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Abstract Cardiovascular magnetic resonance (CMR) has
become a key imaging modality in clinical cardiology prac-
tice due to its unique capabilities for non-invasive imaging
of the cardiac chambers and great vessels. A wide range
of CMR sequences have been developed to assess various
aspects of cardiac structure and function, and significant
advances have also been made in terms of imaging qual-
ity and acquisition times. A lot of research has been dedi-
cated to the development of global and regional quantita-
tive CMR indices that help the distinction between health
and pathology. The goal of this review paper is to discuss
the structural and functional CMR indices that have been
proposed thus far for clinical assessment of the cardiac
chambers. We include indices definitions, the requirements
for the calculations, exemplar applications in cardiovascu-
lar diseases, and the corresponding normal ranges. Further-
more, we review the most recent state-of-the art techniques
for the automatic segmentation of the cardiac boundaries,
which are necessary for the calculation of the CMR indi-
ces. Finally, we provide a detailed discussion of the exist-
ing literature and of the future challenges that need to be
addressed to enable a more robust and comprehensive
assessment of the cardiac chambers in clinical practice.
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Introduction

Cardiovascular diseases (CVDs) consistently rank among
the top major causes of morbidity and mortality. In 2008,
17.3 million people died due to CVDs worldwide, account-
ing for 30 % of total deaths [1]. Of these cases, about 7.3
million were due to coronary heart disease, and 6.2 million
were due to stroke [2]. However, partially due to the aging
population, this number keeps increasing. It is predicted
that by the year 2030, a population of 23.3 million people
will be killed by CVDs all over the world [1, 3]. Conse-
quently, major developments continue to be made in car-
diovascular research and practice for improved early diag-
nosis of cardiac diseases.

In particular, magnetic resonance imaging (MRI), other-
wise known as CMR (cardiovascular magnetic resonance),
has become a key image modality in clinical practice due
to its unique capabilities for non-invasive imaging of the
cardiac chambers and great vessels [4]. A wide range of
CMR sequences and protocols have been developed to
assess various aspects of cardiac function, and significant
advances have also been made in terms of imaging quality
and acquisition times [5]. Furthermore, a lot of research has
been dedicated to the development of global and regional
quantitative CMR indices, which help distinguish between
pathology and health.

The goal of this review paper is threefold. Firstly,
we will review the various functional indices that have
been proposed thus far in the literature. These will be
presented in detail for each cardiac structure, including
their definitions, calculation requirements, the exemplar
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applications for cardiovascular diseases for each index,
and the corresponding normal ranges. Subsequently, and
because the calculation of these indices requires deline-
ation of the cardiac boundaries, we will review the most
recent state-of-the art techniques for the automatic seg-
mentation of the various cardiac structures. These tech-
niques have the advantage of delineating these bounda-
ries of the heart more rapidly and objectively than
clinical experts with manual contouring. We will focus
on presenting the more practical properties of these seg-
mentation techniques, such as in relation to their specific
roles, and on the imaging materials these techniques need
to accomplish the segmentation (e.g. long-axis vs. short-
axis images). Finally, we provide a detailed discussion
of the existing literature and of the future challenges that
need to be addressed to enable a more robust and com-
prehensive assessment of the cardiac chambers in clinical
practice.

In comparison to existing reviews [6—13], our survey is
more comprehensive in many aspects, including:

e We review both the segmentation techniques and the
structural and functional indices that use the extracted
boundaries in their calculations. This will provide a bet-
ter understanding of the role of cardiac segmentation to
the final clinical assessment.

e We also list the quantitative evaluations for the accuracy
of both the segmentation and functional analysis to pro-
vide the readers with an overview of the level of perfor-
mance of the existing techniques so far.

e We provide a more comprehensive review of segmen-
tation techniques for all cardiac chambers, including
the left ventricle (LV), the right ventricle (RV), the left
atrium (LA), and the whole heart.

e We also include the use of long-axis images in cardiac
segmentation as they play an important role in clinical
use of CMR.

e Finally, we include newly emerged concepts in machine
learning-based cardiac image analysis, such as direct
estimation of cardiac function [14-17].

This paper is organised as follows. In this introductory
section, we will describe the anatomy of the heart, followed
by a presentation of the CMR protocols. Subsequently, in
section and Table 1, we will present in detail the existing
indices of cardiac structure and function, which we will
organize per cardiac chamber. In section and Tables 2, 3,
4, 5, and 6, we will then describe the most recent segmen-
tation techniques that can be used to extract automatically
the boundaries to be used to compute the functional indi-
ces of interest. Finally, we will conclude with a discus-
sion of current cardiac segmentation challenges and future
perspectives.

@ Springer

The anatomy of the heart

In this section, we briefly describe the anatomy of the heart
to help readers establish a better association between the
outcomes of various functional analysis methods and the
actual structure of the heart (see Fig. 1). Essentially, the
heart provides the blood circulation system with indis-
pensable pressure. By contracting and relaxing in turns, it
transports blood to different parts of the body through the
vessels. The septum separates the heart into two halves that
consist of an atrium and a ventricle. The left atrium (LA)
and left ventricle (LV) are partitioned by the mitral valve,
while the right atrium (RA) and the right ventricle (RV) are
partitioned by the tricuspid valve. The semilunar valves are
located between the pulmonary artery or the aorta and the
ventricle. The RA recycles the low-oxygen blood while the
RV delivers it to the lung. After it is oxygenated, the blood
flows into the LA, while the LV pumps it to the rest of the
body. The myocardium, the muscular tissue of the heart has
an inner and outer border: the endocardium and the epicar-
dium, respectively.

MRI protocols

Since pathological changes are related to abnormal struc-
tural and physiological indices, experts are seeking for
a more accurate diagnosis or risk stratification of CVDs
based on quantitative anatomical or functional informa-
tion. Various imaging techniques for clinicians have been
developed. Unlike radioisotopes, computed tomography,
and angiography, CMR is a non-invasive imaging tech-
nique that is capable of generating images in decent resolu-
tion without ionising radiation. Compared to the traditional
echocardiography, CMR does not suffer from speckle arti-
facts and produces good contrast between the different soft
tissues. Images can be obtained in any orientation allow-
ing for images to be acquired in specific anatomical planes.
Owing to these properties, scientists have been developing
diverse protocols providing varying information. Among
them, cine CMR, flow CMR, tagged CMR, late gadolinium
enhancement (LGE), and perfusion CMR are the main-
stream applications.

Cine CMR aims at providing fine spatiotemporal reso-
lution with high contrast between the tissues. One sample
normally contains 20-30 consecutive frames, correspond-
ing to 20-30 time points in the cardiac cycle. Each frame
has multiple slices from base to apex (Fig. 2)—typically
between 10 and 15. Generally, the images are captured
along two axes: the long axis and the short axis views
(Fig. 3). The long axis (LAX) goes across the LV from
base to apex. The short-axis (SAX) slices are perpendicu-
lar to the LAX. Because the frame sequence loop reflects
the dynamic process of a complete cardiac cycle during a
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breath-hold [19], cine CMR is widely employed in calcu-
lating global functional indices such as stroke volume and
ejection fraction.

Flow CMR is a velocity-encoded protocol, based on
the principle that the pulse phase shifts of moving pro-
tons are proportional to their velocity along the mag-
netic field gradient direction [20]. Therefore, the motion
of a tissue will generate an MRI signal variation. Flow
CMR commences with a reference MRI scan, which
uses stationary spins. Afterwards, a number of scans are
produced to encode the velocity information by adjust-
ing the direction of the gradient from +180° to —180°.
In consequence, moving protons show different intensi-
ties from the initial scanning: the brighter areas on phase
contrast images are drawn by the protons moving along
a certain direction; the darker areas have protons going
towards the opposite way; the regions where the station-
ary protons rest appear to be grey. This property gives
flow CMR the advantage in measuring the cardiovascular
flow and strain rate.

Tagged CMR builds a spatial line or grid pattern on the
myocardium, which is then followed over the cardiac cycle
to estimate cardiac motion. This is based on the received
signal from myocardium by modulating saturated magneti-
sation inside the ventricular wall [21-23]. The dark pat-
tern, which stands at a fixed position on the myocardial tis-
sue, is usually added at end-diastole using radio-frequency
excitation and gradient impulses before image acquisition.
During the contractile cycle, the dark patterns will move
with the tagged tissue, as shown in Fig. 4. By tracking the
displacement and distortion of those saturated patterns
marked on the tissue, researchers can compute the precise
myocardial deformations or reconstruct the wall motion
easily. Therefore, tagged CMR is efficient in regional
assessments such as for the estimation of myocardial
strain and torsion. The limitation of this promising proto-
col is that the markers always fade inevitably before the
whole cycle ends. Also, the existence of the grids brings
difficulties to automatic cardiac border identification. The
progress and challenges of MRI tagging have been sum-
marised in [23-25].

