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Abstract: Simulating the rheological behaviors of polymer solutions is intrinsically a multi-scale
problem. To study the macroscopic and microscopic characteristics in the fluid flow of dilute polymer
solutions, we designed a multi-scale solver, which couples the Brownian Configuration Fields
with the macroscopic hydrodynamic governing equations. Numerical simulation results using the
multi-scale solver exhibited good accordance with the macroscopic only approach. Through a scalar
field D we also quantitatively studied the flow behaviours in 2D planar channels, and analyzed
the correlation between the molecular distribution and the macroscopic fluid flow in polymer
solutions. Our results verified the correctness of the solver, which could provide valuable guidance
for multi-scale simulations of complex fluids based on OpenFOAM.
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1. Introduction

Polymer solutions are frequently used in the production of fibers, films, glues, lacquers, paints,
and other items made of polymer materials. It is of great scientific significance and application values
to make an in-depth study of the dynamics and the rheological characteristics of the polymer solutions
through numerical simulation.

Simulating the rheological behaviors of polymer solutions is intrinsically a multi-scale problem.
Multi-scale simulation is a rapidly growing multidisciplinary field, as stated in the review article
provided in [1].

Numerical approaches for simulating polymer solutions fall into three categories: the macroscopic,
the microscopic and the micro-macro multi-scale methods. In a macroscopic only simulation,
the constitutive equation (CE) that relates the viscoelastic stress to the deformation history can be
derived from the continuum mechanics. One then solves the constitutive model together with the
conservation laws of mass and momentum to predict velocity and stress fields in complex flows.
An extensive description of constitutive models is given by Owens and Phillips [2]. The Oldroyd-B
model originated from a two-bead dumbbell model with a linear Hookean spring force is employed in
our simulations to compute the stress tensor. Dumbbell models ignore the interactions among polymer
molecules and they are usually employed to simulate the dilute polymer solutions. Multi-bead chains
have been studied as well [3,4]. There are also other constitutive models such as the FENE-P (the
closure approximation for finitely extensible nonlinear elastic dumbbell model proposed by Peterlin)
model [5], the FENE-L (the closure approximation for finitely extensible nonlinear elastic dumbbell
model proposed by Lielens) model and the FENE-LS (the simplification of closure approximation
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for finitely extensible nonlinear elastic dumbbell model proposed by Lielens) model [6], which are
simplifications of a finitely extensible nonlinear elastic (FENE) spring. A macroscopic computational
model is fast and simple. Nevertheless, it fails to reproduce many complex phenomena observed in
experiments since the macroscopic model ignores microscopic details of molecular dynamics [7].

In addition, derivation of a constitutive equation from the kinetic theory [8,9] usually involved
closure approximations. In general, constitutive equations cannot be derived exactly from the kinetic
theory due to the so-called closure problem. Moreover, closure approximations have manifest effects
on the behavior of the model, and sometimes they can even lead to unphysical predictions [10].
Although the FENE-L and FENE-LS approximations in [6] give accurate simulations while avoiding
such unphysical phenomena, more reliable schemes rather than FENE-LS have been proposed [11–14],
even for strong flows [15].

As a microscopic approach, the atomistic modelling could provide the most detailed description
of the fluids dynamics. And the microscopic approaches were generally used to study the behaviour
of polymers in the vicinity of solid walls and geometrical singularities such as a reentrant corner.
This method is also employed to study the phenomena of wall slip and rupture [16–18]. However,
such simulations require a lot more computing resources compared to their macroscopic counterparts.
Thus the microscopic approach is currently limited to flow geometries of molecular dimensions.

The micro-macro techniques couple the coarse-grained molecular scale kinetic theory into the
macroscopic continuum mechanics. In a micro-macro simulation, representing polymer molecules by a
system of beads connected with massless springs leads to the Fokker-Planck equation, which governs
the evolution of the distribution function [19]. Then, the Kramers’ formula relates the viscoelastic
stress to the distribution function [20,21]. The Fokker-Planck equation, Kramers’ formula and
conservation equation, supplemented with suitable initial and boundary conditions, constitute the
generic multi-scale formulation of polymer solutions. Although these methods require a lot more
computing resources than conventional continuum computations, they directly employ kinetic theory
models in flow simulations, thus avoiding potentially inaccurate closure approximations.

Based on the theory of stochastic calculus, stochastic approaches replace the Fokker-Planck
equation with a mathematically equivalent stochastic differential equation, in which a Wiener
process models the Brownian forces acting on the polymer. Although the numerical solution to
stochastic difference equations usually introduces noises, it is more applicable in the case of higher
Weissenberg or Deborah number flows than comparable methods [22]. The first implementation of the
stochastic approach is the CONNFFESSIT (Calculation of Non-Newtonian Flow: Finite Elements and
Stochastic Simulation Techniques) method introduced by Öttinger and Laso [23]. At the beginning of a
simulation, a large number of sample particles are distributed uniformly over the entire flow domain.
These particles, each representing a polymeric configuration, are used for numerical approximation
to the stochastic process. And they are convected along flow trajectories as the simulation proceeds.
The stress tensor can be obtained through a Monte-Carlo integration. However, wild spatial oscillations
are displayed in the stress fields due to a non-uniform particle density and uncorrelated Brownian
forces acting on individual sample particles [24,25]. Prieto and Ellero also coupled the stochastic
simulations of polymer kinetic models to macroscopic flow solvers [26,27].

