
cancers

Review

Crosstalk between HER2 and PD-1/PD-L1 in Breast
Cancer: From Clinical Applications to
Mathematical Models

Regina Padmanabhan 1,2 , Hadeel Shafeeq Kheraldine 2,3, Nader Meskin 1,* , Semir Vranic 4

and Ala-Eddin Al Moustafa 2,4 ,*
1 Department of Electrical Engineering, Qatar University, 2713 Doha, Qatar; regina.ajith@qu.edu.qa
2 Biomedical Research Centre, Qatar University, 2713 Doha, Qatar; hk1805332@student.qu.edu.qa
3 College of Pharmacy, QU Health, Qatar University, 2713 Doha, Qatar
4 College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; svranic@qu.edu.qa
* Correspondence: nader.meskin@qu.edu.qa (N.M.); aalmoustafa@qu.edu.qa (A.-E.A.M.)

Received: 24 December 2019; Accepted: 18 February 2020; Published: 10 March 2020
����������
�������

Abstract: Breast cancer is one of the major causes of mortality in women worldwide. The most
aggressive breast cancer subtypes are human epidermal growth factor receptor-positive (HER2+) and
triple-negative breast cancers. Therapies targeting HER2 receptors have significantly improved HER2+

breast cancer patient outcomes. However, several recent studies have pointed out the deficiency of
existing treatment protocols in combatting disease relapse and improving response rates to treatment.
Overriding the inherent actions of the immune system to detect and annihilate cancer via the immune
checkpoint pathways is one of the important hallmarks of cancer. Thus, restoration of these pathways
by various means of immunomodulation has shown beneficial effects in the management of various
types of cancers, including breast. We herein review the recent progress in the management of HER2+

breast cancer via HER2-targeted therapies, and its association with the programmed death receptor-1
(PD-1)/programmed death ligand-1 (PD-L1) axis. In order to link research in the areas of medicine
and mathematics and point out specific opportunities for providing efficient theoretical analysis
related to HER2+ breast cancer management, we also review mathematical models pertaining to the
dynamics of HER2+ breast cancer and immune checkpoint inhibitors.
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1. Introduction

The incidence of all types of cancers is increasing at an alarming rate, among which breast cancer
(BC) is rated as the most common type (25% of all cancers) in many countries [1]. At the molecular level,
there are four subtypes of BC: Luminal A, Luminal B, human epidermal growth factor receptor-positive
(HER2+), and triple-negative (or basal-like) BCs [2–4]. These four main subtypes are categorized with
respect to the presence of estrogen receptor (ER+), progesterone receptor (PR+), HER2, epidermal
growth factor receptor (EGFR+), and basal markers such as cytokeratin 5/6. The subtype HER2 that
constitutes 15–20% of all BC types is identified by the overexpression of HER2 receptor, which is
associated with poor prognosis.

HER2+ breast carcinomas are usually high-grade carcinomas (grade 3), associated with the
comedocarcinoma phenotype and aggressive clinical behavior. Most of HER2+ breast carcinomas
are ductal carcinomas, although some special types (e.g., Paget’s disease of the breast, apocrine
carcinoma) may have a higher propensity for HER2 positivity [5–7]. Invasive carcinomas with HER2
positivity frequently arise from preinvasive lesions (ductal carcinoma in situ/DCIS), which frequently
overexpress HER2. HER2 positivity is based on the amplification of the HER2 gene (HER2/chromosome
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enumeration probe 17 (CEP17) ratio ≥ 2.0) that causes complete, intense circumferential membranous
expression of HER2 receptor in > 10% of cancer cells [8]. A subset of HER2+ breast carcinomas may
also express steroid receptors: estrogen (ER) and progesterone (PR) receptors (Luminal B tumors).
These tumors appear to be clinically less aggressive than HER2+ breast cancers and are associated with
a better prognosis [9].

Treatment of HER2+ BC patients has undergone a significant improvement with the use of
targeted therapeutic agents. For instance, Herceptin (trastuzumab) is the first FDA (The food and
drug administration)-approved drug for HER2+ BC, and is the most commonly used drug for these
patients. However, only 50–80% of patients with HER2+ BC benefit from this drug, while 20–50%
either do not respond from the beginning of the treatment or develop resistance after treatment [10,11].
Moreover, with currently available treatment options, the overall disease-free survival (DFS) statistics of
patients with the HER2+ subtype of BC are not adequate [12–18]. Hence, intense research is ongoing to
determine new therapeutic targets or agents to improve the treatment of HER2+ BC patients. One of the
areas showing encouraging results is immunotherapy. Novel immunotherapeutic strategies that target
immune checkpoint pathways by altering T cell receptor (TCR) signaling have revolutionized treatment
options for all types of cancers. Several studies show that immune therapy can boost the outcome of
chemotherapy, radiotherapy, and/or other targeted therapies [19–21]. The immunogenicity of BC and
the applicability of immunogenic pathways to enhance the treatment outcome of BC patients were not
explored much in earlier days. However, in light of the motivating success rates of immunotherapy in
other types of cancers, there is an increased interest in this area of research [16]. Out of all different
subtypes of BC, TNBC and HER2+ BCs are identified to have a significant association with the immune
surveillance of the host [19,22]. These studies also highlight the significance of immunomodulation, the
number of tumor-infiltrating lymphocytes, and the expression of programmed death-ligand (PD-L1) to
the disease prognosis and treatment outcome pertaining to human BC [16,22–24]. All these findings
emphasize the importance of further investigating the applicability of immunotherapy for HER2+ BC.
Out of the many possible ways to enhance immune surveillance and immune response, modulating
immune checkpoint inhibitor pathways via the programmed death receptor-1 (PD-1)/programmed
death ligand-1 (PD-L1) axis is one of the upcoming promising strategies to improve BC therapy [25].