Displacement Encoding with Stimulated Echoes
(DENSE), which combines the merits of flow CMR and
tagged CMR, intends to map the myocardial displace-
ment in high spatial resolution over long periods of
cardiac cycles [26] without having serious fading. Dif-
ferent from flow CMR, DENSE uses stimulated echo to
modulate the phase, which aims at capturing the emerg-
ing displacement between the second and third radio-fre-
quency pulses. This technique can be applied to abnor-
mal contraction diagnosis, myocardium deformation,
and motion analysis. However, the imaging is usually
time-consuming.

epi: 0.82 + 0.13 (ES),
0.90 4 0.08 (ED)
0.88 + 0.11 (ED)

epi: 0.87 = 0.08

endo: 0.83 +0.13

DC

8.02 £ 5.96 (ED)

endo: 10.71 £ 7.69 (ES), endo: 0.77 £ 0.18 (ES),
7.69 + 6.03 (ED)

epi: 8.08 + 3.80

endo: 7.72 + 3.97

HD (mm)

—6.64
RVEF: 0.78, 0.83, 0.02

RVESV: 0.95, 1.02, 10.16 epi: 11.52 £ 7.70 (ES),
—-2.77

RVEDV: 0.98, 1.10,
RV mass: 0.97, 1.10,

CC and LRC

Materials

ED + ES,
SAX
tiphase,
SAX

Mul-

16(16)
subjects

Training

sets

Test cases

32(32)
subjects

48(48)
+23(23)
subjects

User interaction
Manual segmenta-
tion on training

sets

Manual segmenta-
tion on a single
initial frame

straints + accu-
mulator thresh-

olding
correspondence

Fundamental prin-
PCA window con-
propagation by
point-to-point

Dim
ciples
2D
2D 4+ T Moving mesh

Cine
Cine

et al
[138]
[139]

DC dice similarity coefficient (ideally 1), CC correlation coefficient (ideally 1), LRC linear regression coefficients (y = ax + b, ideally a = 1, b = 0); “4+T” temporal information is incorpo-

rated; HD error in Hausdorff distance; 30(30) means 30 of 30 subjects are abnormal or unhealthy

Table 3 continued
References Mode
Ringen-

berg
Punithaku-

mar et al
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Table 5 LA segmentation methods
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Thresholding + subdivision

Protocol Dimension Fundamental principles
2D

F

John and Rahn [161]

References

Springer

negative marking

(narrow cuts) + region merg-

ing

Mean slice overlap: 0.90

20(20) volumes

10(10) volumes

Choose 3 or 4 landmarks on

3D probabilistic atlas construc-

2D

LE

Karim et al. [163]

each training image

tion + MRF based energy

function minimisation within

Voronoi framework
Multi-model based fit-

59(47 %) subjects Leave 1 out validation P2S: Normal: 0.87 mm; CLT:

Manual segmentation on train-

Cine/LE 3D

Kutra et al. [164]

0.81 mm; RMPV: 0.79 mm

ing sets

ting + SVM based optimal

model selection

64(64) volumes 16 volumes DC: 0.79 + 0.05, Volume

Manual segmentation on train-

Local seed region search-

2D

LE

Zhu et al. [162]

overlap: 0.65 £ 0.07, HD:
14.40 + 3.65 mm, S2S:
2.79 £ 2.84 mm

ing sets

ing + region growth with

prior

F flow CMR, LE LGE CMR, DC dice similarity coefficient (ideally 1), P2S point-to-surface, HD Hausdorff distance; 64(64) means 64 out of 64 subjects are abnormal or unhealthy

Strain-Encoded (SENC) CMR is designed to obtain lon-
gitudinal strain straightforwardly, without dealing with
displacement or velocity [27]. The dense estimation of lon-
gitudinal strain is achieved by processing the tag informa-
tion extracted from two short-axis images, whose planes
are orthogonal to the strain imaging orientation. The tags
express the local strain as intensity and their surfaces are set
to be parallel to the short-axis images. The short-axis images
are generated with two phase-encodings based on slice selec-
tion. It has been shown that SENC is a reliable tool to quan-
tify regional myocardial systolic and diastolic function [28].

Perfusion CMR produces contrast-enhanced images by
injecting contrast agent (typically gadolinium-based che-
lates) [29]. The contrast agent travels through the vessels
or lymphatic system as the blood flows past and finally
reaches the target tissue, which leads to a variation in sig-
nal intensity of the agent. A fast scanner with high temporal
resolution is responsible for monitoring this signal fluctua-
tion and then sketching sequential images. Perfusion CMR
is used for diagnosing ischemic heart disease, for which the
myocardium is associated with less blood movement (see
Fig. 5). However, perfusion CMR suffers from quantitative
analysis degradation introduced by artifacts, ranging from
surface coil inhomogeneity, dark rim to motion artifacts.
Many researchers have proposed solutions to these inherent
weaknesses [10].

Late Gadolinium Enhancement (LGE) CMR is an impor-
tant technique for the estimation of scar tissue in the myo-
cardium [31]. This technique acquires images (6 mm SAX
slice thickness with 4 mm gap for contrast-enhancement
match), followed by an injection of 0.10-0.15 mmol/kg
intravenous gadolinium [32]. After a delay of 10-20 min,
by using the inversion-recovery fast gradient echo (IR-
FGE) pulse sequence, LGE images are collected from the
same position with a decent spatial resolution. Normally,
the contrast agent cannot enter the myocardial cells. In
abnormal cases, gadolinium may gather in extracellular
space or even break into the cells due to cell membrane
rupture. As a consequence, healthy tissues stay dark while
infarcted parts appear brighter on the image (see Fig. 5).
Therefore, LGE can be very useful in examining injured
tissue with infarction or scars.

Indices of cardiac function

The existing indices of morphology and function can be
divided into two categories: global and regional. Global
indices include chamber volumes, stroke volume, ejection
fraction, cardiac output, and myocardial mass. Regional or
local indices cover myocardial wall thickness and thicken-
ing. Strain analysis can be either global or local. We have
listed in Table 1 many indices, which are frequently used in
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Fig. 1 The anatomy of the heart. https://en.wikipedia.org/wiki/Heart

CMR research, for cardiac structural and functional analy-
sis. We provide the parameter definitions, requirements
for calculations, use cases for cardiovascular diseases, and
published normal ranges.

LV quantification

The LV is the most investigated chamber in cardiac seg-
mentation and structural and functional analysis due to its
central role in blood circulation. It has relatively thick myo-
cardial tissues that give blood circulation enough pressure.
LV parameters can be abnormal in many CVDs, such as in
hypertension or after myocardial infarction.

Left Ventricle End-diastolic and End-systolic Volumes
(LVEDV and LVESV) are measurements of the amount
of blood in the chamber, encompassed by the myocar-
dial tissue, when the heart muscle is relaxed (LVEDV) or
contracted (LVESV). The contour on the basal slice from
the images stack is drawn on the aortic valve cusps level,
resulting in an inclusion of the outflow tract as part of the
LV volumes. There is no consensus as to whether to include
or exclude papillary muscles from the LV blood pool [33,
34, 41-47].

Left Ventricle Stroke Volume (LVSV) is the amount of
blood ejected from the heart during each contraction.
LVSV is the difference between the LVEDV and LVESV.

Left Ventricle Mass (LVM) measures the myocardial tis-
sue. The volume of the myocardium can be obtained by
subtracting the endocardial volume from the volume of
within the epicardial border. Subsequently, the mass is the
product of myocardial volume and the muscle density. LV
mass is prognostic in hypertension [48, 49].

Fig. 2 Short-axis cine MR images. Top row: slices from base to apex; bottom row mid-cavity slice from diastole to systole, displayed using our

automatic cardiac segmentation platform GIMIAS. www.gimias.org

@ Springer
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3D reconstruction

Fig. 3 LV segmentation in both long-axis and short-axis views [18]

long-axis

short-axis

Fig. 4 Short-axis tagged MRI mid-cavity slices: a tagging produced at end-diastole; b—d tag lines deform with myocardial contraction in sys-
tole; e, f tag lines deform with myocardial relaxation in diastole; f tag lines fade as the end of a complete cycle is approaching [24]

Left Ventricle Ejection Fraction (LVEF) quantifies the
quantity of blood pumped out of the heart in each beat as
a percentage. It divides the LVSV by the LVEDV. Normal
ranges for LVEF are gender- and age-dependent and also
dependent on the analysis approach chosen (e.g. include
or exclude papillary muscle from LV volumes). Reduced
LVEF is a common final pathway in many CVDs (e.g.
dilated cardiomyopathy, remodelling after myocardial
infarctions). Hyperdynamic LV systolic function as seen
by high LVEF can often be seen in LV hypertrophy (e.g.
hypertrophic cardiomyopathy) [50].

Cardiac Output (LVCO) refers to the amount of systemic
flow per minute. It can be estimated by multiplying the
LVSV with Heart Rate (HR), which denotes the heartbeat
frequency (beats per minute). LVCO is often normalised by
the Body Surface Area (BSA), and then referred to as Left
Ventricle Cardiac Index (LVCI). In patients with congestive
heart failure, the LVCO and LVCI are reduced [51].