The Brownian configuration field (BCF) method by Hulsen et al. [28] made a breakthrough via the
use of correlated local ensembles. The BCF method initially defines the same local ensemble of sample
particles within each material element. Thus, it ensures a homogeneous and dilute polymeric density
in the physical space. Moreover, the correlated local Brownian forces lead to a uniform stress tensor
field in the flow space. By reducing the global accuracy of the stress tensor field, the BCF method
produces spatial smoothness in the stress and velocity fields. As a result, the stability of the numerical
solution increases considerably [29,30].

A large number of micro-macro simulations have been conducted to study the flow characteristics
of polymer solutions [1], but no systematic analysis was provided on the correlation between the
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molecular distributions and the macroscopic fluid flow. In this paper, we aim to demonstrate the
possibility of exploring the microscopic characteristics using micro-macro simulations.

In the remaining of this paper, we first present the governing equations on the macro- and
micro-scale in Section 2. Then, Section 3 discusses the spatial and temporal numerical discretization
schemes of the Navier-Stokes, Oldroyd-B and stochastic differential equations. In Section 4, we give
the implementation of a multi-scale numerical solver, BCFsolver. The mesh geometry and initial
conditions used in the simulations, along with the numerical results, are presented in Section 5. At last,
we validate our findings and discuss potential extensions.

2. Governing Equations

The flow of incompressible and isothermal dilute polymer solutions could be governed by the
macroscopic and the microscopic description, respectively. In this section the momentum balance
equation, the continuity equation and the stress tensor equation are first presented on the macro-scale,
then a Fokker-Planck and a stochastic differential equation are employed respectively to replace the
macroscopic stress tensor equation on the micro-scale.

2.1. Macroscopic Equations

We consider the isothermal and incompressible fluid of polymer solutions with density ρ. From the
macroscopic perspective, the motion of a polymer solution fluid can be governed by the momentum
balance and the continuity equation:

ρ(
∂uuu
∂t

+ uuu · ∇∇∇uuu) = −∇∇∇p + ηs∆uuu +∇∇∇ · τττp (1)

∇∇∇ · uuu = 0 (2)

where ηs is the solvent viscosity and τττp is the time-dependent viscoelastic stress contributed from the
polymer dynamics. The uuu and p are the velocity of the fluid and the pressure field, respectively.

The polymer contribution to the stress can be calculated through a constitutive equation. On the
macro-scale, the Oldroyd-B model is considered. The Oldroyd-B constitutive equation [31] can be
expressed as

τττp + λ
∇
τττp = 2ηpDDD (3)

where the symmetric deformation tensor DDD = 1
2 (∇∇∇uuu + (∇∇∇uuu)T), λ is the relaxation time of the dumbbell

system and ηp is the polymeric viscosity. The upper convected derivative of the polymer stress tensor
∇
τττp [31], is expressed as

∇
τττp ≡

∂τττp

∂t
+ (uuu · ∇∇∇)τττp − (∇∇∇uuu)T · τττp − τττp · ∇∇∇uuu (4)

The set of coupled Equations (1)–(3), supplemented with suitable initial and boundary conditions
is the so-called macroscopic formulation of viscoelastic flows.

By scaling the equations with the characteristic units Lc (characteristic length in macroscopic
flow), UUUc (characteristic fluid velocity), ρc (fluid density, scaling pressure term with 1

/
(ρUUU2

c )) and
normalizing the polymeric stress tensor with Lc

/
(UUUc(ηs + ηp)) , Equations (1)–(3) can be rewritten in

a dimensionless form as:

∂uuu
∂t

+ uuu · ∇∇∇uuu = −∇∇∇p +
1

Re
β∆uuu +

1
Re
∇∇∇ · τττp (5)

∇∇∇ · uuu = 0 (6)

τττp + De
∇
τττp = 2(1− β)DDD (7)
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in which the dimensionless parameters De (Deborah number), Re (Reynolds number) and β (viscosity
ratio) are defined as

Re =
ρcUUUcLc

ηs + ηp
, De =

λUUUc

Lc
, β =

ηs

ηs + ηp
. (8)

For simplicity, the same notation for the knowns are used in the dimensionless formulation as
in (1)–(3).

2.2. Microscopic Equations

From a microscopic viewpoint, the Oldroyd-B equation originates from a Hookean dumbbell
model. In this model, the molecules in polymer solution are represented by massive elastic dumbbells.
All of them consist of two Brownian beads connected with a linear spring. The spring denotes
inter-molecular forces between the two beads. The length and orientation of the spring describe
a dumbbell’s configuration indicated by a vector q̃̃q̃q, which has dimension of length. The spring force
reads as F̃̃F̃F(q̃̃q̃q) = Cq̃̃q̃q (C is the spring constant). In the remainder of this paper, a dumbbell’s configuration
vector q̃̃q̃q and the spring force F̃̃F̃F(q̃̃q̃q) are scaled as dimensionless quantity qqq and FFF(qqq), respectively.
Refer to [28] for more detailed information about how the models are nondimensionalized.

2.2.1. Fokker-Planck Approach

The probability of finding a dumbbell with a configuration qqq at (rrr, t) is indicated by ψ(rrr, qqq, t). ψ is
a probability density function (pdf) and fulfills ψ(rrr, qqq, t) ≥ 0,

∫
ψ(rrr, qqq, t)dqqq = 1 in the geometrical

domain and configuration space at any time of the simulation. By applying Newton’s second law to
the forces acting on a dumbbell system, we can get the dimensionless Fokker-Planck equation [31].