Meanwhile, another important area of research that is gaining popularity among mathematicians
and engineers is the mathematical modeling of cancer dynamics and treatment. This increased interest
is mainly due to the potential of mathematical models to contribute to the management of cancer.
When it comes to the evaluation of new drugs, drug combinations, and drug targets, preclinical
and clinical trials are imperative. As shown in Figure 1, along with preclinical and clinical trials,
mathematical models are also used for drug screening before getting approval for clinical use and
treatment planning [26–34]. The data flow arrows in Figure 1 indicate the use of experimental data
from preclinical and clinical trials to devise mathematical models. On the other hand, the results
obtained from theoretical analysis using mathematical models (e.g., tumor doubling time, optimal
drug dose, predicted tumor volume, estimated time for relapse of disease) are used to optimize the
clinical experiment and proposed therapeutic strategy [31,35–38]. Specifically, mathematical models
can be used to analyze drug distribution (pharmacokinetics), drug response (pharmacodynamics) to
monotherapy and combination therapy, development of drug resistance, and effect of drug toxicity
related to cancer treatment [39,40]. Even though substantial efforts have been dedicated to the
development of mathematical modeling of various types of cancers and their treatments, these
contributions have been isolated from the clinical framework of cancer care and management. This
has hindered the development of mathematical model-based innovative and translational treatment
strategies that would otherwise benefit patients and clinicians in terms of easy and cost-effective
treatment analysis and solutions.
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Figure 1. Schematic diagram showing the interdependence between preclinical trials, mathematical
model-based analysis, and clinical trials at different levels involved in screening of new drugs, drug
combinations, and drug targets and their use in optimizing patient outcome. OOC: organs-on-chips.

Mathematical models that are used to facilitate better therapeutic strategies are built using the
knowledge of existing therapeutic agents and mechanisms involved in cancer initiation, progression,
and treatment response. Hence, in Section 2 of this paper, we review the currently used therapeutic
agents for HER2+ BC, highlighting the associated treatment response and development of drug
resistance. Immune checkpoint inhibition is one of the proposed treatment strategies for HER2+ BC
which is undergoing screening at different levels. Hence, in Section 3, we detail the significance of the
PD-1/PD-L1 axis in HER2+ BC. In Sections 2 and 3, along with the discussion on biological aspects of
HER2 and the PD-L1 axis, we highlight how parallel theoretical analysis using mathematical modeling
can contribute to improving the treatment of HER2+ BC. Next, in Section 4, we point out existing
mathematical models related to the dynamics of HER2+ BC and immune checkpoint inhibitors; then,
we provide a general mathematical model that can be used to develop related specific models, and
finally, we list some of the research gaps in this area.

2. Current HER2+-Targeted Therapeutic Agents and Drug Resistance

Targeted therapeutic agents used for the treatment of HER2+ BC mainly work by interrupting the
tyrosine kinase-mediated downstream signaling by the HER2 receptor. Figure 2 shows that HER2
mediates the gene transcription pathway that regulates cell proliferation, differentiation, invasion,
angiogenesis, metastasis, and cell survival. Due to the correlation of the HER2 pathway with
different hallmarks of cancer, this pathway opens several potential therapeutic targets. Drugs such
as trastuzumab (Herceptin) target the HER2 receptor and block growth signals of cancer cells. Other
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FDA-approved therapeutic agents that are currently in use for HER2+ BC include lapatinib (Tykerb),
pertuzumab (Perjeta), ado-trastuzumab emtansine (Kadcyla), and neratinib (Nerlynx) (Figure 3).
Trastuzumab is most effective in cancer cells with HER2 homodimers, and the drug recognizes the
extracellular domain of the HER2 receptor [12,41–43].
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Figure 2. HER2–HER3 heterodimer and HER2 pathway. The main elements of this pathway
are phosphoinositide-3-kinase (PI3K), phosphatase and tensin homolog (PTEN), protein kinase B
homolog (AKT(PKB)), glycogen synthesis kinase (GSK), mouse double minute-2 homolog (MDM2),
mammalian target of rapamycin complex-1,2 (mTORc1,2), ribosomal protein S6 kinase beta-1 (S6K1),
4E-binding protein-1 (4EBP1), growth factor receptor-bound protein-2 (GRB2), son of sevenless
(SOS), retrovirus-associated DNA sequences (RAS), rapidly accelerated fibrosarcoma (RAF), MEK
mitogen-activated protein kinase phosphorylates MAPK, P-phosphorylation, human epidermal growth
factor receptor (HER) [44,45].
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year of U.S. FDA approval, and type of receptor in order.

HER2+ targeting drugs such as ado-trastuzumab emtansine (T-DM1) use trastuzumab as a
drug-targeting agent to deliver emtansine to the HER2+ BC cells [46]. Thus, T-DM1 is a conjugate of
a HER2-specific antibody (trastuzumab) and a cytotoxic drug, which is a derivative of maytansine
(DM1). This antibody–drug conjugate (ADC) utilizes target specificity of trastuzumab to bind with
HER2 and facilitate receptor-mediated internalization of T-DM1, followed by the release of cytotoxic
DM1 via proteolytic digestion. T-DM1 thus inhibits HER2-mediated signal transduction and causes
antibody-dependent cell-mediated cytotoxicity (ADCC) [46]. Compared to trastuzumab, pertuzumab
blocks cancer cell growth with a similar mechanism but by attaching to a different part of the HER2
receptor. Pertuzumab prevents ligand-induced dimerization and subsequently inhibits downstream
signaling. This drug is particularly effective against the most potent HER2-HER3 heterodimer. Notably,
the combination of pertuzumab, trastuzumab, and docetaxel can substantially improve the treatment
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outcomes of HER2+ BC patients [16,47,48]. While targeted therapy agents work from outside the cell,
small molecule agents such as lapatinib and neratinib, tyrosine kinase inhibitors, affect the chemical
signals within the cancer cells. Both lapatinib and neratinib bind to ATP binding sites; however, when
lapatinib binds reversibly, neratinib binds irreversibly [49,50]. Neratinib is usually used after the
treatment with trastuzumab to reduce the recurrence of BC. Lapatinib blocks a protein that induces
uncontrolled cell growth and is recommended for patients with trastuzumab-resistant BC [51].

Several mathematical models have been developed based on the experimental results pertaining
to the biological aspects of HER2. For instance, in [52], the authors report a 3-compartmental
cell-cycle model using the experimental data reported in [53] to depict the association of cell-cycle and
overexpression of HER2 receptors. Specifically, HER2 overexpression is linked to shorter G1-phase and
consequently early S-phase entry during cell cycle. Similarly, other types of biological information such
as the number and type of antibody binding sites on HER2 receptors, target specificity of antibodies,
and efficacy in releasing single or multiple drug conjugates to the site are important while quantifying
the ADCC of an antibody–drug conjugate (ADC) [54,55]. These drug/receptor-specific details are used
while devising related mathematical models as shown later in Section 4 of this paper.