Left Ventricle Wall Thickness is the thickness of the myo-
cardium typically measured on end-diastolic images in SAX
view. The papillary muscles and trabecular tissues are usually
excluded. First, both epicardial and endocardial boundaries

@ Springer
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High-resolution stress perfusion-CMR

Fig. 5 Examples of patients with ischemia acquired in typical late gadolinium enhancement, standard, and high-resolution perfusion MRI.

Arrows indicate the inferior scar with thinning of the myocardium [30]

are identified. Afterwards, a centre point or a centreline with
reference points is specified to help compute the mean dis-
tance between the epicardial and endocardial contours [52],
as displayed in Fig. 6. For regional analysis, researchers are
encouraged to use the 17-segment model [53] (see Fig. 7).
Wall thickness may be globally increased (and hence LVM
is typically also increased) in conditions with increased after-
load, such as hypertension. Some conditions lead to regional
increased wall thickness (with or without increased LVM)
typically referred to as showing asymmetric hypertrophy,
such as seen in hypertrophic cardiomyopathy. In contrast,
myocardial infarctions can lead to regional thinning in the
area of infarct as a consequence of cardiac remodelling.

@ Springer

Left Ventricle Wall Thickening reflects the change of
myocardial wall thickness during systole expressed as a
percentage. Wall thickness may be employed to quantify
regional dysfunction , such as those seen in myocardial
ischemia or after myocardial infarction [54].

Left Ventricle Strain (LVS) indicates the degree of
deformation of the ventricles, while Left Ventricle Strain
Rate (LVSR) is the deformation rate. The required param-
eters can be received by echocardiography, such as tis-
sue Doppler. Some MRI techniques, for example, SENC,
DENSE, and tagging, can be complementary. LVS may
play an important role in evaluating myocardial infarction,
ischemia, and ventricular dyssynchrony [55].
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Fig. 6 End-diastolic (/eff) and
end-systolic (right) myocardial
wall thickness measurements on
LV SAX mid-cavity slices [48]

o basal anterior

e basal anteroseptal
a basal inferoseptal
o basal inferior
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o basal anterolateral
o mid anterior
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@ mid inferior

0 mid inferolateral
Q mid anterolateral
@ apical anterior
@ apical septal

@ apical inferior
@ apical lateral

Q apex

“ Apical Mid Basal
ﬁ 4 ;
13
8 2 2 6
1 ) he ) ]
9 n 3 5
15
10
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Fig. 7 17-segment model: a recommended myocardial segments and
their nomenclatures on a circumferential polar display; b assignment
to the territories of the left anterior descending (LAD), right coronary

RV quantification

The RV consists of the apical body, the inflow tract and the
outflow tract. The existing RV functional indices quantify
the amount of blood being transported to the lung in dif-
ferent forms. As can be seen from Table 1, the definitions
of most RV indices, including Right Ventricle End-diastolic
and End-systolic Volume (RVEDV and RVESV), Right Ven-
tricle Stroke Volume (RVSV), Right Ventricle Ejection Frac-
tion (RVEF), and Right Ventricle Cardiac Output (RVCO),
are fundamentally similar to their LV counterparts. The
papillary muscles and trabecular tissues are neglected
in endocardial contour depiction. RV volumes may be
increased in a number of conditions, including cardiac
shunts, certain valve diseases, or pulmonary hypertension
[56]. RVEF may also be decreased after myocardial infarc-
tions including parts of the RV. Although efforts have been
made to extract the boundaries of endocardium and epicar-
dium simultaneously, the mass is still not regularly evalu-
ated because the myocardial wall of RV is 3-6 times thin-
ner than the wall of LV.

SHORT AXIS
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artery (RCA), and the left circumflex coronary artery (LCX). http://
www.pharmstresstech.com/stressing/spect.aspx

LA quantification

The LA plays an important role for the modulation of LV
blood filling. The LA has a relatively complex geometric
structure, surrounded by the aorta, pulmonary veins, and
arteries. A dilated LA has prognostic value for cardiovas-
cular death [57], stroke [58], congestive heart failure, and
atrial fibrillation [59].

Left Atrium Volume (LAV) assessed when largest dur-
ing ventricular systole just before mitral valve opening has
been demonstrated as a reliable predictor of cardiovascu-
lar outcomes [60], including LV diastolic dysfunction [61],
incident atrial fibrillation [62], ischemic stroke [63], hyper-
trophic cardiomyopathy [64], and lone atrial fibrillation
[65]. Similar to the calculation of LV volumes, computa-
tional methods can be based on either contiguous summa-
tion or geometry assumption. In automatic segmentation,
the confluence of pulmonary veins and the LA appendage
(area under the mitral valve annulus) are abandoned. Three
volumetric parameters, the maximum LA volume (LAV,,,.),
the minimum LA volume (LAV,;), and the pre-atrial

in
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contraction volume (LAV,,,,,), are used to investigate res-
ervoir, conduit, and booster pump functions during each
cycle.

The reservoir describes the filling of LA in ventricular
systole. It is modulated by the LV contraction, RV systolic
pressure, LA relaxation, and LA chamber stiffness. When
blood flows to the LA from the pulmonary veins, the mitral
valve is closed and LAV increases to maximum. Total Emp-
tying Volume (LAEV) and Total Emptying Fraction (LAEF)
are used to quantify the total amount of blood the LA can
pump into the LV.

The conduit function involves LV relaxation and LA
afterloads. In early ventricular diastole, LAV grows and the
atrial blood is suctioned by the LV. The LA acts like a pas-
sive conduit and three indices have been proposed to assess
its function: the Passive Emptying Volume (LAPEV), the
Passive Emptying Fraction (LAPEF), and the Conduit Vol-
ume (LACV), which indicate the amount of blood travelling
from the pulmonary veins to LV.

The booster pump, also called contractile function, quan-
tifies the amount of blood being pumped into the LV dur-
ing LA contraction. It is modulated by the LV compliance,
LA afterload, LA preload, and intrinsic LA contractility.
In late ventricular diastole, the LA pumps all the remain-
ing blood to the LV actively, and thus the LAV decreases
to minimum. Corresponding measurements include Active
Emptying Volume (LAAEV) and Active Emptying Fraction
(LAAEF).

RA quantification

RA is not routinely assessed in CMR. However, its enlarge-
ment may indicate heart failure, as well as valvular and
congenital diseases [40]. The filling of the RA is related to
the functions of the RV. RA volume (RAV) indexed to BSA
can predict pulmonary hypertension [66, 67] and chronic
systolic heart failure [68]. Because direct measurement of
RAV can be time-consuming, scientists primarily do the
estimation based on single or bi-plane area-length methods
through inspecting RA areas on two-chamber and four-
chamber LAX viewing (see Table 1).

Cardiac segmentation

In order to calculate the CMR structural and functional
indices listed in this section, the boundaries of the heart
chambers are necessary. However, delineating the heart
manually on multiple slices and frames requires lots of
time. Furthermore, this is subject to well-established intra-
and inter-subject variability. This has motivated engineers
to develop automated cardiac segmentation techniques that
can rapidly, objectively, and accurately extract the chamber

@ Springer

boundaries from CMR in clinical practice. Although MRI
provides decent soft tissue contrast among different proto-
cols, accurate cardiac segmentation remains a great chal-
lenge for the researchers due to inevitable imaging inho-
mogeneity and high anatomical variability, as well to the
inherent geometric and dynamic complexity of the heart.
In this section, we will describe the existing segmentation
methods published in popular journals and conferences
from the year 2000, by focusing on their principles, func-
tions, advantages, and limitations.

Segmentation methodologies

Generally, semi-automatic or fully automatic segmenta-
tion techniques fall into two categories: (1) image-driven
approaches without or with weak prior models and (2)
model-driven approaches based on strong prior knowl-
edge. Training data are examples with ground-truth. Image-
driven methods identify the pixels or voxels belonging to
the blood pool, myocardium, or appendage by visiting their
intensity differences. Typical image-driven techniques con-
sist of thresholding, region-growing, clustering, pixel or
voxel classification, and active contour or surface. Strong
prior knowledge, including cardiac atlases and statistical
shape models (SSMs), make use of statistical informa-
tion extracted from manually annotated training data that
describe for example averages and modes of variations of
the cardiac chambers. For the rest of this section, we briefly
discuss each of these techniques.

Thresholding can be used to localise the region of inter-
est (ROI), such as the blood pool or myocardium, based
on analysing the intensity histogram. The latter is usually
constructed as a discrete distribution of pixel intensities
(counts vs. values). Then a threshold value, which corre-
sponds to a specific intensity, is to divide the histogram into
sub-intervals containing distinctive modes. The pixels hav-
ing intensities in a same interval may belong to a certain
type of tissue. This method is only effective when signifi-
cant intensity diversity exists between the target and back-
ground areas. However, in some cases, the intensity of dif-
ferent tissue types overlap. Therefore, thresholding is often
used as a pre-processing step and further combined with
other segmentation techniques.

