergoing IRE was from 10–30 months [31,52].
Such variation in OS may be explained by the type of study, the selection criteria used,
and expertise and experience of IRE delivery, as well as the variety of neoadjuvant and
adjuvant chemotherapy used in combination. The reported data came from studies of
patients that were not randomised or controlled. Two studies attempted propensity score
matched (PSM) analysis [38,84], a statistical technique that creates a control group [85].
Following PSM, He et al. found that the OS and PFS rates of LAPC patients following
neoadjuvant chemotherapy and the use of subsequent IRE treatment were better than that
of patients treated with chemotherapy alone (2-year OS rates; 57.9% vs. 18.1%, p < 0.001,
2-year PFS rates; 31.4% vs. 7.1%, p < 0.001). The promising result for PSM studies suggests
that there is potential for IRE to have a beneficial impact in LAPC and warrants the need
for further ongoing studies.

Table 1. Clinical studies evaluating irreversible electroporation (IRE) in pancreatic cancer.

Authors Date n Cancer Stage and Size Median OS
(Months) Location Type of Study

Veldhuisen et al. [86] 2020 52 LAPC ≤ 4.5 cm 17.2 The
Netherlands Comparative

Ruarus et al. [87] 2020 50
LAPC ≤ 4.6 cm (n = 40)

Post-surgical local
recurrence (n = 10)

LAPC: 17
Post-surgery local

recurrence: 16

The
Netherlands

Prospective
single arm

He et al. [84] 2020 32 LAPC > 4 cm included 24 China
Propensity

Score Matched
analysis

Holland et al. [31] 2019 152 LAPC ≤ 5.5 cm 30 Multi-national

Prospective
observational
using patient

registry

Liu et al. [88] 2019 54 LAPC (n = 28)
metastatic PC (n = 24)

LAPC: 20
metastatic PC: 14 China Prospective

Flak et al. [30] 2019 33 LAPC ≤ 5 cm 18 Denmark Prospective
single arm

Mansson et al. [36] 2019 24 LAPC ≤ 3.5 cm 13 Sweden Prospective

Leen et al. [33] 2018 75 LAPC ≤ 5 cm 27 United
Kingdom Prospective

Sugimoto et al. [89] 2018 8 LAPC ≤ 5 cm 24 Japan Prospective

Huang et al. [90] 2018 70 LAPC≤ 5 cm 22 Taiwan Retrospective

Vogel et al. [91] 2017 15 LAPC ≤ 5.5 cm 16 The
Netherlands Prospective

Scheffer et al. [42] 2017 25 LAPC ≤ cm 17 The
Netherlands Prospective
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Table 1. Cont.

Authors Date n Cancer Stage and Size Median OS
(Months) Location Type of Study

Narayanan et al. [40] 2016 50 LAP > 3 cm included 27 United States of
America Retrospective

Mansson et al. [35] 2016 24 LAPC ≤ 4.5 cm 17.9 Sweden Prospective

Lambert et al. [52] 2016 21 LAPC ≤ 6.5 cm 10 Czech Republic Retrospective

Martin et al. [37] 2015 200 LAPC 24.9 United States of
America Prospective

Kluger et al. [32] 2015 50 LAPC < 3 cm 12 United States of
America Prospective

Paeilla et al. [41] 2015 10 LAPC 17 Italy Prospective

Martin et al. [38] 2013 54 LAPC 20 United States of
America

Prospective
with Propensity
Score analysis

Abbreviations: OS; Overall Survival, LAPC; Locally Advanced Pancreatic Cancer, PC; Pancreatic Cancer.

One study that reported a significantly lower OS was Mansson et al. [36]; who reported
a median OS of only 13 months, similar to the OS reported in the SCALOP 1 trial. In this
study there was a delay of 88 days between the date of the radiological diagnosis and IRE
treatment, due to waiting times for IRE treatment. The time delay between delivering
IRE and chemotherapy, the standard treatment, may be one explanation for the modest
OS reported.

It is important to note that there is variability in the maximum cancer size treated.
One study reported a survival advantage in patients with tumour sizes less than or equal
to 3 cm undergoing IRE; patients with tumour sizes greater than 3 cm had a median OS
of 22.7 months, whereas those with a tumour size less than 3 cm had a median OS of 33.8
months (p = 0.002) [40]. Other similar clinical studies suggested that IRE is most effective
in tumour sizes less than 4 cm [35,37,52,91,92].

The largest dataset published on IRE in pancreatic cancer comes from a Martin
et al. [37], who reported on a multiple site experience of pancreas IRE. As one of the
first case series reporting pancreas IRE, this was an unstructured review of multiple proto-
cols and provided an initial understanding into the clinical use of pancreas IRE in LAPC.
Here, 200 patients across multiple centres were enrolled with radiographic stage III LAPC
and excluding borderline resectable disease. IRE was delivered alone (in 150/200) or in
combination with pancreatic resection (in the remaining 50/200), where it was used as
a tool for margin accentuation; a surgical technique that involves the application of IRE
to the cancer in order to increase the chances of an R0 resection. All patients underwent
initial treatment with chemotherapy, chemo-radiotherapy, or both, depending on individ-
ual institution protocols, and with considerable inter-centre variation in pre-IRE therapy.
Patients were subsequently restaged and those free of distant disease were considered for
IRE treatment. All IRE procedures were performed via an open approach and involved
intra-operative ultrasonography to guide probe placement. The number of electrodes, volt-
age setting, and spatial organisation of probe placement were determined by the operating
surgeon. Importantly, in the patients receiving IRE without resection, 60% were treated
with neoadjuvant Gemzar® -based chemotherapy and 29% with a FOLFIRNOX regime.
While, 47% of patients received radiotherapy prior to IRE. In the patients that underwent re-
section followed by IRE for margin accentuation, 43% of patients were treated with Gemzar
based chemotherapy, and 38% with FOLFIRINOX prior to resection and IRE delivery. In
addition, 52% also received neoadjuvant radiotherapy. The exact radiotherapy protocol
was not specified, and 160 patients out of the 200 in the study underwent additional
therapy following IRE. This was with a range of adjuvant chemotherapy (67%) regimes
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or radiotherapy (13%). No information is available regarding the specific radiotherapy
treatment protocol.