Treatment benefits of FDA-approved non-cleavable ADC (T-DM1) in HER2+ BC have motivated
the development of different variants of ADC that can effectively release multiple cytotoxic agents
(payloads or warheads) at the target. For instance, hertuzumab-based ADC (RC48) shows improved
efficacy compared to trastuzumab, lapatinib, and T-DM1 in the resistant BT474/L1.9 xenograft
model [42]. MEDI4276 (trastuzumab scFv with AZ13599185, a tubulysin payload), PF-06804103
(anti-Trop2 Aur0101), A166 (undisclosed payload), ALT-P7 (HM2-monomethyl auristatin E), ARX
788 (monoclonal antibody with monomethyl auristatin E), DHES0185A (monoclonal antibody with
benzodiazepine monoamide), and SYD 985 (trastuzumab duocarmazine with seco-DUBA) are other
ADCs under investigation for HER2+ BC [42,56–62]. With respect to the promising performance in
Phase I and II clinical trials for the treatment of HER2+ metastatic BC, in December 2019, the FDA
granted accelerated approval for trastuzumab deruxtecan (DS-8201) [12,63–65]. When it comes to the
desired properties of drugs, it is important to have optimal stability properties while the drug moves
through the human plasma, along with efficient target-specific drug release [42,56–62]. Out of the
above mentioned ADCs, preclinical experiments on animal models are reported only for MEDI4276,
RC48, ARX 788, DS-8201, and SYD 985, and hence more in vitro and in vivo experiments are imperative
in this area [59,61,62,66]. Similarly, mathematical models that depict the dynamics of these novel
drugs, as well as many of FDA- approved anti-HER2 agents are yet to be devised. For instance, in [67],
the authors discuss a mathematical model-based analysis to determine the optimal drug dose and
treatment plan for the use of lapatinib as a treatment for glioblastoma. A similar theoretical analysis
can be done for the use of anti-HER2 drugs for HER2+ BC. Even though there are mathematical models
related to the use of trastuzumab and T-DM1 for HER2+ BC [55,68–71], similar models related to
lapatinib, pertuzumab, and neratinib are yet to be reported.

The long list of novel drugs that are under investigation for the treatment of HER2+ BC invokes
hope. However, the development of drug resistance is a common event that often curtails the long-term
use of many therapeutic agents and thus squanders the effort and money spent on bringing these novel
drugs from bench-to-bedside [72–78]. Ineffective or impaired binding of drugs to HER2 receptors,
switching of signaling pathways, and metabolic reprogramming are some of the common factors
that retain the characteristics (abnormal proliferation and anti-apoptotic) of the disease [15,79]. For
instance, even though the drug resistance mechanism of trastuzumab is not completely understood, the
activation of phosphatidylinositol 3-kinase (PI3K) signal transduction pathway is considered as one of
the key mechanisms of resistance. The PI3K–AKT pathway promotes the growth and survival of cells
via extracellular signals (Figure 2). Increased PI3K/AKT phosphorylation and signaling were linked to
blocking trastuzumab effects on HER2-overexpressing breast tumors [80]. This blockage is mediated by
the decreased levels of the phosphatase and tensin homolog (PTEN), which is strongly related to a much
poorer response to trastuzumab [80]. In vitro and in vivo studies suggest that reversing this effect by
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using PI3K inhibitors (e.g., alpelisib, copanlisib) or mammalian target of rapamycin (mTOR) inhibitors
(e.g., everolimus), helped to overcome trastuzumab resistance [15]. Similarly, the overexpression of
membrane-associated glycoprotein mucin 4 (MUC4) and increased insulin-like growth factor-I receptor
(IGF-IR) signaling were found to be more common among cells that are resistant to trastuzumab.

Around 25–30% of the HER2+ BCs express an abnormal form (lacking the extracellular domain)
of the HER2 fragment known as p95HER2, along with the normal HER2 receptor [81,82]. The presence
of p95HER2 can make HER2+ cancer cells resistant to drugs such as trastuzumab as the monoclonal
antibody cannot detect aberrant p95HER2 receptors. However, cells with p95HER2 receptor respond to
tyrosine kinase inhibitors such as lapatinib [82]. Another factor that induces resistance to trastuzumab
is the lack of CD16A (cluster of differentiation) receptor or inefficient binding with the CD16A receptor.
CD16A (FcγRIII) is found on immune cells, and many studies have demonstrated the role of CD16A
in inducing ADCC. Overexpression of neuromedin U (NmU) is related to the expression of TGF-β
(Transforming growth factor) and PD-L1 in the tumor microenvironment, which in turn is associated
with impaired ADCC. Hence, the use of immune checkpoint inhibitors in NmU-overexpressing tumors
may revert or prevent resistance to trastuzumab [15,83,84]. In short, trastuzumab resistance is mediated
by (1) impaired interaction of trastuzumab to HER2 (via MUC4, p95HER2, CDK2), (2) an altered or
parallel intracellular PI3K/AKT/mTOR signaling pathway, (3) mutation of PIK3CA gene, and (4) higher
levels of cyclin-E, fatty acid synthase (FASN), and/or NmU. Similarly, potential reasons for T-DM1
resistance include difficulties in binding with the receptor (due to MUC4, p95HER2), impaired receptor
internalization, improper release of cytotoxic agent, and/or activation of parallel pathways [85,86].
All of the FDA-approved anti-HER2 drugs are associated with resistance development via one or
more of the above-listed pathways. Compared to trastuzumab, lapatinib and neratinib bind to the
intracellular domain of the HER2 receptor and apparently, the extracellular domain-mediated drug
resistance pathways are ineffective for these drugs. However, these drugs are associated with primary
as well as acquired drug resistance-mediated treatment issues [15,87,88]. All of these studies show
clearly that HER2 is an important target for HER2+ BC; however, resistance to different types of HER2
drugs is still a major issue in the management of human cancers expressing HER2 including breast.
Thus, the potency of new targets such as the PD-1/PD-L1 axis that can be used in combination with
anti-HER2 drugs needs to be investigated further.