Region-growing starts with choosing one or multiple
seed points in MR images in a selected region such as the
myocardium. Afterwards, the initial region begins to grow
by searching similar pixels nearby or inside a neighbour-
hood. If a pixel (x, y) meets the designed criterion, it will
be allocated to region R, in the ith step: R, | = R; U (x, y).
When none of the surrounding pixels qualify, the region
stops growing as it may have reached the boundary of the
tissue. Merge behaves alike, but instead of judging sin-
gle pixels, it combines similar small regions. While split
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performs in the opposite way, it shatters the region or sus-
pends the membership if a sub area differs significantly
from the rest of the area. Because of the continuity of
growth, region-growing, or split and merge techniques, can
often lead into over segmented target tissues, leaking into
fragments of irrelevant parts. For instance, the aorta and
cavity may have close intensities on basal SAX slices and
cannot be distinguished using only thresholding. Watershed
[69] combines thresholding and region merging by calcu-
lating the image gradient map and setting a threshold on
the magnitude of the gradients. If a pixel and its adjacent
neighbours all have similar magnitudes below the specified
threshold, they are merged. Watershed is known to result in
over-segmentation and poor performance in noisy regions
due to the reliance on image gradient.

Pixel or voxel classification groups pixels in 2D or vox-
els in 3D in feature space. Patch-based features contain
pixel intensity or textural appearance information. Unsu-
pervised clustering, which is non-parametric, does not
require manually labelled training data. Typical methods
include K-means clustering and expectation—maximization
(EM) [70]. K-means clustering randomly chooses K fea-
tures as the initial centroids and classifies all other features
according to their distances to the centroids, then calculates
new centroids of those categories. These steps are repeated
until centroids are converged and no longer change. EM
finds the maximum likelihood (ML) or maximum a poste-
riori (MAP) estimates of parameters of a statistical model.
For cardiac segmentation, a common model is the Gauss-
ian Mixture Model (GMM), in which each tissue histogram
follows a Gaussian distribution. Every pixel is classified
to the region that maximises its corresponding class con-
ditional probability. Supervised classifiers, such as K-near-
est neighbour (KNN), random forest, and neural network,
need manually labelled training data. In these methods,
the training data and their associated labels are regarded as
examples from which the parameters of the classifiers are
learned by minimising a risk function that pertains to mis-
classification of the training labels. Each test pixel or voxel
can be accordingly classified afterwards using the learned
classifiers. However, annotating training data involves user
interaction and the performance of these classifiers often
depends on the quality of training samples. If the training
and testing datasets statistically deviate by a large extent,
the classification performance declines significantly. More-
over, classification-based segmentation methods often
ignore the spatial dependencies of the local features. The
advantage of supervised techniques is that they are train-
able to segment more accurately, provided that the expert
knowledge is properly employed in the classifier.

Active contour-based methods or snakes [71] search for
chamber walls, instead of directly classifying the regions.
A curve parametrised C(s) = (x(s), y(s)) where s denotes

a free parameter, is morphed locally towards target
boundaries by minimising a predefined energy. In order
to achieve a better result, many researchers have designed
different energy functions. Generally, the energy E can
be written as E = [ Ein(C(s)) + Eex(C(s)) + Ec(C(s))ds,
where E,, indicates the internal force that aims at retain-
ing the topology and smoothness of the curve, E,, is the
external force pushing the curve to target boundary and E,
stands for additional constraints. The last aims at improv-
ing convergence or penalising unwanted shape irregulari-
ties. Segmentation based on active contour may need user
interaction, for example, roughly drawing or placing a
contour for initialisation. An improvement over the tradi-
tional form of active contour is achieved using level-set
formulation, in which the curve implicitly defined as the
zero level-set of a higher dimension function [72-74].
The level-set can handle larger shape updates, when the
morphology of the curve has to be evolved significantly.
To segment the hearts in a multi-phase fashion, the con-
verged segmentation can be propagated into images in the
subsequent time points for a better initialisation, remov-
ing user interaction.

Direct estimation has been recently proposed as a
means to estimate functional indices such as chamber
volumes without segmenting MRI slices [14—17]. This
approach has proved to be an efficient tool in myocardial
abnormalities detection [14]. It uses regression-like mod-
els trained with discriminative image representations to
estimate the ventricle volumes from image information.
Different from the pixel or voxel classification problem,
the whole or parts of the image act as global input features
to establish similarities to reference samples with known
functional indices.

Atlas-based segmentation methods rely on the spatial
probability patterns of various tissue types of a typical
heart. To segment a test case, the image is registered to the
atlas, which serves as the prior information for the pixel
labels given their locations. It has been demonstrated that
multi-atlas-based segmentation methods outperform single-
atlas approaches remarkably in terms of accuracy in other
applications [75-79].

Statistical shape modelling introduced by Cootes et al.
[80], is a powerful tool for cardiac quantitative assessment.
Given a population of corresponding points or vertices
from myocardial surface meshes, a mean shape is extracted
and a set of variation modes can be built using principle
component analysis (PCA). Then any novel shape from an
individual can be represented as the mean shape varied by a
linear weighted combination form of the PCA modes. This
representation is called the point distribution model (PDM).
For segmentation based on ASM [80] or AAM [81], the lin-
ear model is matched to the test image by matching land-
mark through global transform and finding an optimal
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loading vector of PCA modes. This is usually achieved iter-
atively, updating one set of parameters at a time.

Despite popularity of ASM/AAM-based segmentation
approaches, their training demands identifying a dense set
of corresponding landmarks over the training population.
Furthermore, the fitting procedure can be computationally
slow and prone to local minimums. Models constructed
from healthy populations many not fit pathological hearts
well, as the model becomes too restrictive. Such large inter-
class variation provokes a need for training more generaliz-
able models, as well as more sophisticated fitting processes.
Nevertheless, model-based methods are still considered to
be promising routes to accurate MRI segmentation as they
are capable of preserving anatomical spatial knowledge
while segmenting the heart. In the following sections, we
detail the specific roles and efficacies of these techniques in
quantitative analysis of LV, RV, LA, bi-ventricle, and whole
heart segmentation.

LV

Among various compartments of the heart, LV has been
studied the most extensively, as it pumps the blood into
other parts of the body. A relatively thick myocardial wall
leads to the popularity in the research of regional assess-
ment, such as apical, middle, or basal wall thickness, local
deformation, and myocardial strain. Only those approaches
that process multiple phases (including end-diastole and
end-systole) can measure LVEF, LVSV, and LVCO, since
LVEDV and LVESYV are known.

Methods able to extract both the endocardium and epi-
cardium can be used to calculate the LVM and wall thick-
ness. For wall thickening, the centreline method performs
better, as its radial opponent often overestimates the dis-
tances between the contours of epicardium and endocar-
dium. This is caused by the initial hypothesis of the radial
method, which assumes the shape of myocardium as a cir-
cle [82].

LVS can be analysed by tracking myocardial motion,
since regional muscular displacement and temporal infor-
mation are both required. The global strain analysis in 3D
begins with creating Cartesian coordinates. The extent of
deformation, described as the change of length from an ini-
tial or reference status, can be calculated using Lagrangian
or Eulerian formulae [83]. Because the heart deforms along
different directions in Cartesian coordinates in 3D simul-
taneously, a matrix called a tensor is created to describe
the process. For regional analysis, the local coordinates
are with three mutually perpendicular axes: the radial (per-
pendicular to the epicardium and towards the outside), the
longitudinal (tangent to the epicardium and towards the
base), and the circumferential (according to the right-hand
rule, from radius to longitude) axes. Therefore, the spatial
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orientation of three axes varies with the voxel position in
the myocardium.

Theoretically, LV volumes can be estimated with any 2D
segmentation outcome on SAX or LAX slices, not neces-
sarily 3D, by making use of provided volumetric calcula-
tion methods in Table 1. However, when only SAX slices
are in use, the segmentation must be completed on a stack
of multiple slices from the base to the apex. We list all the
LV segmentation techniques described in this section in
Table 2.