A median of four probes (range: 2–6 probes), with a median pulse number of 90 (range:
70–200 pulses), were used in the patients receiving IRE without resection. The reported
median OS in this group was 23.2 months (range: 4.9–76.1) compared to 28.3 months in
patients treated with IRE and resection; not a surprising finding, as resectable disease is
likely to represent a smaller tumour burden. Treatment protocols varied between centres
and between treatment groups. In patients treated with IRE and resection the median
number of probes was two (range: 2–4), delivering a median of 90 pulses (range: 40–
200). No attempt was made to evaluate the incidence of positive margins in the resected
specimens and how this might compare with resected specimens not treated with IRE. No
further analyses were made to determine whether the range of IRE treatment protocols
had an impact on the reported results.

5. Complications of Pancreas IRE Therapy

IRE is an invasive procedure and is associated with a range of procedure-related
complications [1,93]. The average rate of severe complications in the table below (defined
as greater than Grade III on the Clavien-Dindo scale [94]) following IRE is 12%, but has
been reported to be as high as 42% [87]. The average procedure-related mortality rate is 2%
and 0% for open and percutaneous IRE, respectively [95]. A common complication is mild
acute pancreatitis [96]. The more serious complications include severe acute pancreatitis,
portal vein thrombosis, bile leak, perforations of the gastro-intestinal tract, and pancreatic
fistula [30,32,40,52]; summarised in Table 2.

Table 2. Incidence and severity of complications reported in clinical studies of IRE treatment for pancreas cancer.

Study Date Sample Size Method of IRE
Delivery All Complications Severe

Complications

Veldhuisen et al. [86] 2020 52 Percutaneous 37% -

Ruarus et al. [87] 2020 50 Percutaneous 58% 42%

Liu et al. [88] 2019 54 Open (16/54) 19% 1%

Liu et al. 2019 54 Percutaneous (38/54) 44% 3%

Holland et al. [31] 2019 152 Percutaneous 18% 13%

Flak et al. [30] 2019 33 Percutaneous 33% 21%

Mansson et al. [36] 2019 24 Percutaneous 33% 25%

Huang et al. [90] 2018 70 Open 23% 4%

Leen et al. [33] 2018 75 Percutaneous 25% 8%

Zhang et al. [92] 2017 21 Percutaneous 19% 0%

Sheffer et al. [42] 2017 25 Percutaneous 48% -

Vogel et al. [91] 2017 15 Percutaneous 53% -

Narayanan et al. [40] 2016 50 Percutaneous 62% 20%

Mansson et al. [35] 2016 24 Percutaneous 46% 13%

Lambert et al. [52] 2016 21 Percutaneous 24% -

Yan et al. [43] 2016 25 Open 36% 8%

Paiella et al. [41] 2015 10 Open 10% 0%

Belfiore et al. [29] 2015 20 Percutaneous 10% 0%

Martin et al. [37] 2015 200 Open + resection
(50/200) 40% -

Martin et al. 2015 200 In situ (150/200) 36% -
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Table 2. Cont.

Study Date Sample Size Method of IRE
Delivery All Complications Severe

Complications

Kluger et al. [32] 2015 50 Open 46% 20%

Martin et al. [38] 2013 54 Open 39% -

Martin et al. [28] 2012 27 Open 25% 7%

The variability in the reported complication rates across studies may be due to the
heterogeneity in treatment protocols used or may be related to the size of the tumours
treated. A study by Paiella et al. had one of the lowest complication rates at 10%, with no
severe procedure related complications [41]. This study treated patients with tumour sizes
less than 4 cm. With their IRE procedure delivering 1500 volts between electrodes placed
1–2 cm apart, with a pulse duration of 70 µs and a total of 90 pulses delivered. In contrast, a
study by Narayanan et al. included patients with much larger tumours (up to 8 cm in size)
and reported one of the highest rates of complications (a total of 62% of patients developing
a procedure-related complication and a severe complication rate of 20%) [40]. The authors
did not correlate tumour size with complications. The treatment protocol for this study did
not specify the exact voltage applied but reported a higher range using 1500 to 3000 volts,
presumably using the highest field strength available commercially (3000 volts) for the
largest tumours. Electrodes were placed between 1.8 and 2.2 cm apart and a total of 70 volts
each with a duration of 70 µs was delivered.

Other factors contributing to the range of reported complications may be related to
the number of years of experience individual centres have with treating patients with
IRE, although this information in not always available in the literature. Moreover, the
heterogeneity of the rates of reported complications may be related to the method in which
IRE is delivered (open vs. percutaneous). The data presented in Table 2 further highlights
the need for a robust randomised clinical trial that aims to mitigate for these factors, to
better appreciate IRE-associated complications.

6. Radiological Response to Pancreas IRE

IRE-treatment response in clinical studies has been determined by radiological imag-
ing, mainly using computerised tomography scanning (CT) and magnetic resonance imag-
ing (MRI). Akinwande et al. prospectively reviewed five LAPC patients who underwent
IRE and evaluated contrast enhanced CT images following IRE [97]. They reported that
the ablation zone was ill-defined and irregular, without clearly demarcated margins. Im-
mediately following IRE, the ablation zone appeared larger than the original target lesion,
thought to be due to the inclusion of both the tumour lesion, as well as the safety margins.
Blood vessels within the area of ablation demonstrated narrowing immediately follow-
ing IRE, which resolved or remained stable in subsequent scans. Subsequent follow-up
imaging demonstrated an increased enhancement of the ablation zone, which the authors
concluded was due to the formation of granulation tissue and fibrosis, perhaps correlating
with the histological findings reported in animal studies. As the surrounding oedema,
hyperaemia, and granulation tissue decreased over time, it facilitated the visualisation
of the true ablation zone which was smaller than the region seen immediately after IRE,
indicating that the ablation zone size immediately following IRE may not be a reliable
indicator of the true extent of the area treated, as it is likely to include the surrounding
reactive reaction of oedema and hyperaemia. Alternatively, this initial ablation zone may
be an important factor in predicting the true ablation zone once the immediate reactive in-
flammatory process diminishes. There is no consensus on the optimum time post-treatment
to measure ablation zone.