∂ψ

∂t
+∇∇∇r · (uuuψ) +∇∇∇q ·

(
(∇∇∇ruuu)Tqqqψ− 1

2De
FFF(qqq)ψ

)
=

1
2De

∆qψ (9)

The Equation (9) describes the evolution of ψ under the dumbbell’s spring force FFF(qqq).
In Equation (9) we dropped the diffusion term ∆rψ in physical space because the diffusion coefficient
scales quadratically in the micro-macro length scale ratio Lc/lc and is usually only of the order
10−8 [32].

In this paper, we employed two different spring forces [31] to characterize elastic forces:

FFF(qqq) = qqq, (Hooke) (10)

FFF(qqq) =
qqq

1− ‖ qqq ‖2 /b
, ‖ qqq ‖2≤ b (FENE) (11)

where b = ‖ qqqmax ‖2/lc is dimensionless unit for the dumbbell’s maximum extension qqqmax compared
to a characteristic micro length lc. Note that for the FENE spring force in Equation (11), the dumbbell’s
extension is restricted.

The pdf ψ in Equation (9) represents the polymeric configuration of the micro-system.
Now Kramers’ equation [31] reads as:

τττp =
αb,d(1− β)

De
(〈qqq⊗ FFF(qqq)〉 − III) (12)

where 〈·〉 =
∫
·ψ(rrr, qqq, t)dqqq denotes the expectation in configuration space and III is a unity matrix [28].

The prefactor αb,d specifies a spring dependent constant and is defined as

αb,d ≡
{

1, for Hookean dumbbells (b→ ∞),
b+d+2

b , for FENE dumbbells (d is the dimension of configuration space).
(13)
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The conservation of angular momentum leads to a symmetric τττp.

2.2.2. Stochastic Brownian Configuration Field Approach

The BCF method replaces the Fokker-Planck equation with a corresponding stochastic differential
equation [31].

dQQQt(rrr) =
(
− uuu · ∇∇∇QQQt(rrr) + (∇∇∇uuu)T ·QQQt(rrr)−

1
2De

FFF(QQQt(rrr))
)

dt +

√
1

De
dWWWt (14)

where QQQt is a stochastic process and represents the configuration vector qqq. The 3-dimensional
Gaussian Wiener process WWWt used to model Brownian forces is described by its first and second
moments 〈WWWt〉 = 0 and 〈WWWtWWWt′〉 = min(t, t′)III. To approximate the actual probability density function,
we solve Equation (14) for a number of stochastic realizations, namely Brownian configuration fields,
represented by QQQ(i)

t , i = 1, 2, · · · , NBCF. Using a Monte Carlo integration, the first moment 〈QQQt⊗FFF(QQQt)〉
in Kramers’ Equation (12) can be approximately calculated by

〈QQQt ⊗ FFF(QQQt)〉 ≈
1

NBCF

( NBCF

∑
i=1

QQQ(i)
t ⊗ FFF(QQQ(i)

t )
)

(15)

As a result, the polymer contribution to the extra-stress τττp can be given by

τττp ≈
αb,d(1− β)

De

(
1

NBCF

( NBCF

∑
i=1

QQQ(i)
t ⊗ FFF(QQQ(i)

t )
)
− III
)

(16)

From Equation (16), we can conclude that the accuracy of τττp and the computing time critically
depend on the choice of NBCF.

3. Numerical Methods

The momentum, continuity and constitutive equations are discretized through the finite volume
method, which computes each term of the governing equations via volume integral over a control
volume, which assumes a local conservation of physical laws. The 2nd-order Gauss MINMOD and
Gauss linear scheme are employed to discretize the spatial terms. Temporal terms are discretised
through a simple Euler scheme. The resulting equations would finally reduce to linear systems. As a
result, we can get the solutions of these equations at each time step through iterative solvers predefined
in OpenFOAM. The conjugate (PCG) and biconjugate gradient (PBiCG) methods are typical linear
solvers in the toolbox. More details can be derived from the OpenFOAM Manual [33].

The discrete elastic-viscous split stress (DEVSS) numerical strategy of Guénette and Fortin [34]
was employed to solve the governing equations presented in Section 2. And the numerical method
modifies the PISO (pressure-implicit split-operator) algorithm by explicitly introducing polymer stress
unknowns into the momentum equation as source terms. The momentum equation is rewritten as

∂uuu
∂t

+ uuu · ∇∇∇uuu− ηs

ρ
∆uuu−

∇∇∇ · τττp

ρ
= −∇∇∇p

ρ
(17)

Discretized through finite volume method, this equation can be written as a linear system:

AAAuuu(n+1) = HHHn −∇∇∇[p]n (18)

where the polymer stress contribution is included as a source term in the symbol HHHn. The convective
and viscous terms are implicitly discretized into the matrix AAA of the linear system. The square brackets
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[·] indicates numerical approximation of the corresponding variable; n and n + 1 signify the past and
present times of the variable, respectively. Multiplying Equation (18) by AAA−1 yields

uuu(n+1) = UUU(n+1) − AAA−1∇∇∇[p]n (19)

where UUU(n+1) = AAA−1HHHn. A Poisson equation is derived as Equation (20) for solving the pressure in
the pressure-correction step by taking the divergence of Equation (19) and applying the continuity
equation (∇∇∇ · uuu = 0).