Several mathematical models have been used to study the response (e.g., drug sensitivity, inherent
drug resistance, drug-induced resistance) of the heterogeneous tumor microenvironment to various
therapeutic interventions such as chemotherapy [89], radiotherapy [90], and hormone therapy [91],
in general [92]. However, mathematical models that analyze drug resistance development pertaining
to anti-HER2 therapy in particular are scarce. For example, in [93], the levels of prostate-specific
antigen (PSA) were used to predict the development of castrate resistance in prostate cancer cells and
to compare the efficacy of intermittent and continuous androgen deprivation therapy. Similar models
can be used in the case of HER2+ BC, specifically by modeling the presence of impaired receptors and
overexpression of certain proteins, peptides, or cytokines (e.g., MUC4, NmU, TGF-β) which can give
quantitative insights into the mechanism related to drug resistance development. Such models can
help optimize treatment schedules and determine effective drug combination so as to curtail drug
resistance development.

3. PD-1/PD-L1 and HER2 Crosstalk in Breast Cancer

Immune checkpoint inhibition is an intensively investigated but yet-to-be approved therapeutic
strategies for HER2+ BC patients. Hence, in this section, we first introduce the PD-1/PD-L1 axis
and then point out: (1) the level of PD-L1 expression in HER2+ BC, (2) the association of PD-L1
expression to disease progression and response to therapy, and (3) some of the factors that are linked
to the overexpression of PD-L1. As mentioned in Section 2, these biological aspects are needed while
developing a mathematical model to represent the treatment scenario facilitated by a single agent
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(e.g., anti-HER2 alone) or multiple agents (e.g., anti-HER2 with immune checkpoint inhibition) for
HER2+ BC.

Several co-inhibitory and co-stimulatory pathways that are regulated by the immune system
mediate the selective attack on external invaders (pathogens) while sparing the host cells [94]. The
human body has innate and adaptive immune mechanisms in place to facilitate immune response
depending on the type of pathogens. The programmed death receptor-1 (PD-1/CD 279) and its ligand
programmed death ligand-1 (PD-L1/ B7-DC) are involved in one such mechanism that exists to avoid
autoimmunity (attack on host cells). The PD-L1 on host (normal) cells interacts with the PD-1 receptor
on immune cells to avoid an attack (Figure 4). The same PD-1/PD-L1 pathway is utilized by cancer
cells to evade immune attack. Hence, when the PD-1 receptor on immune cells interacts with the
PD-L1 on cancer cells, immune response activities such as T cell activation and T cell proliferation
are halted. In some cancers, even if cancer cells are immunogenic, they are also identified to have
many receptors (e.g., PD-L1, PD-L2) to stimulate immune checkpoint targets (e.g., PD-1) and block
the immune response. Other immune checkpoint targets include cytotoxic T lymphocyte antigen
(CTLA-4), glucocorticoid-induced TNFR-related protein (GITR), OX40, 4-1BB, T-cell immunoglobulin
(TIM-3), and lymphocyte-activation gene (LAG-3) [16].
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kinase-70, PLC: phospholipase C, SLP: SH2-leukocyte protein, LCK: lymphocyte-specific tyrosine
kinase, CSN5-Cop9: signalosome complex, PD-1: programmed death receptor-1.

Immune checkpoint inhibitors facilitate tumor cell lysis by reactivating immunologic actions,
which were earlier blocked by tumor cells via immune checkpoints. Hence, many drugs
(e.g., monoclonal antibodies, immunoglobulins, and small molecule inhibitors) that can facilitate
immune checkpoint inhibition are undergoing clinical trials (e.g., NCT03523572, NCT03125928,
NCT03523572) for the treatment of HER2+ BC [96]. Examples of anti-PD-1 monoclonal antibodies are
pembrolizumab (Keytruda), nivolumab (Opdivo), and cemilimab (Libtayo). The most commonly used
anti-PD-L1 monoclonal antibodies are atezolizumab (Tecentriq), avelumab (Bavencio), and durvalumab
(Imfinizi) [97–99].

For the purpose of mathematical modeling, quantitative information regarding the level of PD-L1
expression, the association of PD-L1 overexpression and HER2 positivity in relation with various
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biomarkers, and their association with disease prognosis and treatment response has to be collected.
Such a comprehensive base of quantitative data is essential to develop mathematical models that can
identify the patient population that will benefit from targeting HER2 or/and PD-L1 axis for therapy.
In this regard, we reviewed immunohistochemistry studies that are conducted to investigate the
influence of PD-L1 expression in human BC. Such studies pointed out the significant influence of
patient age, tumor grade, tumor type, and lymph node status on the expression of PD-L1. Moreover,
the expression of Ki-67 and the absence of ER also show a significant influence [22]. In two studies
that included all different molecular subtypes of BC, one study reported that PD-L1 was expressed in
152 (23.38%) specimens out of the 650, and the other reported 21.1% (89/870) [22,100]. The expression
of PD-1/PD-L1 varied with stage and molecular subtypes of BC out of which TNBC has the highest
expression followed by HER2+ subtype [22,100–103]. Noticeably, studies report a significant difference
in the expression of PD-L1 in tumor (cell membrane (64%), cytoplasm (80%) and stromal (93%)) cellular
compartments [104,105].

In the case of HER2+ BC, PD-L1 expression of up to 58%, 53.8%, and 32% is reported in tumor
cells, immune cells, and both cells, respectively [106–108]. Up to 30.7% of PD-1 expression on
tumor-infiltrating lymphocytes (TILs) around HER2+ BC is also seen. PD-1/PD-L1 expression in
metastatic tumors was correlated with poor prognosis, whereas no relation to clinicopathological
features was noted in primary tumors [109]. In essence, it can be seen from literature that high PD-L1
expression combined with an increase in T regulatory cells (Tregs) and a decrease of TILs are associated
with poor survival [22,102,107,110]. However, high PD-1/PD-L1 expression along with a higher number
of TILs in the tumor microenvironment is associated with improved OS (overall survival) and/or DFS
(disease free survival) [24,111,112]. Similarly, PTEN expression is related to improved OS [102].