Vroomen and colleagues assessed imaging characteristics in 25 patients with LAPC
following CT-guided percutaneous IRE [98]. All patients had biopsy-proven LAPC and
underwent contrast enhanced CT (ceCT) prior to IRE. Subsequent contrast enhanced MRI
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(ceMRI) was performed 1 day, 2 weeks, and 6 weeks following IRE treatment. At the 6-week
mark patients additionally underwent a ceCT. A final ceCT was performed 3 months after
IRE. Figures 1 and 2 show the median tumour volumes across the imaging modalities and
demonstrate an increase in tumour volume in the initial post-IRE period on both ceCT
and ceMRI, followed by a decrease. The authors reported that there was a hyperintense
border surrounding the IRE ablation zone in the portal venous phase in 71% of patients,
noted 1 day and 2 weeks post IRE, and which was identified in only 29% of patients at
the 6 week follow up. The observed hyperintense rim surrounding the ablation zone 1
day post-IRE may represent reactive hyperaemia and oedematous inflammation and still
include residual disease. A longer follow-up is required in order to evaluate the exact
significance of this radiological characteristic.

J. Clin. Med. 2021, 10, 1609 9 of 26 
 

 

 
Figure 1. Median tumour volumes on contrast enhanced MRI (ceMRI). 

 
Figure 2. Median tumour volumes on contrast enhanced CT (ceCT). 

7. Pathological Response to Pancreas IRE Therapy and Mechanism of Action 
7.1. IRE Studies Involving Normal Porcine Pancreas 

Studies of the histological effects of IRE on healthy pancreas have been performed 
exclusively on porcine tissues, with the results summarised in Table 3. IRE ablation set-
tings varied extensively between porcine studies, but were similar to the settings used in 
human clinical practice (90 pulses per treatment cycle, pulse length of 70–90 µs, and a 
setting range between 1400–3000 V/cm) [45]. In this setting, the use of IRE initially induced 
active local inflammation, evident from the presence of oedema of the interstitium [23]. 
IRE of healthy porcine pancreas induces a significant amount of necrosis for up to 7 days 
after the procedure, independent of treatment setting, followed by the development of 
fibrosis [24]. 

  

19

49

16 14
0

20

40

60

Pre-IRE 1 day-Post-
IRE

2 weeks
Post-IRE

6 weeks
Post-IRE

M
ed

ia
n 

Tu
m

ou
r V

ol
um

e 
(m

L)

Time

Tumour Volume of ceMRI

15

31

17
22

28

0

10

20

30

40

Pre-IRE Immediately
Post-IRE

6 weeks
Post-IRE

3 months
Post-IRE

6 months
Post-IRE

M
ed

ia
n 

Tu
m

ou
r V

ol
um

e 
(m

L)

Time

Median Tumour Volumes on ceCT

Figure 1. Median tumour volumes on contrast enhanced MRI (ceMRI).

J. Clin. Med. 2021, 10, 1609 9 of 26 
 

 

 
Figure 1. Median tumour volumes on contrast enhanced MRI (ceMRI). 

 
Figure 2. Median tumour volumes on contrast enhanced CT (ceCT). 

7. Pathological Response to Pancreas IRE Therapy and Mechanism of Action 
7.1. IRE Studies Involving Normal Porcine Pancreas 

Studies of the histological effects of IRE on healthy pancreas have been performed 
exclusively on porcine tissues, with the results summarised in Table 3. IRE ablation set-
tings varied extensively between porcine studies, but were similar to the settings used in 
human clinical practice (90 pulses per treatment cycle, pulse length of 70–90 µs, and a 
setting range between 1400–3000 V/cm) [45]. In this setting, the use of IRE initially induced 
active local inflammation, evident from the presence of oedema of the interstitium [23]. 
IRE of healthy porcine pancreas induces a significant amount of necrosis for up to 7 days 
after the procedure, independent of treatment setting, followed by the development of 
fibrosis [24]. 

  

19

49

16 14
0

20

40

60

Pre-IRE 1 day-Post-
IRE

2 weeks
Post-IRE

6 weeks
Post-IRE

M
ed

ia
n 

Tu
m

ou
r V

ol
um

e 
(m

L)

Time

Tumour Volume of ceMRI

15

31

17
22

28

0

10

20

30

40

Pre-IRE Immediately
Post-IRE

6 weeks
Post-IRE

3 months
Post-IRE

6 months
Post-IRE

M
ed

ia
n 

Tu
m

ou
r V

ol
um

e 
(m

L)

Time

Median Tumour Volumes on ceCT

Figure 2. Median tumour volumes on contrast enhanced CT (ceCT).

7. Pathological Response to Pancreas IRE Therapy and Mechanism of Action
7.1. IRE Studies Involving Normal Porcine Pancreas

Studies of the histological effects of IRE on healthy pancreas have been performed
exclusively on porcine tissues, with the results summarised in Table 3. IRE ablation settings
varied extensively between porcine studies, but were similar to the settings used in human
clinical practice (90 pulses per treatment cycle, pulse length of 70–90 µs, and a setting
range between 1400–3000 V/cm) [45]. In this setting, the use of IRE initially induced active
local inflammation, evident from the presence of oedema of the interstitium [23]. IRE of
healthy porcine pancreas induces a significant amount of necrosis for up to 7 days after the
procedure, independent of treatment setting, followed by the development of fibrosis [24].
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Table 3. Histological changes at specific IRE setting and time course following IRE in normal porcine pancreas [23,24,99].