∇∇∇ ·UUU(n+1) =∇∇∇ · (AAA−1∇∇∇[p])n+1 (20)

Equations (19) and (20) are the key steps for the PISO algorithm. In the BCFsolver, the consitutive
equation part is replaced with a microscopic BCF method to solve the viscoelastic stress tensor.
A semi-implicit Eular method is employed to solve the equations of the Brownian configuration fields.
The Equation (14) can be rewritten as(

1 +
∆tn

2De(1− ‖ QQQ(i)
n+1(rrr) ‖2 /b)

)
QQQ(i)

n+1(rrr) = QQQ(i)
n (rrr) +

(
− uuun · ∇∇∇QQQ(i)

n (rrr) + (∇∇∇uuun)T ·QQQ(i)
n (rrr)

)
∆tn

+

√
∆tn

De
NNN(0, 1)(i)

(21)

Equation (21) is used to get the configuration field QQQi(rrr, t) at time tn+1 for the FENE spring force.
In case of the Hookean spring force, replace the 2De(1− ‖ QQQ(i)

n+1(rrr) ‖2 /b) with 2De. NNN(0, 1) denotes a
triple of independent Gaussian random variables with zero mean and variance one.

To compute the polymer stress tensor, Equation (16) can be rewritten using semi-implicit Eular
method as

τττn+1
p (rrr) =

αb,d(1− β)

De

(
1

NBCF

(
∑

i
QQQ(i)

n+1(rrr)⊗ FFF(QQQ(i)
n+1(rrr))

)
− III
)

(22)

Coupling the macroscopic and microscopic parts, the iterative algorithm for solving the multi-scale
model is summarised as Algorithm 1.

Algorithm 1: The iterative algorithm to solve the multi-scale model.
Data: mesh data, initial conditions
Result: uuu, p, τττp

1 read the mesh data and the initial conditions;
2 initialization;
3 while tn+1 not reach the end of the simulation time do
4 for i = 1 to NBCF do
5 solve Equation (21) for to get the configuration field QQQi(rrr, t) at time tn+1;
6 end
7 solve Equation (22) to get the polymer stress tensor τττn+1

p (rrr);
8 solve the discretised momentum Equation (17) to obtain the estimated components UUU(n+1)∗;
9 Using the estimated velocity UUU(n+1)∗, solve the pressure-correction Equation (20) to obtain

the pressure field p(n+1)∗;
10 Solve the corrected velocity field uuu(n+1)∗ by solving Equation (19);
11 Repeat the steps 8∼10 using the corrected p(n+1)∗, uuu(n+1)∗ until all corrections are

negligibly small for the solutions at the present time uuu(n+1), p(n+1) and τττn+1
p ;

12 n← n + 1;
13 end
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4. BCFsolver Implementation

To solve the micro-macro governing equations, we implement a multi-scale solver named
BCFsolver according to the numerical Algorithm 1 mentioned above. In this section, we specify
the implementation process of the BCFsolver.

4.1. Overall Structure

OpenFOAM is a free, open source platform that not only provides us with a rich set of application
solvers but also allows users to write custom solvers for specific applications based on their original
solvers. It is often used to study the fluid dynamics of polymer solutions [35,36]. OpenFOAM is
written in C++ and provides user interfaces that can describe partial differential equations in a natural
language-like way, which makes it easy to extend the theoretical models of existing solvers.

The system organization of the BCFsolver based on the OpenFOAM is described in Figure 1.
The solver module designed by us based on the OpenFOAM application framework is mainly the part
deepened in gray.

Figure 1. Numerical solver system organization.

According to the solution process, the entire numerical solution process includes three parts:
pre-processing, numerical solution and post-processing. The pre-processing part performs mesh
generation and mesh decomposition. Mesh generation breaks down a continuous geometric space
into tiny grids, and the “blockMesh” tool generates corresponding grids according to the input
configuration files. For complex geometries, OpenFOAM can import a mesh generated by third-party
software tools. Mesh decomposition will decompose the grid into multiple parts for parallel computing.

The post-processing part mainly includes the data merging and the visualization of the results.
After parallel computation, the results are distributed in the corresponding folders of each processor.
Data merging consolidates the corresponding calculation results to analyse using the “reconstructPar”
tool. OpenFOAM integrates an open source visualization software, “paraView” (5.0.1, Kitware lnc.,
Clifton Park, NY, USA), which enables basic presentation and analysis of results. At the same time,
OpenFOAM can also output a variety of different data formats for third-party software to visualize.

The numerical solution includes four layers: the domain language interface, the discretization
method, the linear solvers and the parallel communication interfaces. The parallel communication
interfaces are developed based on the MPI library and provides communication facilities in the
form of APIs (Application Programming Interface). A variety of parallel solvers are used to solve
linear systems, and the iterative solution of a linear system is achieved by calling the underlying
parallel communication interface. By using the FVM (Finite Volume Method) method, the differential
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equations are discretized into the form of a linear system. Domain language interfaces are the key
to writing complex fluid solvers and provide the basic interfaces for solving differential equations in
theoretical models.

4.2. Domain Programming Interface

In this section, we specify the domain programming interfaces that are closely related to the
solver implementation. It can be concluded that the core of the numerical solution is to discretize the
differential equation according to the approaches described in Section 3. After the partial differential
equation is discretized using the finite volume method, it can be transformed into a linear equation.

AAAxxx = bbb (23)

where AAA is a coefficient matrix and constant vector bbb is usually called source vector. Column vector xxx
consists of corresponding values on different spatial grids. The theoretical model consists of a series
of partial differential equations, each of which includes multiple terms, such as time derivatives,
convection terms, Laplace terms, and so on. These items can be separately discretized by the interface
functions provided by the framework.