Several studies evaluate the importance of PD-1/PD-L1 expression on tumor cells and/or immune
cells and the presence of TILs and Tregs in the tumor microenvironment in predicting response to
treatment pertaining to BC [3,104,108,113,114]. Specifically, blocking immune evasion and attracting
more TILs and fewer Tregs (reactivating immunogenicity of BC) to the tumor microenvironment can
improve the OS of BC patients [19,23,115–119]. Sixteen percent of HER2+ subtypes are lymphocyte
predominant (> 50–60% of TILs present) and are associated with improved outcome (EFS: event-free
survival, OS) with many treatment modalities [19,120–124]. The FinHER trial demonstrated the link
between improved response to trastuzumab and higher levels of TILs among HER2+ BC patients [125].
It showed that in the case of HER2+ tumors which are highly proliferative, the presence of TILs
in the tumor microenvironment is a predictive biomarker for favorable responses to trastuzumab
treatment [102,110,126,127]. As mentioned in [102,117,127] the experimental analysis on HER2+ patients
suggests that CD8+ T cell-mediated cytotoxicity and PD-L1 expression together may predict improved
outcome in HER2+ BC patients under combined chemotherapy and HER2-targeted therapy [102]. These
findings emphasize the importance of tumor–immune interaction in BC progression [46,73,114,128,129].
Moreover, based on 6 different studies, in [130], the authors highlight that PD-L1 expression in
both tumor cells and immune cells of the host can contribute to the overall response to treatment.
Hence, the evaluation of an overall expression in both these cells is recommended as a predictive
biomarker [23,115–119].

As per available literature, potential predictive biomarkers that can be used to select patients who
may benefit from combined treatment using HER2-targeted and PD-1/PD-L1 axis based therapeutic
agents are (1) HER2 amplification/overexpression, (2) PD-1/PD-L1 expression, (3) presence of a greater
number of TILs and fewer Tregs, (4) higher TMB (tumor mutation burden), (5) PTEN expression, and
(6) expression of CD5, CD74, CD96, and CD226, to name only few [38,86,121,131–138]. However, it is
still not clear which combination of clinicopathological factors are most reliable predictive biomarkers
to implement effective treatment protocols using anti-HER2 and/or PD-1/PD-L1 pathways [39,139].
Moreover, since blocking immune checkpoints can have side effects such as organ damage, careful
analysis using multiple biomarkers is required while developing combination therapy protocols.
Moreover, most of the in vivo and in vitro studies on the use of immune checkpoint inhibition are done
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using antibody-based drugs that are associated with the high cost and long half-life [140]. The efficacy
of small molecule PD-1/PD-L1 inhibitors in implementing a combination of immunotherapy and
HER2-targeted therapy to enhance the potency of BC treatment should also be investigated [141–144].
Along with the suggested experimental analysis, mathematical model-based analysis is also desired
in this area. Similar to the immune checkpoint inhibition-based mathematical model given in [145],
quantitative information about the association of PD-L1 expression, Tregs, and TILs in the tumor
microenvironment can predict whether a HER2+ BC patient will benefit from immune checkpoint
inhibition [115,127].

Steered by the association of HER2 and PD-L1 axis in BC dynamics, several new drugs and drug
combinations (PD-1/PD-L1 and HER2-targeted) are under clinical investigation for the treatment of
HER2+ BC. Specifically, HER2-targeted drugs such as trastuzumab/pertuzumab/T-DM1/pyrotinib/

tucatinib/zenocutuzumab/margetuximab are used in combination with immunotherapeutic drugs
such as nivolumab/durvalumab/atezolizumab/pembrolizumab/avelumab and other chemotherapy
drugs. Currently, atezolizumab is the only FDA-approved immune checkpoint inhibitor for BC (TNBC)
treatment. Out of many new drugs that are under clinical trial, margetuximab (MGA-H22) received
FDA approval for fast track investigation on its potency to treat HER2+ metastatic BC [146–148]. This
is a novel HER2-targeted monoclonal antibody tailored to enhance the binding affinity to multiple
sites by mediating activation of Fc-γ receptors. Margetuximab showed improved ADCC compared to
trastuzumab [131,147,149]. Hence, optimizing the functionality of Fc receptors to enhance ADCC is
also a promising direction for improving the treatment of HER2+ BC [38,131,132].

As mentioned earlier, mathematical models that depict the pharmacokinetics and
pharmacodynamics of these potential drugs, their combinations, and their effect on individual
cell dynamics in the heterogeneous tumor microenvironment can accelerate the search for better
treatment options for HER2+ BC (See Figure 1). Based on the knowledge of various HER2 signaling
pathways (Figure 2), several HER2-targeted treatment options (Figure 3) are currently in use. However,
even though PD-1/PD-L1 pathways are well discussed in literature, the exact mechanisms that
lead to the overexpression of PD-L1 and their consequences in HER2+ BC patients are yet to
be clearly understood [102,115,121,134,150,151]. Moreover, PD-1/PD-L1 signaling pathway-based
therapeutic targets and agents for HER2+ BC patients are still under investigation. Available
literature suggests that exposure to cytokines (interferon-gamma (IFN-γ), interleukin-4 (IL-4),
granulocyte-macrophage colony-stimulating factor (GM-CSF), abnormalities in EGFR signaling,
and genetic alterations (e.g., PIK3CA mutation) can induce PD-L1 overexpression [95,102,150,152].
The complex regulatory signaling pathways related to PD-L1 activation involve PI3K/PTEN/AKT/

mTOR and retrovirus-associated DNA sequences (RAS)/rapidly accelerated fibrosarcoma (RAF)/MEK/

mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase (ERK), which are linked
with transcriptional factors such as STAT1 (signal transducer and activator of transcription), STAT3,
HIFs (hypoxia-inducible factors), c-Jun, and NF-κB. These factors can alter intercellular signaling
and cell-cycle control [95,152]. Regulation of PD-L1 expression is also facilitated by mRNAs via
translational enhancement/suppression [95].