Time Electrode
Type Probe No

Inter-
Electrode

Distance (mm)
Pulse No Pulse

Length (ms)
Voltage
(Volts)

Ablation
Zone (mm2) Histology

1 h Monopolar 2 10 90 90 1900 Not stated Oedema
Necrosis

2 h Monopolar 2 10 90 100 1500 240 Necrosis

24 h Monopolar 2 10 70 70 2000 134 Necrosis

24 h Bipolar 1 7 90 70 2100 271 Necrosis

48 h Monopolar 2 9 90 100 1500 252 Necrosis

72 h Monopolar 2 20 90 100 3000 Not stated Necrosis

7 days Monopolar 2 10 90 90 1900 Not stated Apoptosis
Necrosis

7 days Monopolar 2 15 90 70 2700 Not stated Necrosis

14 days Monopolar 2 10 90 100 1500 <100 Fibrosis

14 days Monopolar 2 15 90 100 1500 Not seen No changes

14 days Monopolar 2 15 70 100 2250 Not seen No changes

14 days Monopolar 2 10 70 70 2000 Not seen No changes

14 days Not specified - Not specified 100 100 2500 Not stated Necrosis

14 days Monopolar 2 15 90 100 2300 Not stated Necrosis
Apoptosis

28 days Monopolar 2 15 90 100 2500 21 Atrophy
Fibrosis

28 days Bipolar 1 7 90 70 2400 207 Atrophy
Fibrosis

7.2. IRE in Animal Models of Pancreas Cancer

The histological effect of IRE on pancreatic cancer tissue has been investigated in
mouse xenografts bearing human pancreatic cancer cell lines [100–102]. Table 4 summarises
the studies. Two studies used orthotopic mouse models and implanted human pancreatic
cancer cell lines into the pancreas [100,101]. One study used subcutaneously implanted
human pancreatic cancer cells [102]. There are conflicting reports regarding apoptosis in
pancreatic tumour tissue following IRE [100–102]. One study used transmission electron
microscopy (TEM) to study the morphological changes in tumour tissue following IRE [102],
and euthanised all animals 30 min following the IRE procedure. In the IRE treated tumours
there was evidence of both acute coagulative necrosis and chromatin condensation, a
hallmark of apoptosis [103]. However, the authors did not evaluate other evidence of
apoptosis beyond structural changes and did not report on the structural changes of
individual organelles.

7.3. Human Models and IRE

There have been no sequential histological analyses of the effects of IRE on human
pancreatic tissue because of the risks and ethics of human in vivo tissue sampling. This
is an important knowledge gap, as both normal and cancerous tissues differ between
animals and humans [48,49]. These differences may impact the response of the tissue to
electrical stimuli and ultimately, IRE efficiency. The current treatment algorithms have
been developed using data from animal models and may, therefore, have limited clinical
applicability. Evidence of the histological changes that occur in human healthy pancreas
and pancreatic cancer following IRE are needed in order to establish clinically relevant
treatment algorithms. A clear consensus needs to be reached about the impact of IRE on
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non-neoplastic pancreas adjacent to cancer, neoplastic tissue, and healthy tissue not related
to any neoplastic process.

Table 4. Histological changes at specific IRE settings and time course following IRE to murine pancreatic cancer models
[100–102].

Time Electrode
Type Probe No

Inter-
Electrode

Distance (mm)
Pulse No

Pulse
Length

(ms)

Voltage
(Volts/cm)

Ablation
Zone

(mm2)
Histology

0.5 h Not
specified - Not specified 64 100 1250 Not stated Necrosis

Apoptosis

24 h Not
specified - Not specified 100 100 2500 Not stated

Necrosis
No

evidence of
apoptosis

24 h Not
specified - 5 90 100 800 Not stated Necrosis

Apoptosis

72 h Not
specified - 5 90 100 800 Not stated Necrosis

Apoptosis

7 days Not
specified - Not specified 100 100 2500 Not stated

Necrosis
No

evidence of
apoptosis

7 days Not
specified - 5 90 100 800 Not stated Necrosis

Apoptosis

14 days Not
specified - Not specified 100 100 2500 Not stated

Necrosis
No

evidence of
apoptosis

One way to obtain this is information is to apply IRE to perfused human organs
(both cancer-containing and healthy). Our previous work on the clinical application of
microwave ablation (MWA) to solid tumours demonstrated that a perfused organ could
provide different findings, and hence a different treatment algorithm, to that derived
from non-viable and non-perfused tissues [104–106]. Applying IRE to perfused human
pancreas ex vivo, using organs deemed unsuitable for transplant and therefore declined for
clinical use may aid the development of an alternative treatment protocol and help define
protective criteria for vital structures.

8. Pathological Changes in Human Pancreas Cancer Following IRE

Information on pathological changes following IRE in human pancreatic cancer tissue
is limited to clinical studies that have reported on patients with LAPC or borderline
resectable disease that have been downstaged post-IRE, and to patients where IRE has
been used as a margin accentuation tool [37,107,108]. Figure 3 demonstrates a timeline of
histological changes reported in the literature across different models.

Of the clinical trials discussed above, only five studies reported on the proportion of patients
downstaged following IRE and subsequently offered surgical resection [29,30,33,35,40]. This
ranged from 5% [33] to 15% [29] across studies with a wide variety of pre-IRE chemothera-
peutic regimes. One study also reported on patients who received radiotherapy prior to
IRE [40].
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Narayanan et al. reported the histological findings on patients who were downstaged
in their series [40]. Three of a total of 50 (6%) patients treated with IRE were downstaged
to resectable disease and subsequently had surgery. Pathological examination revealed
negative resection margins in all three cases and complete tumour necrosis in one [40].
Two resections demonstrated residual viable tumour cells on a background of fibrosis [40].
The patients in this series received chemotherapy prior to IRE treatment and some patients
additionally also received radiotherapy before IRE, but the authors did not specify whether
the patients who were downstaged were among those who received pre-IRE radiotherapy.