The finite volume method first integrates each term on mesh volumes, which are then linearized
in a certain discrete format as part of the linear Equation (23). The discrete format can be specified
either by writing a program or by reading the input file at run time. Discrete programming equations
in OpenFOAM are defined as static member functions for both classes, finite Volume Method (fvm)
and finite Volume Calculus (fvc). The member function of fvm implicitly discretizes the difference
equations into the form of a coefficient matrix, which is then added to the left side of the linear system.
The member function of fvc returns the corresponding field vector through explicit discretization,
eventually joining the right source term.

Major discrete interfaces provided in OpenFOAM are shown in Table 1. The details can be found
in the OpenFOAM manual [33].

Table 1. The main partial differential equations discrete programming interface in OpenFOAM.

Differential term Explicit/implicit Model expressions Function name

laplace term explicit/implicit ∇2φ laplacian(phi)
∇ · Γ∇φ laplacian(Gamma,phi)

time derivative term explicit/implicit ∂φ
∂t ddt(phi)

∂ρφ
∂t ddt(rho,phi)

2-nd order time derivative term explicit/implicit ∂
∂t (ρ

∂φ
∂t ) d2dt2(rho,phi)

convection term explicit/implicit ∇ · (ψ) div(psi,scheme)
∇ · (ψφ) div(psi,phi,word)

div(psi,phi)
divergence term explicit ∇ · χ div(chi)

gradient term explicit ∇χ grad(chi)
∇φ gGrad(phi)

lsGrad(phi)
snGrad(phi)

snGradCorrection(phi)
source term implicit ρφ Sp(rho,phi)

The function name column contains description of the function parameters, where phi can
represent various types of body fields, including scalar, vector, and tensor types; rho is a scalar field;
psi is a surface field that can be derived from interpolating the value stored in the volume center
into the surface through the finite volume method; chi can represent a surface field or a body field.
Note that highest dimension of the data type is a 9-dimensional tensor field, so the gradient term can
not operate on the tensor field.
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The differential operators corresponding to the governing equations in the solver are included
in Table 1, so we can implement the discretization of theoretical models based on the above
programming interface.

4.3. Implementation

The numerical solver, BCFsolver, consists of two parts. The core part is the solver’s main program,
as displayed in the left side of Figure 2. Before starting the iteration of the numerical solution algorithm,
the main program first needs to read the input parameters through the “argList” module. If the current
program is executed in parallel, “parRun” would be called to start the parallel process. “parRun” calls
initialization interface of the underlying parallel library to start MPI and complete the initialization of
the process and the communication domain. “createTime” initializes the simulation program’s time
control module, which controls the total simulation time, the time step size and so on. The “createMesh”
module constructs the grid data structure based on the grid information entered. All the physical
variables in the program are constructed based on the grid data structure. Therefore, the “createMesh”
module must be initialized before “createFields”. “createFields” initializes the various field variables
needed in the simulation based on the grid data, including pressure field p, velocity field uuu, viscoelastic
stress field τττp. The numerical solution algorithm module implements the iterative solution process
described in Algorithm 1.

Figure 2. Numerical solver module diagram.

The main program of the BCFsolver also needs dynamic running configuration information for
execution. These running configurations include three parts, which are respectively stored in the “0”,
“system” and “constant” file directories. The “0” directory defines the value of each field variable at the
initial time. The “system” directory defines the key configuration information for solving the system,
which includes the four parts shown in Figure 2. The “constant” folder is configured with mesh data
and model parameters.

The controlDict file contains process control variables of the simulation program. The start time
of the simulation is generally set to 0. You can also continue from the last simulation saved interrupt.
The end time determines the total physical length of the simulation process. The deltaT determines the
time step of discrete simulation. To ensure the accuracy of simulation, the time step can not be set too
large. It is generally considered that the largest time step should ensure that the fluid advancement
distance should not be greater than the width of one grid in a single time step. Therefore, Courant
number is defined as Co = vvvm∆t

/
∆l to describe the ratio of the distance of fluid movement to the

width of the grid in a time step, where vvvm is the maximum fluid velocity, ∆t is the size of the time
step, and ∆l is the mesh width. The smaller the Courant number, the higher the time accuracy of the
simulation, leading to heavy computing burden. The maximum Courant number is significantly less
than one in general. The Courant number is an important reference for setting the time step. Therefore,
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the controlDict provides the option of dynamically adjusting the time step according to the value of Co.
We can set a maximum Courant number “maxCo” and a maximum time step “maxDeltaT”, and the
size of the time step is dynamically adjusted depending on the fluid velocity. The simulation results
need to be written to a file for post-processing. The writeInterval parameter defines the interval at
which data is written.

The decomposeParDict file defines a grid-based parallel division. Different partitioning methods
can be used to decompose the grid data into individual processors, depending on the complexity of
the geometry of the simulation problem.

The fvSolution and fvScheme respectively define the linear equations solver used in the algorithm
and numerical discrete format. The most basic linear equations solving algorithm is the conjugate
gradient method, and the numerical solver implemented in this paper mainly uses the algorithm.
The specific configuration is shown in Table 2.

Table 2. The basic configuration of linear equations solver.

Field variables Solver Preprocessor Error limit

p PCG GAMG 10−8

uuu PBiCG GAMG 10−8

τττp BICCG DILU 10−7

QQQi PBiCG DILU 10−10

The essence of a FVM calculation process is to satisfy the conservation law by integrating each
differential term over the control volume in the equation. The numerical discretization of equation
items determines the process of transforming field data on discrete grids into a system of linear
equations, which has an important influence on the accuracy and numerical stability of the solution
process. Discrete formats used in the solver are displayed in Table 3.