Thresholding and region-growing

Thresholding is often integrated with region-growing. Lee
et al. [84] and Codella et al. [85] use region-growing to
find the full-blood LV region. They automatically identify
a seed point by taking the pixel with the lowest energy in
a window during slice propagation. Then in order to pre-
vent the segmented LV region from diffusing to epicar-
dial fat, fluids, and RV, they use an iterative thresholding
mechanism that discovers a lower bound of myocardial
intensity. Huang et al. [86] employ thresholding to distin-
guish the blood pool from the myocardium, followed by
radial region-growing and extraction of convex hulling
to identify the endocardial and epicardial boundaries. Lu
et al. [87] apply thresholding to convert a ROI to a binary
image for LV localisation and endocardial contour detec-
tion (Fig. 8), followed by region-growing to segment the
LV epicardium. Ammar et al. [88] take the binary image
produced by thresholding as the initial mask for a level-set
segmentation method to extract the endocardium. Queiros
et al. [89] perform class decomposition following thresh-
olding step to search for the LV centroid. The method sets
two thresholds for myocardium and cavity histogram in an
EM algorithm to extract the endocardial contour. Kurkure
et al. [90] localise LV in the thresholded image by find-
ing a binary component that is closest to the intersection
cross-hair generated by LAX vertical and four-chamber
view projection in ED phase on a SAX slice. They have
also proposed a novel fuzzy connectedness region-growing
method taking the spatial adjacency, intensity homogeneity,
and multiclass features into consideration. The myocardial
boundaries are extracted by dynamic programming, which
is an optimal path finding solution of overcoming obstacles
such as papillary muscles or trabeculae carneae extrusion,
and low liver-to-myocardium tissue contrast. Cousty et al.
[91] extract epicardium by developing a spatial-temporal
gradient computation for watershed cuts. It is noteworthy
that approaches in [84-87, 89] start their segmentation
from mid-ventricular SAX slices, which might involve user
interaction, and then propagate their initial results to other
slices as prior knowledge. Also, the test image is usually
mapped to the polar coordinate since LV roughly has a
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Fig. 8 LV endocardium delineation using thresholding: a detected region of interest (ROI); b ROI image; ¢ converted binary image using opti-

mal thresholding [87]

Fig. 9 Pixel classification by fitting a Gaussian Mixture Model to
the histogram of the input image: a the input short-axis image; b 3
Gaussian distributed components representing the air, myocardial

circular shape [84-87, 89, 90]. Furthermore, by making use
of thresholding on the LV blood pool, the papillary muscles
and the trabeculations can be easily outlined [84—87] due
to their intensity diversity with surroundings. Thus, cardiac
functional analysis such as LVEDV, LVESV, or LVM esti-
mation be can varied by including or excluding papillary
muscles and trabeculations or not, depending on the index
definition and requirement of clinicians.

Pixel or voxel classification

Classification-based methods in cardiac segmentation have
also been thoroughly studied. Jolly [92] and Hu et al. [93]
propose to classify regions by a 3-GMM with EM, based
on the intensity histograms. Jolly [92] separates the mus-
cle, air, blood, and fat, as presented in Fig. 9. Hu et al. [93]
separate the muscle, the blood and the background. Ped-
nekar et al. [94] fit a 5-GMM to the intensity histogram of
the blood pool, the lung filled with air, myocardium, the
region between the blood and myocardium, and the region
between the air and myocardium. The EM algorithm is ini-
tialised through K-means clustering. Queiros et al. [89] use
a 2-GMM. Some classifiers label the features from different
tissues without making assumptions on intensity histogram

Blood + Fat

muscle, and blood/fat compartment; ¢ the output image with classi-
fied pixels in different labels [92]

distribution. To label the regions of the lung, the myocar-
dium, and the blood pool, Stalidis et al. [95] make use of
a neural network classifier, which is trained via a small
number of representative tissue points. The input features
of their classifier are the pixel position, pixel intensity, and
slice location. Folkesson et al. [96] have presented that a
trained KNN classifier is competent for the classification
of the LV cavity, myocardium, and background, based on a
feature selection scheme. The latter finds the most discrimi-
native features for the pixel classifier or model fitting, aim-
ing at increasing computational efficiency without degrad-
ing its accuracy. Bai et al. [97] have shown that the support
vector machine (SVM) outperforms KNN in label fusion in
a multi-atlas-based cardiac segmentation framework.

Active contours

Active contour, or deformable model, is one of the most
widely applied techniques in heart segmentation. The
breakthrough usually comes with the design of the energy
function, such as using anatomical assumptions as the con-
straints on the level-set methods [98, 99]. Paragios [98]
propagates coupled endocardial and epicardial contours
on SAX slices, where the edge, region, and anatomical
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constraints are pre-defined. The edge constraint is used
to push the curves to the myocardial walls. The region
intensity criterion makes the model less sensitive to initial
conditions. The GVF snake, a parametric active contour
that overcomes the difficulty in evolving the curve to the
boundary concavities, is introduced into LV segmentation
in these works [100-102]. Wu et al. [103] claim that the
gradient vector convolution (GVC) snake also conquers
local minima such as artifacts and papillary muscles. Kaus
et al. [104] integrate strong prior knowledge, in the form
of PDM, into deformable contours by extending their inter-
nal energy, leading to an increase in the robustness of the
model. They have considered the inter-spatial relationship
of the inner and outer boundaries as well, which compen-
sates for the error produced by incorrect feature detection.
Lynch et al. [105] employ the probability density function
as the prior information, which is created by a set of manu-
ally segmented boundaries on binary images. Furthermore,
the evolutions of endocardial and epicardial curves are
coupled by an extra level-set constraint. The deformable
models proposed in [106, 107] and the level-set approaches
presented in [108, 109] incorporate the spatial-temporal
LV activation as prior knowledge and track the epicar-
dium/endocardium boundaries on SAX slices in a com-
plete cycle. A typical tracking result is shown in Fig. 10.
The constraints in [106, 107] are parameterised by Fourier
descriptors. Moreover, an approach for the recognition of
intra-ventricular dyssynchrony (IVD) is proposed in [106],
where the non-uniform contraction of the ventricular walls
brought by the activation delays can be discovered. Jolly
[92] makes use of a deformable model to improve further
the outcome of EM-based region segmentation. Chen et al.
[110] propose to apply deformable models to LVS analysis

on SAX slices in DENSE MRI. Their model is driven by
minimising an energy function that consists of model inten-
sity, edge attraction, shape prior, contours interaction, and
smoothness. The shape prior can eliminate the concavities
with negative curvatures in order to remove the papillary
muscles from the ventricular walls. Huang et al. [111] have
invented a novel deformable model called Metamorphs,
whose energy functions are predefined on the distance
maps of the object shape and its border. Metamorphs is not
particularly designed for MRI cardiac segmentation while
it outperforms the GVF snake as a result of better robust-
ness to inferior initial conditions. Based on the motion tra-
jectories in DENSE, representing the movement of myo-
cardial wall between two consecutive phases, the initial
manually drawn endocardial and epicardial contours can be
propagated slice by slice to other frames [112, 113]. The
method proposed in [112] is applicable to both SAX and
LAX images. Besides DENSE, Chen et al. [114] have also
used tagged MRI to derive LVS. In their work, Gabor fil-
ters search the tag intersections. Through matching these
intersections, the method is able to track the myocardial
motion. The deformable model refines the tracking and
displays a dense displacement map. Kermani et al. [115]
draw a dense displacement map by fitting a 3D active sur-
face model to an initial sparse displacement map, which is
built by establishing point correspondence in cine images.
Motion tracking makes LVS easier to be analysed, because
the myocardial displacement and temporal scale are known
at the meantime. The authors produce visualisations of LV
strains in 3D (see Fig. 11). Khalifa et al. [116] measure the
wall thickness and thickening with a stochastic speed func-
tion based level-set technique extracting inner and outer
myocardial walls first. Subsequently, the points on the

Fig. 10 LV epicardium (leff) and endocardium (right) tracking: contours propagate through short-axis slices on all phases in a complete cardiac

cycle [106]
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Fig. 11 Examples of detected A
LV myocardial strains visual-

ised in 3D: a ED strain; b ES

radial strain; ¢ ES circumfer-

ential strain; d ES longitudinal

strain [115]

inner contour and the outer contour are paired. The Euclid-
ean distance between each pair is the wall thickness. Wei
et al. [117] use the myocardium contours from cine MRI as
prior knowledge to guide the meshing of endocardium and
epicardium, which are generated by contour registration to
move towards the inner and outer edges in SAX and LAX
slices in LGE. Grande et al. [118] model the image likeli-
hood by sampling the intensity and gradient of pixels inside
the myocardium or at the boundary of myocardium in dif-
ferent regions. After that, they create a Markov Random
Field (MRF) to incorporate the prior and the likelihood
models. The prior keeps the curve smooth and excludes
the papillary muscles. The deformable model estimates the
walls based on the MRF along the SAX radial direction.