A case report on the use of IRE as an intra-operative margin accentuation tool reported
on the histological findings following surgical resection in a patient with pancreatic ade-
nocarcinoma which showed an extensive area of necrosis [109]. Similarly to the animal
cancer models, IRE induces necrosis in human cancer tissue. There was no attempt to
evaluate the evidence of apoptosis. Therefore, there are no data assessing apoptosis in
human pancreatic adenocarcinoma following IRE.

9. New Approaches to Pancreas IRE
9.1. EUS Guided Pancreas IRE

Lee et al. evaluated the feasibility and safety of applying IRE using endoscopic
ultrasound guidance (EUS) in normal porcine pancreas and compared with open IRE [110].
All pigs survived the procedure, and no complications were encountered within 24 h
of the intervention. Further to this, the pancreases were resected from all animals for
histopathologic evaluation to ascertain the level of apoptosis in the tissue following IRE.
Histologically there was evidence of a well-defined area of necrosis affecting the pancreatic
parenchyma in both groups. Within the ablation zone, the authors reported apoptotic
cell death.

9.2. Paddles Rather Than Electrodes for IRE Therapy

Rombouts et al. successfully performed open IRE using paddles rather than needles
to deliver the electrical current to healthy pancreas in six pigs [111]. Following euthanasia
at 14 days, the porcine pancreas were assessed histologically and demonstrated evidence
of fibrosis and lymphocytic infiltration of the ablation zone, new vessel formation, and
peripancreatic fat necrosis [111].

10. Chemosensitisation Following Electroporation
10.1. Reversible Electroporation

Prior to the development of irreversible electroporation as a method of initiating cell
death, reversible electroporation (RE) was used to deliver chemotherapeutic drug molecules
into tumour cells. The publication of the European Standard Operating Procedures of
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Electrochemotherapy (ESOPE) in 2006 [112] ushered this treatment modality into standard
clinical practise for some cutaneous malignancies [113,114], and advised the use of an
electroporator to facilitate the uptake of chemotherapeutic agents. The introduction of
bleomycin into skin cancer cells in this manner has been shown to increase cytotoxic
potency 1000-fold [18,115] and is currently used in the treatment of cutaneous metastasis
from a range of primaries [2]. RE works by electrically inducing transient pores in the
lipid membrane [16]. RE treatment protocols have been standardised and involve the
application of between 400 to 960 volts across pre-positioned needle electrodes spaced
4 mm apart [116]. No similar standardisation currently exists for pancreas IRE. During IRE
treatment, the voltage delivered ranges from 1400 to 2000 volts but can go up to a maximum
value of 3000 volts through individual needles that are typically placed between 15 to 20
mm apart [45]. RE has been demonstrated in animal [117], and in vitro pancreatic cancer
cell lines models [118], to increase the potency of chemotherapeutic drugs. Preliminary
human studies, assessing the impact of delivering chemotherapeutic drugs intraoperatively
followed by RE in LAPC patients, have been performed and reported no procedure related
mortality and no major post-operative complications [119,120]. However, both studies
that showed promising results assessed the impact in a small sample size and neither
was randomised.

10.2. Irreversible Electroporation

A number of studies have demonstrated that the area of IRE ablation may be sur-
rounded by a rim of RE [50]. Figure 4 demonstrates the schematic representation of the
areas of differing electroporation with increasing voltage and time (adapted from Yarmush
et al. [50]). Intra-procedural chemotherapeutic or immunotherapeutic drugs can be taken
up by the surrounding area of RE and IRE, and may result in a more robust tumoricidal
effect. This effect was reported in a study that observed Gemcitabine levels in the serum,
liver, and pancreatic tissue of murine models with orthotopic human pancreatic cancer cell
lines [121]. The authors treated mice with either systemic Gemcitabine alone or pancreas
IRE delivered between two systemic doses of Gemcitabine. Mice were euthanised and lev-
els of Gemcitabine analysed. The results demonstrated significantly higher concentrations
of Gemcitabine in electroporated pancreatic tissue compared to non-electroporated tissue
(13,567 ng/mL vs. 4124 ng/mL p = 0.0009) [121]; a 3-fold increase in levels. Although
an increase was observed in both the serum and hepatic concentration of Gemcitabine
in IRE treated animals, suggesting a systemic response this was not statistically signifi-
cant [121]. The combination of focal tumour necrosis (as a result of ablation and concomitant
chemotherapy) with a peripheral sensitivity to chemotherapy would be ideally suited to
a cancer such as pancreatic adenocarcinoma, which typically has microscopic seeding to
surrounding tissues [122].
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An ambitious study, evaluating the effects of IRE and chemotherapeutic agents, gemc-
itabine, and FOFIRINOX, was recently conducted by Bhutiani et al. [124]. The authors used
PDAC human cancer cells lines implanted into the pancreas of nude athymic mice (ortho-
topic in vivo element) and human pancreatic cancer cell lines (in vitro element). Apoptotic
index (AI), survival analysis and histological evaluation was performed. They reported
an increase in apoptotic index in pancreatic cancer cells exposed to both chemotherapy
and IRE, compared with IRE alone or Folinic acid alone (AI 34.2% IRE + FOLFIRINOX vs.
5.2% IRE vs. 4.4% FOLFIRINOX; p = 0.01). This translated into lower tumour mass and
significantly improved overall survival of murine models (7 days IRE + FOLFIRINOX vs.
4 days IRE vs. 3 days folinic acid; p = 0.026).