A study that evaluated the involvement of the PD-L1 pathway in the development of drug resistance
against an anti-HER2 drug revealed significant crosstalk between HER2 and PD-L1 pathways [134].
Specifically, IFN-γ is linked to the upregulation of major-histocompatibility complex (MHC-1) and
PD-L1 in HER2+ BC cells. The inhibition of HER2 signaling (via gene knockdown or kinase inhibition)
influenced PD-L1 expression in different ways for various settings, as shown in Figure 5. Specifically,
in vitro experiment using trastuzumab on HER2+ BC cells showed no PD-L1 overexpression; however,
when the same cells were co-cultured with human peripheral blood mononuclear cells (PBMCs),
PD-L1 overexpression was noted. It can be seen that when IFN-γ was neutralized in the co-culture
setup, PD-L1 upregulation was blocked. Similar to a trastuzumab-treated co-culture setup without
anti-IFN-γ antibody, in the case of in vivo mouse model, PD-L1 was upregulated. Since the process of
trastuzumab mediated ADCC involves engaging cancer cells with immune cells leading to the secretion
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of IFN-γ, the resulting overexpression of PD-L1 is postulated as a possible pathway of drug resistance
development against trastuzumab treatment. Consistent with this finding is the synergistic response
reported in a preclinical study using mice that tested human PD-L1 and HER2 gene vaccinations in
treatment of HER2+ cancers [153]. In essence, there is evidence of crosstalk between HER2 and PD-L1
pathways; however, there is much more to know regarding the underlying interactions pertaining to
these two pathways [150]. This calls for more research in this area which will be beneficial towards
devising better treatment options for HER2+ BC.
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4. Mathematical Models Used for Breast Cancer Management

In Sections 2 and 3, along with the biological aspects pertaining to HER2 and PD-1/PD-L1
axis, we have pointed out the opportunities to improve HER2+ BC treatment using mathematical
modeling. In this section, we review existing mathematical models in this area and detail a general
one that can be used to devise novel models in the context of anti-HER2 therapy and/or immune
checkpoint inhibition. It is apparent that mathematical models of tumor–immune interaction with
respect to HER2-targeted therapy and/or immune checkpoint blockade can be used to explore tumor
dynamics in detail and to answer questions that are difficult to answer by clinical analysis [54,71,145].
Since 1954, mathematical model-based analysis has contributed heavily to various areas of cancer
research such as drug scheduling, estimating drug response in terms of desired effect, testing research
hypothesis, and to study interdependence and sensitivity of various parameters involved in cancer
dynamics [39,40,70,154–157]. At this point in time, it is worth noting that nuclear physics, neuroscience,
epidemiology, and physical chemistry are fundamental areas of research that witnessed a big leap
forward due to the integration of empirical and theoretical works. Unfortunately, even though extensive
clinical investigations (empirical) and mathematical (theoretical) analysis were conducted in the area
of cancer research, both areas stand as separate entities pursuing parallel paths. It is imperative to
merge or interlace these two strategic areas of research to foster translational technologies that can
revolutionize the area of medicine and biology (Figure 1).

In general, mathematical models are simplified quantitative representations of the complex and
nonlinear phenomenon involved in cancer progression and regression. For instance, as shown in
Figure 6, it is apparent that the overall growth rate of a tumor is influenced by the cumulative actions of
the immune system, lymphatic system, vascular system, and the treatment used. The net tumor volume
is due to the sum of all contributing factors minus all of the suppressing factors including the effect of
treatment. Thus, such models can be used to investigate the efficacy of novel treatment strategies, and
to find the optimal drug dose required for achieving certain desired drug response without actually
testing on patients. Specific mathematical models of tumor–immune interaction with respect to the
adopted mode of treatment such as chemotherapy [158], radiotherapy [159], immunotherapy [160],
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hormone therapy [161], anti-angiogenesis [162], nanomedicine-based cancer therapy [33], gene therapy
and/or oncovirotherapy [163], and combination therapies [164] have been widely discussed recently.
Many recent reviews summarize the history of mathematical models in various treatment areas related
to cancer [33,40,156,165–168]. As mentioned earlier, one of the focusses of this paper is to highlight the
progress achieved in the mathematical modeling of BC with specific emphasis on anti-HER2 treatments
and immune checkpoint inhibitors.
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First of all, both in vivo and in vitro models were used to derive mathematical models of breast
cancer (Figure 1) [1,26,50,55,155]. For instance, in [1], experimental evidence on the growth of the
MCF-7 cell line, intercellular interaction between tumor cells, and interaction with the immune cells
(natural killer (NK) cells, cytotoxic T-lymphocytes (CTLs), white blood cells (WBCs)) and estradiol
(estrogen) was used to develop a mathematical model. Using the model, the authors demonstrate
the existence of stable (dormant) microscopic tumors and their control or eradication by the immune
system. In another study, heterogeneous cell lines (MDA-MB-468, SUM149PT, MDA-MB-231, and
MDA-MB-453) were used to quantify the cellular uptake and treatment response to doxorubicin related
to TNBC [26]. In vitro experiments used to develop mathematical models of BC are reported in [1,26,55].
Compared to in vitro models which are based on certain BC cell lines, experimental mice models
(in vivo) are used more frequently to estimate parameter values of mathematical models [71,155]. Even
though many experimental studies have used drosophila, zebra fish, and chicken embryo models for
cancer research, mathematical models based on these animal models are scarce [169–171].

Next, as mentioned in the first part of this review paper, there are different types of investigational
drugs (e.g., antibodies, inhibitors, ADC) and plausible drug combinations under consideration for
improving treatment options for HER2+ patients. However, due to ethical and financial reasons, it is
difficult to conduct clinical trials to evaluate all possible combinations [13,71,172]. Mathematical models
can contribute to derive useful information in this regard. In several studies [1,71,173,174], the authors
analyzed the tumor–immune interaction in BC with respect to the use of various drugs. Specifically,
the three main mechanisms involved in tumor–immune interaction: (1) elimination of tumor by the
immune system, (2) equilibrium status (stable, dormant) attained by the tumor under the action of the
immune system, and (3) escape of the tumor from immune action leading to uncontrolled growth,
were studied in detail using mathematical models [1,175,176]. Apart from depicting tumor–immune
interactions, mathematical models were used to determine the growth of tumor in different stages of
primary BC (T1a, T1b, T1c, T2, T3) in patients with no metastasis (M0) and no lymph node involvement
(N0) [177]. Using the mathematical model, the authors were able to determine the critical diameter
(2 mm) of tumor that the immune system can eliminate. They also discussed the annihilation of strongly
antigenic and weakly antigenic BC tumors by the cytotoxic T-lymphocytes (CTLs) and macrophages,
respectively. Another interesting study used a histological data-based mathematical model from a
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clinical trial (48 patients) to predict the response of BC patients to neoadjuvant chemotherapy [37].
In this study, the authors showed that it is possible to evaluate the treatment outcome of patients using
the analysis of the parameters pertaining to vasculature development-based biomarkers in primary BC.