Strong prior based techniques

Different from image-driven techniques, model-based
approaches exploit strong prior knowledge such as by
encoding the specific shape variability of the LV, instead
of making simple assumptions on the boundaries. By tak-
ing advantage of the statistical shape information, segmen-
tation becomes more robust to image noise by restricting
the outcome to valid instances statistically. Mitchell et al.
[119] introduced early application of 3D-AAM to LV seg-
mentation in 2002. The method showed worthy results in
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quantifying LVV,;, LVV ., , and LVM on SAX volumes.
Assen et al. [120] proposed a 3D-ASM segmentation
method (SPASM) that can operate on sparse MR images
scanned in arbitrary orientations. In most cases, the auto-
mated LV segmentation approaches require a stack of par-
allel SAX images. While SPASM can perform on a data-
sets of two orthogonal radial LAX slices, four radial LAX
slices with a 45-degree angle between two neighbours, 11
equally spaced SAX slices, four SAX slices (one apical,
one mid-cavity, two basal), or a combination of two LAX
and two SAX slices. The processing pipeline of this method
is implemented and shown in Fig. 12. Lekadir et al. [121]
improve the 3D-ASM by incorporating an additional shape
prior, which is invariant to transforms including translation,
rotation, and scaling. This prior is used to detect and cor-
rect outliers, thus leading to more robust results. Andreo-
poulos and Tsotsos [122] use a hierarchical 2D-ASM that
incorporates temporal constraints to enhance the fitting
outcome of 3D-AAM. Assen et al. [123] replace the abso-
lute intensity 3D-ASM with relative grey scales when ROI
is being identified (fuzzy inference). Suinesiaputra et al.
[124] propose to employ independent component analysis
(ICA) [125] instead of PCA in SSM to extract myocardial
contraction from SAX slices. Furthermore, due to the better

performance on local description, ICA is used to design a
classifier able to detect regional wall motion abnormalities.
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Fig. 12 A 3D-ASM (SPASM)
LV segmentation technique
[120] using GIMIAS platform:
Step 1 user specifies three
landmarks (the aorta, the mitral
valve, and the apex) by three
clicks on the cine MR volumes;
Step 2 the platform auto-
matically generates a model (a
triangular surface mesh), which
is pre-constructed in training
stage, based on the three given
landmarks; Step 3 the model
fits to the target (feature point
detected via fuzzy inference)
through propagating the updates
from the vertices close to the
intersections between the
surface and the image planes to
distant regions on the earth
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Lekadir et al. [126] have also assessed myocardial motion
through decomposing the global ventricular shape. They
calculate the relationships between a series of spatiotem-
poral inter-landmarks. By tracking the epicardium and
endocardium a dysfunction map is drawn to show abnormal
contractions. O’Brien et al. [127] model shape, spatial, and
temporal variation separately. They use a global contour
optimisation instead of conventional ASM fitting. Roohi
and Zoroofi [128] propose a kernel PCA (KPCA), in which
the modes applied to represent a global ventricle shape are
combined non-linearly. The distribution of landmarks is
divided into intra- and inter-subspaces. A more recent work
proposes to collect all the shapes learned from training
data to build a dictionary [129]. The features of segmented
frames from the test image are also added to the dictionary
to create a patient-specific model dynamically. Each feature
is classified into object (myocardial boundaries) or back-
ground (blood pool or muscles). A sparse shape model is
then used to find the points on the ventricle walls based on
their distances to the classified features. Unreliable points
are abandoned and the complete LV shape is reconstructed
according to the dictionary. Temporal constraints are not
considered in this approach as current segmentation relies
on the outcomes of the previous frame. Zhu et al. [130]
developed a subject specific dynamical model that simul-
taneously handles inter- and intra-subject variabilities in a
recursive Bayesian framework and a combined multi-linear
PCA-ICA model. Starting from a manually segmented first
frame, subsequent frames are segmented according to the
current intensity pattern and a shape prior, predicted from
the past frames.

Xenia et al. [131] proposed a framework for LV segmen-
tation that is based on heuristic rules such as the brightness
of the blood pool, sphericity of LV, and inter-slice smooth-
ness of segmentation. A graph-cut algorithm was presented
to infer the labels of the myocardium for robust optimiza-
tion; however, the three-dimensional morphology of the
heart was not fully exploited. A two-dimensional segmenta-
tion framework was proposed in [132] that effectively maps
the edge patterns of each slice (centred at LV centroid)
from polar into a Cartesian grid. Then a dynamic program-
ming method is used to walk through the grid having the
strongest edge values. Ayed et al. [133] propose another
2D segmentation framework that firstly learns intensity
and the shape distributions for the blood pool from a manu-
ally segmented frame. Then, using a max-flow algorithm,
it minimises a lower bound on the Battacharyya distance
between the trained and subsequent distributions obtained
from other frames. Similarly, Nambakhsh et al. [134] con-
sider learning both intensity and shape constraints from
a segmented first frame, and then minimise the distance
between the test and trained distributions. However, rather
than a graph-cut based method, a series of convex cost

functions are solved for exact minimization. Yet, another
training based LV segmentation method is proposed by
Eslami et al. [135]; the prior information is implemented
through kernel based approach, where test image is com-
pared to the training data for the closest neighbour using a
random walk paradigm. The method is shown to segment
pathological hearts, whose data is usually overlooked using
conventional PCA based statistical shape models.

Direct estimation

Afshin et al. [14] propose a direct estimation on heart
abnormality detection. In their work, each subject com-
prises three SAX slices, whereas the apical slice is divided
into four segments and the mid-ventricular and basal slices
are divided into six segments. This user-provided segmen-
tation is only needed in a single frame, which acts as a ref-
erence. All other subsequent frames in a complete cycle are
automatically divided into 16 segments each, according to
their distribution similarity. The local statistical descriptors,
whose dimensions are reduced through linear discriminant
analysis (LDA), are then constructed based on these seg-
ments. Because each segment can reflect the portion of
blood filling, their statistics correlate well with the regional
LV function. As a result, with a linear SVM trained by the
ground-truth given by the radiologists and features from
these local LDAs, regional abnormalities can be detected.
They have classified 58 subjects (21 normal and 37 abnor-
mal) with an accuracy of 86.09 %. Direct estimation for
cardiac functional analysis can be a promising research
direction and has achieved competitive performances in
comparison with the state-of-the-art segmentation based
assessment, with a significantly lower computational
complexity.

RV

In the literature, the RV has received far less study com-
pared to the LV, due to its more complex shape (in particu-
lar the variation of the complex crescent shape from the
base to the apex), its thinner walls, and the similar inten-
sity appearance with the trabeculations [11]. Because of
these complexities, quantifying the regional myocardium
wall thickness is not generally recommended for the MRI-
based cardiac functional analysis of the RV. We discuss the
available methodologies in the following and list them in
Table 3.

Image-driven techniques
Maier et al. [136] segment the RV in MRI combining

watershed filtering with graph-cut based region merg-
ing. They provide two initialisation options: the user
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either outlines the RV wall in 4-5 slices of the ED phase,
or marks two points on the basal slice to register an atlas.
Wang et al. [137] use a morphology-based algorithm,
which considers the layout, shape, size, and relative loca-
tions to locate roughly the LV and RV first. The temporal
discrepancy between two consecutive frames is then used
to discover RV as the most active part. Ringenberg et al.
[138] segment the endocardium by intersecting two ROI
constrained binary images as follows. Firstly, an ROI win-
dow is selected and converted into binary with an optimal
thresholding; next, the same ROI is convolved with a dif-
ference of Gaussian filter and thresholded at zero. The
RV mask is roughly estimated as the intersection of these
images. The window constraints label information from the
previous slices and work as prior knowledge. The segmen-
tation begins from the most basal slice in ED and ends at
the apex. For ES, the prior is the union of labels from the
previous slices at ES and the label of the current slice at
ED. Punithakumar et al. [139] base their segmentation on
registration and propagation. A 2D mesh delineating the
endocardium or epicardium moves across all phases by
establishing point-to-point correspondences. The manual
segmentation of a single frame is required for initialisation.
Mahapatra [140] uses a trained random forest classifier to
give voxels two probability values, corresponding to the
object and background. Based on this probabilistic map, a
final segmentation is achieved by graph-cut. The image fea-
tures they extracted for the discriminative description con-
sist of intensity statistics, spatial context, textural, and cur-
vature entropy. Nambakhsh et al. [141] propose a method
based on the global shape and intensity similarity estima-
tion. Based on the global distribution matching, the shape
prior is intrinsically invariant with respect to translation
and rotations. Centroid of LV and a small area of RV cavity
have to be specified by the user. Compared to the learning-
based approach in [140], this algorithm has the advantage
of requiring only a single subject for training.

Model-driven techniques

Because of the geometrical complexity of the RV, robust-
ness becomes a major concern in its automated segmen-
tation. Amongst existing techniques, addressing this
challenge, multi-atlas-based methods with label fusion
[142-144] have received significant attention. In these
frameworks, finding reliable correspondences between the
patient and atlas spaces becomes critically important. For
instance, Ou et al. [142] present a deformable registration
algorithm that uses saliency of the matching for improved
robustness versus variation of shape, intensity, and field
of view. A “zoom-in” mechanism that uses the first round
of RV segmentation to iteratively refine the registration
and segmentation outcomes is employed. Alternatively,
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Grosgeorge et al. [145] employ a PCA-based SSM as the
prior model, to guide the segmentation through a graph-cut
method. The model is registered to the test case through a
rigid transform, with two anatomical landmarks manually
placed by the user on the ventricular septum. Oghli et al.
[146] apply PCA on signed distance functions extracted
from parametrised training contours as the shape prior for a
deformable model. In addition, they use region and bound-
ary based energies for improved fitting.