In addition to animal models, a phase I safety study has been carried out in five
patients with LAPC, who were also treated with IRE and peri-procedural administration of
chemotherapy (either FOLFIRINOX or Gemcitabine; the agent used was based on the last
regime delivered pre-operatively). IRE was delivered via a mid-line laparotomy. Unfor-
tunately, the authors do not specify the exact IRE settings used. Systemic chemotherapy
was delivered intra-operatively, 30 min after the end of the IRE procedures. Short-term
safety and clinical outcomes were reported. The median follow up period was 81 days
and the authors reported that no patients demonstrated dose-limiting toxicity, disease
progression, or procedure related complications or mortality. The authors concluded that
IRE and peri-procedural systemic administration of FOLFIRINOX or gemcitabine was
well-tolerated and safe at early follow up and suggested that IRE alters the tumour, which
augments the chemotoxic effects of the administered drugs.

11. Immune Landscape in the Pancreas, in Health and Disease

Many innate and adaptive immune cells contribute to tumour surveillance, but T
cells are key mediators of a successful anti-tumour response. In the few patients with
pancreatic cancer surviving long-term there were high-quality anti-tumour T cell responses
detectable, providing a rationale for harnessing T cells and their functionality for tumour
control [125,126]. T cell function is regulated by expression of inhibitory receptors, such as
programmed cell death 1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4),
which when overexpressed limit T cell function. Current immunotherapeutic strategies
being used to treat cancer, including “immune checkpoint blockade” strategies, which block
such inhibitory receptors, aim to “unleash” a functional anti-tumour immune response.
Such therapies have shown promise in many solid tumour types [127]. Nonetheless, their
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efficacy in patients with pancreatic cancer has been limited, despite showing substantial
clinical benefit in murine models [78,128,129].

The ability of T cells to mediate cancer protection depends on the capacity to enter
the tumour microenvironment (TME) and persist there. Immunologically, the pancreatic
TME is especially suppressive, with a stromal cell network that physically excludes and
limits the function of the anti-tumour T cells that are capable of killing cancerous cells. The
TME is enriched with other immune cells, which further contribute to the downregula-
tion of successful anti-tumour responses, such as regulatory T cells, tumour-associated
macrophages, and myeloid-derived suppressor cells (MDSC) [130]. Many patients with
pancreatic cancer also exhibit high levels of PD-L1 and PD-L2, the ligands for the T cell
inhibitory receptor, PD-1 [131]. High levels of PD-L1 correlate with reduced T cells and
worse prognosis [128,132,133].

A particularly important subset of T cells, termed tissue-resident memory T (TRM)
cells, reside permanently within tissues, where they are conveniently poised to orchestrate
local tumour control. Accumulating evidence is beginning to point towards the integral
role TRM play in directly inhibiting tumour growth, making TRM attractive novel therapeu-
tic targets [134]. With these cells in mind, Weisberg et al. [132] described a population of
pancreatic CD8+ PD-1+ TRM, capable of the efficient production and secretion of soluble me-
diators, such as the cytokines IFNg and TNFa with potent anti-tumour activity. Inhibition
of the PD-1 pathway significantly enhanced the functional capacity of such TRM [135].

Another attractive immunotherapeutic target that has gained traction recently is the
unconventional T cell population, known as gd T cells, due to their potent cytotoxicity and
ability to support the function of classical T cells. However, caution must be applied when
considering harnessing gd T cells in patients with pancreatic cancer, as although they are
highly prevalent in the TME, they express high levels of immunosuppressive checkpoint
ligands and limit anti-tumour T cells. In fact, rather than harnessing gd T cells to control
tumour cell growth via cytolytic elimination, their deletion or blockade would perhaps be
more effective strategy, as evidenced by a recent study in mice. Deletion of pancreatic gd T
cells in vivo allowed more CD8+ T cells to infiltrate the TME, and thus limited tumour cell
growth [136].

12. Altering the Systemic Immune Response to Pancreatic Cancer with IRE

As IRE emerges as a novel, non-thermal, image-guided tumour ablation technique for
the treatment of pancreatic cancer, it is essential to consider how the process of triggering
apoptotic cell death of the tumour impacts both the local and systemic immune response.
IRE significantly modifies the structure and composition of the TME, resulting in an altered
local inflammatory response and the infiltration of immune cells. Although the number of
detailed immunological studies evaluating the direct impact of IRE, or IRE as a combination
therapy, in pancreatic cancer is limited, the few studies that have been performed to date
are discussed below, along with some future perspectives for novel combination therapies
that may improve patient outcome.

To date, the published studies combining IRE with an immunotherapeutic approach
have been restricted in scope due to their focus on the systemic immune response and not
investigating the local immune response.

One study, by He et al., retrospectively evaluated fluctuations in peripheral immune
cell composition by flow cytometry in patients receiving pancreatic IRE for LAPC. In
support of a beneficial role for immune cell involvement in the setting of IRE, the authors
reported an increase in global CD4+ T cells, CD8+ T cells, and NK cells in a subgroup of
patients surviving longer post therapy [137]. Antigen specificity and cellular migration was
not considered however, so whether the increased effector T cells observed are able to enter
and persist in the TME, or able to recognise and lyse tumour cells remains unknown. The
authors did also note an increase in the systemic levels of some key immunomodulatory cy-
tokines, IL-6 and IL-10 [137], which are known to promote the expansion and differentiation
of immunosuppressive myeloid-derived suppressor cells and/or TREGs [138]. However,
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importantly, no increase in the frequency of circulating TREGS was seen, in fact, a decrease
in peripheral TREG frequencies was associated with improved survival [137]. This finding
was also reported by Pandit et al., in patients undergoing IRE for pancreatic adenocarci-
noma [139]. Therefore, blockade or depletion of TREGS within the TME warrants further
investigation, with the aim of improving the functional capacity of tumour-specific T
cells [140]. Taken together these findings support the further investigation into studies com-
bining IRE with immune checkpoint blockade, such as anti-CTLA-4 (e.g., Ipilimumab), that
can deplete immunosuppressive TREGs, or anti-PD-1 (e.g., Pembrolizumab, Nivolumab),
which will likely enhance the functionality of both the TRM pool and any infiltrating
tumour-specific effector T cells recruited as part of the inflammatory response to the IRE.