In the case of combination therapies, apart from predicting effective drug combinations,
mathematical models can be used to determine effective order of drug administration. In [55,178],
the authors investigated the influence of the order of drug administration on treatment outcomes
when multiple drugs are used to treat BC. Some mathematical models specifically portray mechanisms
related to the HER2+ BC subtype [55,70,71]. In one study, experimental and computational analysis
was conducted to evaluate the efficacy of using trastuzumab along with paclitaxel and the influence, if
any, of the order of drug administration in treatment efficacy [55]. Using a HER2+ cell line (BT474),
the authors found that there is more synergistic interaction between the drugs when trastuzumab
is administered first and then paclitaxel. In [71], the authors described a mathematical model of
tumor–immune interaction with respect to trastuzumab treatment. This model predicted increased
infiltration of leukocytes in treated animals. This conclusion was validated using a parallel experimental
analysis (Section 3). This study emphasizes the power of mathematical models to give quantitative
results pertaining to cancer dynamics and the effect of treatment.

Apart from evaluating treatment efficacy, mathematical models can be used to test hypotheses
related to the mechanism of tumor–immune–drug interactions. For instance, in [70] the authors
explored trastuzumab mediated internalization of receptors (in SKBR3 cells) associated with the HER2
pathway to determine why HER2 is resistant to down-regulation [179]. Using the mathematical model
developed, the authors pointed out the mismatch in the experimental data with the hypothesis of the
fast recycling of HER2 receptor back to the plasma membrane. However, the mathematical model
described the sustained internalization of receptors in cells with ruffles in the membrane. Moreover,
the model predicted that the receptor internalization occurs three times slower for non-ruffled cells
than ruffled cells.

As in the case of many types of cancers, in the case of HER2+ BC, poor response ratio to treatment
as well as the development of drug resistance, are linked to the presence of BC stem cells (BCSCs).
This is mainly due to the fact that the treatment often can eradicate only differentiated cancer cells
but not cancer stem cells (CSCs). Mathematical model-based analysis can also be used to comment
on the possibility of tumor initiation within a clinically observable time with respect to the presence
of BCSCs [28]. Here, we note that the high levels of PD-1/PD-L1 expression reported on CSCs are
believed to aid immune evasion [180,181]. The expression of PD-L1 in BCSC is linked to enhancing
the presence of transcription factors such as OCT-4A and Nanog [180]. This enhanced expression of
transcriptional factors is believed to retain the stem cell nature of BCSC via the PI3/AKT pathway.
Such associations of BCSC and PD-1/PD-L1 expression in HER2+ BC are yet to be represented using
mathematical models towards gaining further insight into their underlying mechanisms.

Looking at the immune checkpoint pathway, since it is a recent addition to the treatment
strategies for cancer, the mathematical modeling attempts in this area are relatively less compared
to other treatment modalities [54,145]. The first mathematical model depicting the dynamics of
tumor microenvironment concerning anti-PD-1 treatment was reported recently in [145]. Specifically,
a mathematical model for combination therapy using a vaccine and an immune checkpoint inhibitor is
presented. Since these two drugs complement each other, the mathematical model is used to evaluate
the synergistic action of these drugs and propose the use of synergy maps to determine drug dose
that respects the constraints such as maximum tolerated dose (MTD). The authors used 13 partial
differential equations to illustrate the dynamics involved in cancer cells, immune cells (CD4+ and
CD8+), cytokines (IL-2, IL-12), vaccine-induced colony-stimulating factor (GM-CSF), and inhibitor
associated with PD-1. In [54], the authors discussed the mathematical modeling of co-culture (in vitro)
of natural killer (NK) cells, cancer cells, and antibody to study the anti-body dependent cell lysis.
In [182], the authors revalidated the findings in [145] using experimental data from mice models.
Based on the analysis concerning tumor-free and tumorous equilibria, the authors recommend the
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use of combination therapy since immune checkpoint inhibition alone is not sufficient to maintain
a tumor-free equilibrium. This conclusion is consistent with the results of experimental and clinical
studies in this area. A good review of the pharmacokinetics (PK) and pharmacodynamics (PD) of
the first five FDA-approved drugs that come under the heading of clinical checkpoint inhibitors is
discussed in [39].

The mathematical models discussed in [39,54,145,182], in relation to immune checkpoint pathways
are general and not for BC in particular. In 2019, the first in silico trial with the use of immune checkpoint
inhibitors (anti-CDLA-4, anti-PD-L1) in patients with metastatic BC has been reported [175]. In this
paper, mathematical models are used to explain immune suppression and evasion in tumor-draining
lymph node and tumor microenvironment. This model also accounts for PD-L1 expression, the
intensity of antigen, effects on the immune system, and response to checkpoint inhibition. The authors
claim that with sufficient clinical measurements, this model can predict the treatment response of
individual patients concerning various treatment modalities.

Another promising experimental model that can be used to contribute to both empirical, as well as
theoretical investigations pertaining to HER2+ BC, is organs-on-chips (OOC). OOC are a novel in vitro
platform for aiding the development and testing of therapeutic drugs for cancer [183,184]. Since OOC
incorporate multiple cellular and biophysical functional features together, they can recreate tumor
microenvironment and its overall interaction to provide much wider insight into the progression of
cancer and response to treatment [185]. Such models are promising for the development of mathematical
models of cancer mechanisms and treatment (Figure 1). Another advantage of representing cancer
mechanisms in terms of mathematical models is that it enables easy design and implementation
of algorithms for optimizing drug dose and effective treatment schedules [35,186]. Even though
many such optimization results are reported for various cancers [31,158], only a few studies are
reported specifically for BC [36]. Even though many such optimization results are reported for various
cancers [31,35,158,186], only a few studies are reported specifically for BC [36].