Table 3. Numerical discrete format used in the solver.

Equation terms Discrete format Accuracy

First-order time derivative Euler 1st-order
Gradient Gauss linear 2nd-order

Divergence Gauss Minmod/linear 2nd-order
Laplace Gauss linear corrected 2nd-order

Constant directory contains two parts of information. The first part is the definition of the model
constants. All parameters can be set in the transportProperties, such as relaxation time, viscosity, fluid
density and so on. The second part is the grid data definition.

5. Results and Discussion

We ran multi-scale simulations with different configurations on a cluster located in the State Key
Laboratory of High Performance Computing of National University of Defense Technology. In this
cluster, each computing node contains 12 Intel Xeon E5-2620 2.10 GHz CPU cores and a total main
memory of 16 GB. Each calculation presented in the paper costs around 2∼7 days on 8 CPU cores.

5.1. Problem Specification

For an unsteady Poiseuille flow in a planar channel, we assume no-slip boundary conditions at
the channel wall. We employ a channel of length 1.0 in the x-direction, height 0.1 in the y-direction
and of width 0.01 in the z-direction. We prescribe the velocity component ux at the inlet and outlet
boundary. Figure 3 shows the two-dimensional geometry and the initial boundary conditions.
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Figure 3. Poiseuille flow in a planar channel and the velocity component uy = uz = 0. We perform
measurements on the line x = 0.498 or at the grid points P1 = (0.498, 0.01), P2 = (0.498, 0.03),
P3 = (0.498, 0.05), P4 = (0.498, 0.07) and P5 = (0.498, 0.09).

The parameters of the micro-macro model need to be set in the configuration file,
“transportProperties”, located in the “constant” folder. Some of the parameters remain constant
throughout all of the simulations and are displayed in Table 4:

Table 4. Parameters used in simulations.

Parameter ηs ηp Wi λ

Value 0.05 0.40 1.0 0.6

In the simulations, we test the designed micro-macro numerical solver on different meshes. Table 5
lists the different number of grid cells and the corresponding mesh width used in our simulations.

Table 5. Mesh characteristics on different levels l used for the simulations.

l ∆xl,∆yl ∆zl Cells/direction Total cell

1 5× 10−3 0.01 200× 20× 1 4000
2 4× 10−3 0.01 250× 25× 1 6250
3 2.5× 10−3 0.01 400× 40× 1 16,000
4 2× 10−3 0.01 500× 50× 1 25,000
5 1.25× 10−3 0.01 800× 80× 1 64,000

5.2. Simulation Results

Since the stochastic approach is much more demanding in terms of memory and computing
resources, we first perform the simulations on the mesh level l = 2. The fluid density ρ = 0.1 at first.
And we compare the results for the Oldroyd-B model, the Hooke model and the FENE model. For the
Hookean dumbbell model and FENE model, the number of stochastic realizations NBCF = 800 and
the dumbbell’s extension parameter b = 100. Then we test the Hookean dumbbell model for different
parameters or different mesh levels. At last, we concentrate on the FENE model and investigate this
model under different conditions. More importantly, we give the molecular distribution and stretch of
2D viscoelastic Poiseuille flow.

The snapshots of different field variables for corresponding models are illustrated from Figures 4–6.
For comparison, the visualized time points in these figures are chosen in a steady state at t = 1.999185.
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Figure 4. The snapshots: (a) of the velocity field uuu for Oldroyd-B model with l = 2, ρ = 0.1 at
t = 1.999185; (b) of the pressure field p for Oldroyd-B model with l = 2, ρ = 0.1 at t = 1.999185; and (c)
of the stress tensor field τττp for Oldroyd-B model with l = 2, ρ = 0.1 at t = 1.999185.

Figure 5. The snapshots: (a) of the velocity field uuu for Hooke model with l = 2, ρ = 0.1, NBCF = 800
at t = 1.999185; (b) of the pressure field p for Hooke model with with l = 2, ρ = 0.1, NBCF = 800 at
t = 1.999185; and (c) of the stress tensor field τττp for Hooke model with with l = 2, ρ = 0.1, NBCF = 800
at t = 1.999185.

Figure 6. The snapshots: (a) of the velocity field uuu for FENE model with l = 2, ρ = 0.1, NBCF = 800,
b = 100 at t = 1.999185; (b) of the pressure field p for FENE model with l = 2, ρ = 0.1, NBCF = 800,
b = 100 at t = 1.999185; and (c) of the stress tensor field τττp for FENE model with l = 2, ρ = 0.1,
NBCF = 800, b = 100 at t = 1.999185.
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From Figures 4–6, we can draw a conclusion that the snapshots of uuu and p fields are almost the
same for the three models. However, for the stress tensor field τττp, the snapshot of τττp for Oldroyd-B
model is different from that for the other two models. For the Hookean dumbbell and FENE model, it is
obvious that the τττp is not so symmetric as that for the Oldroyd-B model. The Brownian configuration
field method introduces stochastic noise and the τττp is derived from the average of local ensemble of
sample particles through mathematical statistics. It might lead to additional error to the solution. As a
result, the noise-free macroscopic model yields better results than the multi-scale approach.