Furthermore, in a cancer model study by Zhao et al., the authors hypothesised that
IRE would enhance the efficacy of anti-PD-1 therapy by alleviating some of the stromal-cell
induced immunosuppression. Intriguingly, treatment with a combination of IRE and check-
point blockade (anti-PD-1) promoted the infiltration of CD8+ T cells, without the additional
recruitment of other immunosuppressive cell types (TREGs or MDSC), and prolonged sur-
vival. Here, the authors attributed the increased efficacy of anti-PD1 therapy when used in
combination with IRE to a reduction in the immunosuppressive components of the stromal
cell network. IRE-induced cell death of local pancreatic cells released a number of soluble
mediators able to act as “danger associated molecular proteins”, including adenosine
triphosphate (ATP) and high mobility group box protein B1 (HMGB1), which can further
promote the activation of a functional anti-tumour CD8+ T cell response [141].

Taken together, the use of IRE in patients with pancreatic cancer represents a promising
approach for enhancing the current clinical efficacy of immune checkpoint blockade.

13. Combination Therapies for Pancreatic Cancer: Combining Immunotherapeutic
Approaches with IRE

Another immunotherapeutic modality being trialed for the treatment of many cancers
is the use of adoptive cell transfer (ACT) therapy, to generate a robust immune-mediated
anti-tumour response via the infusion of ex vivo expanded or engineered immune cells.
One such approach that has been tested in the context of pancreatic cancer is the adop-
tive transfer of T cells specific for MUC1, a tumour-associated antigen overexpressed in
invasive ductal carcinomas of the pancreas. When adoptively transferred, MUC-1 specific
T cells showed strong tumour cytotoxicity, providing a rationale for the use of adjuvant
immunotherapy via adoptive cell transfer in the treatment of pancreatic cancer [142,143].

In line with this many studies have shown that adjuvant cellular therapies involving
components of the innate immune response, such as NK cells and populations of gd T cells,
are promising in the early host defence against some cancers, including pancreatic cancer. In
a small study of 40 patients in China, an autologous NK cell infusion was given to patients
after undergoing ablative IRE with some success (NCT02718859 https://clinicaltrials.gov/
ct2/show/NCT02718859, accessed: 12 February 2021). The combined therapy (IRE and
adaptive NK cell transfer) was well tolerated in patients, and particularly in patients with
metastatic disease, a synergistic effect was noted, with an overall improvement in the anti-
tumour response [144]. Although some improvement to patient QoL and tumour control
was noted, its benefit on PFS and OS remains unclear and warrants further investigation.

Similarly, another study, also assessing the efficacy of adoptive NK cell post treatment
with pancreatic IRE in patients with LAPC, found adoptive NK cell therapy to be well
tolerated, but due to the small sample size, the authors were unable to report any beneficial
effect on PRS or OS [145]. As a result, larger prospective randomized controlled trials are
needed to corroborate these preliminary studies.

The potential for the existence of a synergistic relationship between IRE and im-
munotherapy, a relationship that can be harnessed and exploited for the benefit of patients,
although exciting, is still poorly understood. Robust pre-clinical and clinical studies will
help to elucidate the relationship between these two treatment modalities and if they can
be harnessed to improve patient care.

https://clinicaltrials.gov/ct2/show/NCT02718859
https://clinicaltrials.gov/ct2/show/NCT02718859
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14. Discussion and Future Directions
14.1. Clinical Outcomes of IRE for LAPC

The improved survival of patients following IRE for LAPC reported in several studies
may reflect the increasing experience in administering IRE of clinicians or better IRE
technique. Alternatively, another explanation for the reported improvement in OS may
be related to the fact that the data so far has not been randomized or controlled, and
therefore, as the clinical experience of IRE increased so did the recognition of patients
that may be most likely to tolerate the procedure, thus, the increase in OS is a reflection
of selection bias. There is a great degree of variability in pre- and post-IRE treatment,
and the observed increase in median OS may reflect the improvement in neo-adjuvant
and adjuvant treatment regimes. Data from randomised controlled trials is needed. The
treatment of unresectable locally advanced pancreatic cancer with percutaneous irreversible
electroporation (IRE) following initial systemic chemotherapy: a feasibility randomised
control trial (LAP-PIE trial) is due to open in the UK shortly. This multi-centre study aims to
measure the feasibility of recruiting patients with LAPC to a trial comparing the addition of
pancreas IRE to further chemotherapy. A qualitative study has been incorporated that will
evaluate the patient and clinician perspective of the LAP-PIE trial and additionally report
on quality of life through validated questionnaires. Another randomised trial currently
underway in the United States is the DIRECT study (the direct irreversible electroporation
cancer treatment), which aims to report on the impact of IRE treatment on patients with
stage III pancreatic cancer [146]. The LAP-PIE and DIRECT studies will provide valuable
additional information on the role of IRE in the treatment of LAPC.

14.2. Radiological Response to Pancreas IRE

Post-IRE imaging is difficult to interpret and there remains controversy about the
accuracy of the traditional imaging modalities used in clinical practice. There is uncertainty
surrounding the observed radiological changes and the extent to which these changes cor-
respond to tumour ablation. Moreover, a decrease in viable cell mass, as demonstrated in
imaging, may not always reflect a change in tumour size and therefore complete reliance on
tumour size does not provide an accurate assessment of tumour response. An alternative
measure of post-IRE treatment response is to consider tumour ablation zone sizes in con-
junction with other relevant clinical data, such as alterations in enhancement and diffusion
and tumour markers. Combination imaging modalities, such as 18 F-Fluorodeoxyglucose
(FDG) positron emission tomography (PET) combined with CT or MRI, may provide
an alternative assessment of post-pancreas IRE treatment response. PET imaging has
been reported to be superior in evaluating the treatment response of neoadjuvant chemo-
radiotherapy in pancreatic cancer compared to CT scanning alone [147], however, whether
this applies to post-IRE treatment is yet to be elucidated. There are no reliable data currently
available to evaluate whether radiological changes can be used as predictive markers and
their biological significance remains unknown.