In short, more in vitro/in vivo experiments and clinical trials are imperative to understand the
crosstalk between HER2 and PD-1/PD-L1 pathways and related tumor dynamics under monotherapy
or combination therapy [1]. Experimental data already available in the literature pertaining to specific
cancers can also be utilized to develop disease-specific mathematical models. In order to clarify
how biological mechanisms and parameters discussed in Sections 2 and 3 can be accounted for in a
mathematical model, we suggest a general one by summarizing the models given in [1,54,55,71,145].
Specifically, we provide a general model to illustrate the complex and nonlinear dynamics involved
in tumor growth and treatment-induced tumor regression, pertaining to HER2 and PD-1/PD-L1
pathways as:

dT(t)
dt

= CT(r, k, T(t)) −ST
(
d, δ, U50, Ab, A f , x, T(t), E(t), U(t)

)
, T(0) = T0, (1)

dE(t)
dt

= CE(s,α, g, T(t), E(t), U(t)) −SE(e, a, β, T(t), E(t), U(t)), E(0) = E0, (2)

dV(t)
dt

= CV(v, T(t), E(t), V(t)) −SV(w, T(t), E(t), V(t)), V(0) = V0, (3)

dU(t)
dt

= CU(u(t), V(t)) −SU(δ, U(t)), U(0) = U0, (4)

where T(t), E(t), V(t), and U(t) represent tumor cells, immune (effector) cells, vascular delivery in
tumor, and drug concentration, respectively, CT(r, k, T(t)) is a function that accounts for contributing
factors in tumor growth, where the parameters r and k are related to growth rate and carrying capacity,
ST
(
d, δ, U50, Ab, A f , x, T(t), E(t), U(t)

)
is a function that accounts for suppressing factors in tumor

growth, where the parameters d, δ and U50 are drug effect, drug decay rate (half-life/elimination), and
drug concentration that causes 50% drug effect, respectively.
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In the context of HER2-targeted treatment and/or immune checkpoint inhibition which involve
the use of antibodies and inhibitors, the parameter Ab accounts for antibody binding, internalization of
neoplastic drug, or target association of inhibitor; similarly, A f models free antibody, free neoplastic
drug, and the parameter x denotes level of HER2 or PD-1/PD-L1 expressions. For instance, as mentioned
in Section 2, the number of payloads of an antibody–drug conjugate or whether the antibody binds into
the internal or extracellular domain of the HER2 receptor can influence the value of the parameters
Ab and A f . Similarly, the function CE(s,α, g, T(t), E(t), U(t)) in Equation (2) denotes contributing
factors related to effector cells, where s represents influx rate (or growth rate) of effector cells to
the tumor microenvironment, α denotes activation rate (quiescent state to hunting state) of effector
cells, and g represents immune-boosting facilitated by an immunotherapeutic drug. Likewise, the
function SE(e, a, β, T(t), E(t), U(t)) denotes suppressing factors related to effector cells, where e denotes
a parameter that quantifies immune escape/evasion, a denotes apoptosis rate of effector cells, and
β denotes the rate of inactivation of immune cells upon encounter with tumor cells. The functions
CV(v, T(t), E(t), V(t)) and SV(w, T(t), E(t), V(t)) model the increase and decrease in vascular delivery,
respectively, where v and w denote the rate of increase and decrease, respectively, with respect to tumor
volume and immune response. Finally, CU(u(t), V(t)) and SU(δ, U(t)) model factors that affect drug
concentration in terms of drug infusion rate u(t) and drug decay δ.

All of the eight functions given in Equations (1)–(4) can be modeled in different forms.
For instance, tumor growth with respect to growth rate and carrying capacity can be modeled

as rT(t), e−rtT(t), r
(
1− T(t)

k

)
T(t), or rln

(
1− k

T(t)

)
T(t) which represent linear, exponential, logistic, or

Gompertz equations, respectively. Similarly, drug effect terms can take a linear or exponential form.
The Michaelis Menten function, sigmoid function, and Holling’s type functions are other common
nonlinear forms used to account for the saturation effect involved in drug dynamics. Apart from the
factors considered in Equations (1)–(4), dynamics related to hypoxia, necrosis, secretion of chemokines,
etc., will also come into the picture according to the application for which a mathematical model
is devised. In the case of immune checkpoint inhibition, effector cell dynamics (Equation 2) can be
extended to model concentrations of IL-4, IL-12, IFN-γ, and GM-CSF, as well as density of dendritic
cells and natural killer cells [71,145]. Moreover, with respect to the general model, parameters can be
added or dropped according to their significance as determined by experimental studies.

The fact that many ongoing clinical trials are particularly dedicated to the development of
mathematical models or to validate such models for BC (NCT03792529, NCT03983538, NCT02028494,
NCT03381092) emphasizes the potential of theoretical analysis towards contributing to cancer care.
Parallel to this, analysis is desirable to better understand cancer mechanisms and to improve the
treatment of HER2+ BC via the use of immune checkpoint pathways along with anti-HER2 drugs.
Specifically, biomarkers discussed in Sections 2 and 3 related to drug resistance development, PD-L1
expression, prognosis of HER2+ BC, and treatment response can be considered while developing
associated mathematical models. In essence, we list some of the opportunities on how mathematical
models can contribute to improve the therapy of HER2+ BC as;

• It is imperative to develop mathematical models related to drug resistance development pertaining
to HER2+ BC. Such models can be used to forecast the long-term efficacy of novel drugs, their
combinations, or hypothetical treatment strategies [87,89].

• Out of the 5 FDA-approved anti-HER2 drugs, only the dynamics of trastuzumab and T-DM1 have
been studied using a mathematical model to a certain extent. The dynamics of other drugs have
yet to be explored on a quantitative basis. Such drug-specific models can be used for treatment
planning and dose optimization [30,34,35,64,160,187].

• Developing mathematical models in terms of the biomarkers related to disease prognosis (e.g.,
PDL1 expression + high Tregs + less TILs = poor prognosis), and treatment response (e.g., presence
of TILs favors response to trastuzumab) can help to identify patient cohorts that will benefit from
a certain therapy [146].
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• Mathematical models can be used to quantify drug dynamics of potential new drugs and different
combinations and to explore possible additive or synergistic drug interaction when used in
combinations [52].

5. Conclusions and Future Perspectives

Based on the significance of the PD-1/PD-L1 axis during carcinogenesis, including that in the
HER2+ subtype of BC, it is crucial to elucidate the exact mechanism behind the interaction between
the PD-1/PD-L1 pathway and HER2. This is essential to the discovery of new therapies as well as
protocols for the management of HER2+ BC. On the other hand, we believe that developing new
in vitro and in vivo experimental models is required for a better understanding of cancer mechanisms
and the development of mathematical models. Additionally, since simulating clinical situations using
mathematical models to evaluate the effect of various biological aspects of cancer management is
cost-effective and safe, more collaborative efforts that take advantage of such mathematical models are
essential to improve the management of cancer diseases.
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