In Figure 7, we examine the velocity field uuu at position P1 = (0.498, 0.01) over time. The curve of
velocity component ux is plotted with zoomed pictures. And the zoomed region is indicated with red
rectangles in the full picture. Compared to the macroscopic result, the curves of multi-scale methods for
Hooke and FENE model show minor changes caused by stochastic noise. But they all exhibit overshoot
at the beginning of the simulation. We cannot expect to yield better results for the multi-scale model
than for the corresponding macroscopic model because of the introduced stochastic noise. However,
it is possible that the simulation with higher NBCF performs better with respect to the macroscopic
Oldroyd-B solution.

Figure 7. The evolution of horizontal velocity component ux for different models (Oldroyd-B model,
Hooke model and FENE model) over time at point P1 = (0.498, 0.01).

5.2.1. Hooke Model

Since all unknowns solely depend on y when the unknown fields evolve into steady state,
we display the unknowns in a steady state of the macroscopic and Hookean dumbbell models along
the y-axis. To investigate the effects of different situations, we change only one parameter every time
we test the effect of corresponding one. For example, we change the number of stochastic realizations
NBCF and the other parameters remain the same with those set in Figure 5. Analogously, we adjust
Re (Reybolds number) through changing the density of the fluid. We also change the mesh levels
according to Table 5 and carry on the simulation for the Hookean dumbbell model on different mesh
levels. Figure 8 shows the evolution of stress component τxx along y-axis for different parameters of
the Hookean dumbbell model.

In Figure 8a, the minima of these curves increase as the number of stochastic realizations NBCF
becomes larger. The minima of curve at NBCF = 2000 is close to 0 and the symmetry improved a lot.
It can be concluded that the errors of simulation results become smaller with the increase of NBCF.
Figure 8b shows that the curves of stress tensor component τxx have no difference among each other.
We can draw a conclusion that the value of Re number imposes little effect on the simulation of Hooke
model. In Figure 8c, these curves are close to each other for different mesh levels although there
are some errors. The results of stress component τxx for Hooke model show systematic deviations
compared to the equivalent Oldroyd-B constitutive model. Hooke model introduces stochastic noises.
However, we employ low-order temporal discretization schemes which may impose less control on
the noises than the higher ones. We will explore the reason in further study.
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Figure 8. Stress component τxx on the vertical channel wall during the steady state at t = 1.999185:
(a) for different NBCF of Hooke model; (b) for different Re number of Hooke model; and (c) for different
mesh levels of Hooke model.

Figure 9 shows the evolution of velocity component ux along y-axis for different parameters of
the Hookean dumbbell model. For comparison, we also present the simulation result of the equivalent
Oldroyd-B constitutive model in corresponding graphs.
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Figure 9. Velocity component ux on the vertical channel wall during the steady state at t = 1.999185:
(a) for different NBCF of Hooke model and Oldroyd-B model l = 2; (b) for different Re number of
Hooke model and Oldroyd-B model l = 2; and (c) for different mesh levels of Hooke model and
Oldroyd-B model l = 2.

From Figure 9, we can see that the velocity component ux of Hooke model achieved good
consistency with the Oldroyd-B model. It can be concluded that the Hooke model can be employed in
the simulation for the flow behaviour in 2D planar channel.

5.2.2. FENE Model

For the FENE model, we get the simulation results about stress tensor component τxx and velocity
component ux for different conditions along the y-axis. We first change the Re number of the FENE
model by adjusting the density of the polymer solutions. At the meantime, the stochastic realizations
are set NBCF = 800 per grid cell and the simulation is implemented on the mesh level l = 2. For the
FENE model, the dumbbell’s extension parameter b is restricted and we set the extension parameter
b = 100. The results are presented in Figure 10.
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Figure 10. (a) Stress component τxx; and (b) velocity component ux on the y-axis during the steady
state at t = 1.999185 for different Re number of FENE model.

In Figure 10, the curves of stress tensor component τxx have no difference among each other and
so does velocity component ux. It can be concluded that the value of Re number imposes little effect
on the simulation of the FENE fluid flow in a planar channel.

We change the mesh levels according to Table 5. We set ρ = 100, NBCF = 800, b = 100 again for
the simulation. The simulation results of stress tensor component τxx and velocity component ux on
different mesh levels are presented and compared in Figure 11.
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Figure 11. (a) Stress component τxx; and (b) velocity component ux on the y-axis during the steady
state at t = 1.999185 for different mesh levels of FENE model.

For the stress tensor component τxx, the symmetry of the curve becomes better as the number of
mesh cells increases. For the mesh level l = 5, the curve of τxx component performs the best among
these mesh levels. The curves of velocity component ux are close to each other for different mesh levels.
The ux component at y = 0.5 becomes closer to the maximum u = 0.0175 as the cell number increases.
It can be concluded that the simulation results perform better with the increase of mesh density.

To investigate the effect of the number of stochastic realizations NBCF, we set the parameters
ρ = 0.1, b = 100 and the simulations run on mesh level l = 2. Figure 12 displays the stress tensor
component τxx and velocity component ux along the y-axis.
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Figure 12. (a) Stress component τxx; and (b) velocity component ux on the y-axis during the steady
state at t = 1.999185 for different NBCF of FENE model.

For the stress tensor component τxx, the minima of these curves increase as the value of NBCF
becomes larger. Compared with NBCF = 1000, the symmetry of the curve at NBCF = 2000 has improved.
The curves of ux component coincide with each other. From Figure 12, we can draw a conclusion that
the accuracy of the solutions to the FENE model improved as NBCF increases.

We also investigate the effect of the dumbbell’s extension parameter b. The other parameters are
set as follows: ρ = 0.1, NBCF = 800. Again, the simulations run on the mesh level l = 2. Figure 13
displays the results.
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Figure 13. (a) Stress component τxx; and (b) velocity component ux on the y-axis during the steady
state at t = 1.999185 for different dumbbell’s extension parameter b of FENE model.