14.3. Pathological Changes Following Pancreas IRE Treatment

The optimal IRE treatment protocol for pancreatic cancer tissue is currently un-
clear [148]. There is also no consensus on how to protect the healthy tissue surrounding the
cancer from injury. Data assessing the impact of varying treatment protocols on healthy
human tissue would be of great value. Histological evaluation of human cancer tissue
and non-neoplastic tissue following IRE is required to establish a treatment protocol that
has more robust clinical applicability and to define protective criteria for vital structures.
An accurate understanding of the histological findings immediately following IRE could
also be used to develop a method of real-time monitoring of treatment efficacy. Perfusion
studies using both healthy human pancreas and perfused resected human cancers may
help to develop safe and efficient treatment protocols.

In clinical practice, there are several histological grading/scoring schemes that attempt
to quantify tumour regression following neoadjuvant therapy for carcinoma of the pancreas.



J. Clin. Med. 2021, 10, 1609 18 of 26

These are based on the presumptive degree of tumour destruction or on the amount of
residual tumour. Of course, there is no pre-therapy comparator. Nevertheless, grading
the tumour response appears to have prognostic value. These schemes might also be
applicable in the setting of IRE, but it is likely that modifications will be required to identify
histological responses to IRE that have prognostic relevance.

Two schemes in common use for evaluating neoadjuvant therapy are the Evans scheme
and the College of American Pathologists (CAP) scheme [149,150], which are presented in
Figures 5 and 6 below. The Evans scheme estimates the presumptive degree of regression
from prior treatment based on the percentage area that is occupied by viable tumour in the
resection. A suffix “M” denotes the presence of acellular mucin pools, whose significance
is currently unknown. The CAP scheme describes, somewhat subjectively, the amount of
residual tumour, rather than the degree of regression, and it ignores mucin pools. Many
modifications of these schemes and alternative schemes also exist, sometimes attempting,
on the basis of clinical evidence, to reduce the number of categories so that the grades
become more meaningful, prognostically [151–153].
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The Royal College of Pathologists’ dataset for pancreatic cancer resections recom-
mends the CAP scheme for clinical practice [153]. An international expert consensus
meeting on tumour response scoring also recommended the CAP scheme and favoured
assessing residual tumour burden over estimating regression [152].

For the pathologist, extensive sampling is necessary in order to detect any residual
tumour. Ideally, this is in the form of large blocks (wholemount blocks) that sample large
areas and allow comprehensive assessment. The extent of sampling that is appropriate or
necessary to produce reliable information and to allow comparisons between studies is
currently unknown [152].

14.4. New Approaches to Pancreas IRE

The endoscopic method of IRE application reported by Lee et al. may prove to be
a valuable development in the delivery of IRE, particularly in patients where a trans-
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abdominal approach is precluded, for example in patients with abdominal wall varices.
Being a less invasive approach, it may be associated with fewer complications, but does
involve deep general anaesthesia and neuromuscular blockade. The risks and benefits
will require further evaluation. [154]. Applying IRE through paddles may offer a more
homogenous application of an electrical field and be less traumatic than the piercing action
of needle-delivery, however, paddle IRE will require an open, more invasive approach and,
as previous studies have demonstrated, this approach is associated with more complica-
tions compared to minimally invasive approaches [155]. Furthermore, applying IRE via
needles may be more advantageous as a range of tumour sizes may be treated by altering
the number and configuration of needles, whereas paddle delivery has limited flexibility.

14.5. IRE Synergy with Chemotherapy

In vitro studies suggest that IRE may have a chemosensitisation effect in pancreatic
cancer cells. Although exciting findings, they are still in the early stages and have yet
to be reproduced. The variation in IRE treatment protocols (electrode number, voltage,
inter-electrode distance) makes it difficult to assess which treatment parameters will yield
the most tumoricidal effect when used in conjunction with chemotherapeutic agents. In
addition, it is unknown which chemotherapeutic concomitant treatment will provide the
most effective result and whether systemic administration or local administration is more
potent. Given the range of variables that can potentially impact the final cytotoxic result,
a standardised treatment algorithm would be valuable. This needs to be developed on
human tissue (cancer containing and cancer free), with its unique electrical properties [156].
One way to achieve this is to assess the impact of varying IRE treatment variables and
cytotoxic drugs using a viable machine perfused ex vivo organ.

14.6. Immunological Response to IRE and Synergy with Immunotherapy

IRE may exhibit an immunomodulatory effect by altering systemic TREGS in LAPC [139].
The mechanism through which this immunomodulation occurs is not currently known.
One explanation is that IRE induces cell death that leads to the release and recruitment of
immune-modulating chemokines. Animal studies suggest that IRE fundamentally alters
the TME and causes the release of immune altering molecules, which may act to potentiate
existing immunotherapy agents, however this has yet to be reproduced in humans [141].
The potential alteration of the immune microenvironment is yet to be demonstrated, and
much about the relationship between IRE and immunotherapy remains unknown. More
data are needed to better understand the synergy between the two modalities. Crucially, the
animal models to date have used xenografts which are immunodeficient, in order to avoid
immune rejection. The absence of a competent immune system may limit the evaluation of
immunotherapies in these models. Genetically modified animal models such as the KPC
model and its variants [157] may be more appropriate to further our understanding of the
synergy between immuno-therapeutics and IRE.

15. Conclusions

IRE may herald a new dawn in the treatment of pancreatic cancer. Even more exciting
is the potential for the existence of a synergistic relationship between IRE and a concomitant
treatment (chemotherapy and immunotherapy). Despite its potential promise, much about
IRE remains unknown. New and innovative methods to garner this knowledge include
evaluation of IRE in human ex vivo organs using machine perfusion technology and
genetically modified animal models. The promise from early uncontrolled studies may just
be the dawn of a new field of IRE guided therapies for pancreas cancer.
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