Bi-ventricle

Bi-ventricular segmentation uses slices covering both ven-
tricles, from apex to the ventricular base, which is the valve
plane, for full delineation of LV/RV myocardium. This
research area has also been actively explored in the past
15 years (see Table 4). An overview of these methods is
covered in this section.

Image-driven techniques

Sermesant et al. [147] have proposed a deformable biome-
chanical model based on tetrahedral geometric representa-
tion. The user specifies a proper mesh size to keep the data
amount reasonable and retain a good mesh quality. The
mesh is mapped to the test image using a non-rigid regis-
tration under influence of the internal and external forces,
modelling elastic and imaging constraints, respectively.
This method can be used for motion tracking, thus meas-
uring local deformation and LVS is made feasible. Rou-
gon et al. [148] employ a non-rigid registration method
to assess myocardial contraction in both SAX and LAX
slices. They use tagged MRI to infer the intra-myocardial
motion and the cine MRI to extract the myocardial anat-
omy dynamically. Hautvast et al. [149] suggest a contour
propagation scheme from ED to ES images. This method
can be applied to SAX, two-chamber or four-chamber LAX
slices, but requires manual segmentation on ED for ini-
tialisation. Cocosco et al. [150] convert a test image into a
binary representation by optimally thresholding the inten-
sity histogram of the ROI. The fat around ventricles is then
removed by a thinning operation. All connected compo-
nents are labelled and region-growing is performed on the
SAX slices. Afterwards, they calculate the volume of each
component at all frames and the maximum and minimum
values are taken out. Two components having the most sig-
nificant differences between their maximum and minimum
volumes are selected as the LV and RV. The final delinea-
tion is obtained by merging the voxels classified in the first
step along the LAX direction. Grosgeorge et al. [151] use
the seminal model of active contours without edges [152]
for bi-ventricular segmentation of a large dataset contain-
ing 1920 MR images, and obtained satisfactory results
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comparable to the state-of-the-art. Mahapatra et al. [153]
segment bi-ventricles using a graph-cut framework, guided
by a shape prior based on the distribution of orientation
angles from each pixel to the edge points, as extracted from
a single manually annotated image. Wang et al. [154] adap-
tively use reinforcement learning to assimilate the knowl-
edge provided by the user, such as edge point position cor-
rection, in LV/RV segmentation.

Model-driven techniques

Valdes et al. [155] propose to use a probabilistic atlas to
guide the EM classification. The atlas provides a spatially
and temporally varying probabilistic map for the LV, RV,
myocardium, and background including the liver, stom-
ach, lungs, and skin. The results of estimated volume of
LV, RV, and myocardium demonstrate that the combi-
nation of the EM algorithm and a cardiac atlas improves
segmentation accuracy. Bai et al. [156] fuse patched-based
labels for a Bayesian formulation within a multi-atlas reg-
istration based segmentation framework. Furthermore, they
refine the registration using intermediate label informa-
tion. Figure 13 illustrates the procedure of multi-atlas label
fusion and image registration refinement.

Ordas et al. [157] introduce a feature vector, which is
invariant under Euclidean transforms in an ASM-based
framework. Mitchell et al. [158] propose a hybrid AAM
matching mechanism accomplished through three steps.
Firstly, AAM alone is fitted to the image. Next, the hybrid
AAM/ASM helps avoiding local minima by deploying the
shape information. Finally, AAM is reapplied. Zhang et al.
[159] also use a combined AAM-ASM model, which is
based on novel spatial and temporal features, incorporating

Fig. 13 A framework of

the motion. The combination of ASM and AAM yields bet-
ter segmentation results and overcomes the drawbacks of
using ASM or AAM individually. ASM requires good ini-
tialisation and can be trapped by incorrect nearby features,
though it retains a fine global shape. While AAM performs
well in tracking objects, but is easy to be trapped by local
minima. Alba et al. [160] segment the LV and RV of highly
abnormal hearts by using estimating a mapping between
the abnormal image and the space of generic shape model
built from a normal population, which can be thus used to
segment any types of cardiac abnormality. Increased accu-
racy is demonstrated for both pulmonary hypertension and
hypertrophic hearts.

Direct estimation

Wang et al. [15] estimate LV and RV cavity volumes on
SAX slices without segmentation. This direct method relies
on a likelihood function defined as the area correlation of
the LV/RV cavities, and prior function specified by the
product of the blobness, edgeness, and homogeneity. The
framework consists of a training stage where the prior and
likelihood probability functions are inferred. Given a test
image, the posterior probability of observing a point in LV/
RV is derived using the Bayes rule. The mean cavity area
of LV/RV is the expectation of a function of these posterior
probabilities and the volumes are estimated using Simp-
son’s method. However, as indicated by Zhen et al. [16],
the limitations of [15] include a simple linear relationship
assumption between LV and RV as well as an expensive
computational requirement. Zhen et al. [16] make use of a
three-layer convolutional deep network, which is learned
from unlabelled images, to represent the input test case

Image registration refinement

ventricular segmentation based
on multi-atlas and label fusion
technique. Atlases are first
registered to the target image.
The label at a voxel (red dot)

is given by the comparisons
between the patch (yellow) on
the target image and the patches
(colourful boxes) on the warped
atlases, weighed by the distance
and similarity. Then the fusion
of labels from all atlases assigns
each voxel a final class. The
segmentation result is used to
refine the registration process
[156]

Original atlases

Warped atlases

Segmentation
atch
mparison,

label
fusion
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Fig. 14 A framework of direct estimation: unsupervised learning searches an efficient image representation way and regression forest trained by

using manually segmented data captures the discriminative features [16]

effectively in feature space. At the meantime, regression
forests trained from manually labelled data, as discrimina-
tive learning, is responsible for estimating LV and RV vol-
umes (see the flowchart in Fig. 14). They claim that their
method significantly outperforms level-set and graph-cut
methods. Another advantage of direct estimation is that the
inconsistency of boundary and region intensity homogene-
ity has been excluded from the immediate influences on
volumetric quantification.

LA

Segmentation of the LA is more challenging compared to
the other structures in the heart. The shapes of LA may
have different variations and its blood pool consists of other
structures such as the auricular appendage and pulmonary
veins; the surrounding pulmonary artery and the aorta have
similar intensities to the atrium in MRI and the LA is typi-
cally much smaller than the ventricles, showing a relatively
thin myocardium. The activity of mitral valve also makes
the boundary between LA and LV invisible under some
cases [12]. As a consequence, computer-aided LA segmen-
tation has obtained much less progress. We list the methods
in Table 5.

Image-driven techniques

John and Rahn [161] base their approach on thresholding
and region merging. A thresholding roughly separates the
blood pool voxels from the image. Afterwards, the Voronoi
tessellation of the binarised mask is computed. The tes-
sellated components are finally combined to segment the
LA and other structures. Zhu et al. [162] also propose a
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region-growing framework, where the initial seed is found
according to the anatomical knowledge from the middle
SAX slice. A shape prior learned from training data is used
to attract the growth to the statistically plausible region.
This incorporation makes segmentation more robust to spa-
tial variation and image quality.

Model-driven techniques

Karim et al. [163] construct a probabilistic atlas for atrium
using 20 manually segmented training images. Given a test
image, they apply an optimal thresholding to extract the
blood pool and the vessel structures and obtain the Voronoi
tessellation for the binarised image [161]. The narrow junc-
tions, which are the connections between the atrium and its
neighbouring structures, are then identified (as displayed in
Fig. 15). Next, using the probabilistic atlas as prior, they
present an MRF based cost function for segmenting cells
that belong to the atrium. Additionally, a graph-cut method
is applied for global optimisation. In order to deal with LA
anatomical variations, Kutra et al. [164] have proposed a
multi-component-based LA segmentation. The three most
typical variations include the normal, common left trunk
(CLT), and right middle pulmonary veins pattern (RMPV).
Then a trained SVM is used to automatically select the
model that fits the test image best. Eventually the model,
which is a mesh of triangles, deforms towards the edge by
the external and internal constraints.

‘Whole heart

The objective of whole heart segmentation includes deline-
ation of LV, RV, LA, RA, and great vessels if required.
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D)

Fig. 15 An LA blood pool (left) subdivided to Voronoi cells (middle). The narrow junction is the smaller sphere (right) locating between two

larger components [163]

Because of tissue diversity and indistinct boundaries
between substructures; however, limited works have proved
good efficacy in whole heart segmentation. The methods
discussed in our review are summarised in Table 6.

Image-driven techniques

Makowski et al. [165] have proposed an active contour-
based procedure to segment the heart and vessels in 2D
transversal slices. This shape-independent method uses
a balloon force to place the segmenting contour roughly
and then uses a snake model to refine the segmentation.
However, due to the complex geometry of the whole heart,
later published works tend to use shape priors to increase
robustness.