The curves of the stress tensor component τxx nearly coincide with each other when b > 10.
Compared with other b values, the values of τxx component are bigger than that of b = 10. It means
that the molecules are extended longer with larger dumbbell’s extension parameter. Corresponding to
the result of the τxx component, the curve of ux component of b = 10 deviates from the curves of other
values of b. In order to study the stretch of molecules in FENE model, we set the dumbbell’s extension
parameter b = 100 in the simulations of Section 5.3.

The results of the FENE model with the dumbbell’s extension parameter b = 100 is very close
to the Hooke model for the present conditions. So we test and make a comparison. The simulations
run on the mesh level l = 2 with ρ = 0.1 and NBCF = 800 for both models. The parameters remaining
constant throughout the simulations are displayed in Table 4.
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As Figure 14 shows, both the stress component τxx and the velocity component ux are very close
to each other. It can be concluded that the FENE model with the dumbbell’s extension b = 100 displays
almost the same as the Hooke model in the simulation of the flow behaviour in 2D planar channel.
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Figure 14. (a) Stress component τxx; and (b) velocity component ux on the y-axis during the steady state
at t = 1.999185 for FENE model with the dumbbell’s extension parameter b = 100 and Hooke model.

5.3. Molecular Distribution

To investigate the molecular distribution and stretch of 2D viscoelastic Poiseuille flow,
We designed a new scalar Field D to describe the length of the extended molecules. We called
the scalar Field D as “stretch length”. The stretch length D is defined as:

D =‖ QQQt ‖=
√

QQQ2
t(x) +QQQ2

t(y) +QQQ2
t(z) (24)

where QQQt(x), QQQt(y), QQQt(z) represent the component of QQQt in the x, y, z directions, respectively.
We implement the simulation with the parameters ρ = 0.1, NBCF = 800, b = 100 on mesh level

l = 2 for FENE model. The stress tensor component τxx and corresponding D component along the
y-axis, as well as the distribution of the molecules and corresponding probability density function
(pdf), are presented in Figure 15.

P3 is located in the center of the planar channel; P1, P2 and P4, P5 are vertically symmetrically
located on both sides of P3. The curve of τxx component shows that the value of τxx at P3 is very
close to 0. It means that the molecular distribution there was nearly not stretched out. As a result,
the distribution of the molecules at P3 remain in line with the normal distribution. However, the values
of τxx component at P1, and P5 are nearly the same and both are bigger than 0. Therefore, the molecular
distribution there are stretched and the molecules are distributed symmetrically. And so do P2 and P4.

0 0.02 0.04 0.06 0.08 0.1

y-axis

-0.2

0

0.2

0.4

0.6

st
re

ss
 c

o
m

p
o

n
en

t 
τ

x
x

τ
xx

(a)

0 0.02 0.04 0.06 0.08 0.1

y-axis

1.2

1.25

1.3

1.35

1.4

D
 c

o
m

p
o

n
en

t

D

(b)

-4 -2 0 2 4

Q
x

-4

-2

0

2

4

Q
y

P3=(0.498,0.05)

(c)

0 2 4 6 8 10 12

Q
2

0

0.05

0.1

0.15

d
en

si
ty

 ψ(Q2
)

(d)

Figure 15. Cont.
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Figure 15. (a) Stress component τxx on the y-axis; (b) stretch length D on the y-axis; (c) the distribution
of molecules Q3 at point P3 = (0.498, 0.05); (d) corresponding probability density function (pdf) at point
P3 = (0.498, 0.05); (e) the distribution of molecules Q1 at point P1 = (0.498, 0.01); (f) the distribution of
molecules Q5 at point P5 = (0.498, 0.09); (g) the distribution of molecules Q2 at point P2 = (0.498, 0.03);
(h) the distribution of molecules Q4 at point P4 = (0.498, 0.07); (i) corresponding probability density
function (pdf) at point P1 = (0.498, 0.01); (j) corresponding probability density function (pdf) at point
P5 = (0.498, 0.09); (k) corresponding probability density function (pdf) at point P2 = (0.498, 0.03);
and (l) corresponding probability density function (pdf) at point P4 = (0.498, 0.07).

6. Conclusions

The BCF method provides a new perspective to study the rheological characteristics of polymer
solutions using a multi-scale numerical solver. In this paper, we gave a full multi-scale model,
which includes the macroscopic equations governing the hydrodynamics of the Newtonian solvent,
and the microscopic equations governing the motion of the polymer molecules in the solution.

To solve the governing equations numerically, a multi-scale solver was implemented based
on the open source CFD (Computional Fluid Dynamics) toolbox, OpenFOAM. The architecture of
the solver and the numerical techniques used in the solver were discussed in detail. The simple
two-dimensional Poiseuille flow with various configurations was run as the baseline. The key variable
in the simulation, such as the velocity component ux, achieved good consistency with macroscopic
counterpart. What’s more, we designed a new scalar Field D to quantitatively describe the local stretch
of molecules, thus the global correlations between the molecular distributions and the macroscopic
polymer solutions could be analyzed.

The multi-scale simulation results of the OpenFOAM-based solver showed great potential to
study complex engineering problems involving dilute polymer solutions. In the future, we will
apply this approach to three-dimensional complex geometries. In order to reduce the computation
time, we will transport the multi-scale solver to high performance clusters and focus on parallel
optimization techniques.
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