Model-driven techniques

Lotjonen et al. [166] reconstruct the 3D geometry of atria
and ventricles from both SAX and LAX views. The pulmo-
nary artery, pulmonary veins, and vena cava are excluded
for volumetric measurement. The shape variability is mod-
elled using PDM, a novel landmark distribution model, and
a probabilistic atlas. Then the mean shape model is non-
rigidly registered to the test image, and the model deforms
towards the boundaries based on the shape priors. Since
the performance of SSM-based methods is related to the
richness of training samples, Koikkalainen et al. [167]
have shown the feasibility to improve the segmentation of
four-chamber and major vessels by artificially enlarging
the training sets. Wierzbicki et al. [168] build PCA-based
models for LV, RV plus RA, LA plus aorta, and the entire
heart separately, using high quality training data. Each
model is then registered to the mid-diastole frame of a low
quality sequence, and propagated to all other frames by
animating motion dynamics. Peters et al. [169] developed a
deformable model by proposing a novel and robust bound-
ary identifying technique called simulated search, whose
mesh matching functions are previously trained. For the
prior information-based approaches, model registration is

always a critical step. Zhuang et al. [170] and Zuluaga et al.
[171] find the breakthrough herein. They present a locally
affine registration mechanism, which is further refined by a
free-form deformation registration. This atlas-propagation-
based method has turned out to be robust against various
pathologies. Examples of the segmented whole heart in
different views and a visualisation of segmentation errors
between the result and the ground-truth are shown in
Fig. 16.

Direct estimation

Zhen et al. [17] explored the feasibility in applying direct
estimation to four-chamber volume measurement as well,
by representing the MR images in a compact and discrimi-
native way. The image features are generated using a super-
vised descriptor learning algorithm. Then the volume esti-
mation becomes a multi-output regression problem solved
with random forest.

Discussion

Despite the advances in cardiac image segmentation listed
in this review, there are plenty of challenges waiting to be
addressed to allow a more comprehensive assessment of
cardiac function in clinical practice and medical research
with MRIL

Choice of segmentation techniques

From this review, it can be seen there is a wide range of
techniques and approaches that can be used for cardiac MR
image segmentation. The choice of a particular technique
is thus not trivial. However, a number of recommenda-
tions can be made. Firstly, the choice of the technique to
be implemented can be constrained by the specific proto-
col. For example, a model-based technique can be used to
obtain the walls of the LV is combined with thresholding
to eliminate the effect of the papillary muscles. Secondly,
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Fig. 16 An evaluation of seg- 5.42(mm)
mentation accuracy using sur- l4. i
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ground-truth from two different

views in 3D [118] 032

the choice of a particular approach can depend on the avail-
ability of large training datasets. In such situations, model-
based approaches can be very powerful tools to restrict the
segmentation results to valid instances. In the contrary,
when only small cohorts are available for training, model-
based techniques can be too restrictive and methods that do
not use any prior are preferred.

Finally, the obvious criterion for the choice of tech-
niques should be the segmentation accuracy. However,
while we provided a detailed list of the evaluations of the
existing techniques in Tables 2, 3, 4, 5, and 6 for an over-
view of their performance, their direct comparison is diffi-
cult as the error metrics between the segmentation out-
comes and the ground-truth are defined differently in
different articles (point-to-surface errors, point-to-point
errors, Hausdorff distance, dice similarity, correlation and
linear regression coefficients, etc.). Also, the datasets are
not the same in terms of image sequences, their numbers
(sample size), and the classes (healthy vs. abnormal cases).
For this reason, the emergence of challenges in interna-
tional conferences is a very important initiative that will be
able to highlight more objectively the merits and limita-
tions of the existing methods. We can list, for example, the
Left Ventricle Segmentation Challenge1 (MICCAI 09),
Right Ventricle Segmentation Challenge? (MICCAI 12), as
well as Left Atrial Segmentation Challenge® (MICCAI 13).

Segmentation of the whole heart

Among the four chambers, the LV has received the most
attention in cardiac segmentation and MRI-based cardiac
functional assessment. This is because it plays a key role
1 http://smial.sri.utoronto.ca/LV_Challenge/Home.html.

2 http://www.ncbi.nlm.nih.gov/pubmed/25461337.
3 http://www.cardiacatlas.org/web/guest/la-segmentation-challenge.
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on the process of the blood circulation, and thus its func-
tion/dysfunction is associated with most cardiac diseases.
Furthermore, the LV has a relatively simple geometry with
thick myocardial walls, making its automated segmentation
more feasible. In contrast, as it can be seen through com-
paring the list of works reviewed in this paper (Tables 2, 3,
4,5, 6), the RV and LA have received less attention from
the cardiac image analysis community (Fig. 17). This is
due to the more complex geometry of these chambers and
their much thinner walls. Yet, these chambers are asso-
ciated with many critical diseases, such as modelling in
patients with pulmonary hypertension [160] or left atrial
enlargement [57-59]. Further research is thus required to
develop techniques capable of coping with the difficulties
of segmenting complex and thin structures such as the RV
and RA, and more generally to segment the whole heart to
enable an assessment that takes into account the combined
motion of all chambers.


http://smial.sri.utoronto.ca/LV_Challenge/Home.html
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Segmentation of large-scale CMR datasets

Another future perspective is related to the segmentation
of large-scale datasets. In the era of big data, there is a
demand for computational techniques that are scalable for
the processing of thousands of cases and for the extrac-
tion of novel clinical knowledge from existing databases.
However, previous cardiac analysis methods in MRI have
been developed and validated with at most a few dozen
cases, often with well-controlled imaging protocols, and
based on a homogeneous class of subjects (e.g. healthy).
A major research topic in the future will consist of extend-
ing the existing techniques such that they can handle the
large variability in anatomy and MRI image sequence
that are typically found in large-scale databases. Further-
more, current cardiac MR segmentation methods are rarely
fully automatic. User interaction often used for example
to define manually the apical and valve points. However,
this becomes impossible when dealing with large numbers
of datasets, and thus fully automatic techniques will be
required.

Segmentation of abnormal cases

One major research challenge in cardiac segmentation is
the development of approaches that are robust to different
groups of individual and classes of disorders. In the exist-
ing literature, however, most techniques have been mainly
developed and validated with normal subjects, and in some
exceptional cases with mildly abnormal hearts, i.e. mostly
few regional septal defects such as hypertrophic cardiomy-
opathy (HCM) [124, 135]. These techniques are developed
in a generic form for both normal and abnormal cases and
do not have a mechanism to handle explicitly large remod-
elling effects owing to cardiac diseases. Recently, Alba

et al. [160] developed a technique specifically designed to
segment severely abnormal hearts, with a promising valida-
tion to pulmonary hypertension patients with highly remod-
elled RV. Such techniques need to be further investigated
using large cohorts and with multiple diseases to make the
tools more robust for clinical use, where routine cardiac
MRI quantification is concerned mostly with diseased sub-
jects or subjects suspected to be diseased.

Clinical translation

Finally, significant effort is being dedicated, in parallel to
the consolidation of the cardiac image analysis techniques,
to the clinical translations of software tools that can be used
robustly and routinely in clinical practice. Table 7 presents
some of the existing software used in clinical practice or
in cardiovascular research in alphabetical order. We recom-
mend the readers to check the details of the available soft-
ware on their websites as the functionalities tend to evolve
continuously over time as the result of new advances in
CMR research.

Conclusions

This review paper has summarised the most recent
advances in cardiac image segmentation methods, which
can be employed for the assessment of cardiac structure
and function with CMR. These approaches range from
image classification based techniques to statistical shape
models. We have highlighted the properties of each of these
approaches and their links to cardiac structure and func-
tional assessment in MRI. After years of continuous devel-
opments, cardiac segmentation has become an interdisci-
plinary subject associating cardiology, medical imaging,

Table 7 Examples of existing

software platforms for cardiac Name Producer Use  Website

structu'ral and functional CAAS MRV Pie Medical Imaging C piemedicalimaging.com

analysis with CMR CAIPI Mevis Fraunhofer R mevis.fraunhofer.de
Corridor4dDM INVIA (Siemens) C inviasolutions.com
CMRtools Cardiovascular Imaging Solutions ~ C/R  cmrtools.com
CVI42 Circle Cardiovascular Imaging C circlecvi.com
GIMIAS Cardio Suite CISTIB R gimias.org
Heart IT Heart Imaging Technologies C heartit.com
iNtuition Cardiac TeraRecon C terarecon.com
PiA CMR Precision Image Analysis C piamedical.com
Qmass Medis C medis.nl
Segment CMR Medviso C medviso.com
Ziostation MR Cardiac Function Qi Imaging C giimaging.com

C commercial, R research
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and image processing. Further research is required to con-
solidate these advances with validation to larger cohorts, as
well as to extend these approaches to the segmentation of
all chambers and pathological hearts, ultimately allow for
a more comprehensive application of the existing tools in
clinical practice.
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