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Introduction

Reasonable simulations with Finite Element (FE) 
techniques require useful 3D-models. Such customized 
3D-models of long bones like the tibia or femur can be 
calculated from cross-sectional images obtained in vivo by 
peripheral Quantitative Computer Tomography (pQCT).

Single-slice pQCT machines (e.g. Stratec XCT series) 
are used in many labs around the world. These machines 
are small, involve low radiation doses and yield highly 
valuable information about volumetric bone mineral density. 
However, the acquisition time for one cross-sectional image 
is typically about 90 seconds. Therefore it is not easy to 

scan an entire tibia bone with slice interspacing of less than 
1 cm. In consequence, data sets are typically obtained with 
larger inter-slice distances. This makes the computation of 
a reasonable 3D bone model with adequate interslice 2D 
resolution difficult. Ideally, a 3D-model consists of isometric 
voxels at an internal resolution of about 0.5 mm typical of the 
resolution of conventional pQCT.

In an earlier study we had worked with slice distances 
of 1-2 cm and were looking for adequate interpolation 
mechanisms in order to apply FE simulation to further exploit 
the data of that study. Commercial software packages (e.g. 
MIMICS Materialise, Belgium) provide tools for generating 
3D-models out of a series of cross-sectional scans. This kind 
of software is able to generate 3D surface models based on 
the surface pattern under a given gray-value threshold. It 
also allows for smoothing of the model surfaces and thereby 
interpolation of the outer shape. However, the gray-value 
distribution within the surface model becomes distorted 
during this process or even gets lost, as the contour shaping 
functions ignore the gray-values inside. Moreover, the quality 
of the shape smoothing depends very strongly on the shape 
transition from slice to slice: while the smoothing might be 
acceptable for the steady changes in the mid-shaft of a long 
bone it produces a terraced design for the curved surfaces of 
the epiphyses. 
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Therefore, we looked into existing interpolation methods. 
The work on image processing problems has produced a 
wealth of interpolation techniques1, but most of them deal 
with interpolation of features inside an image. There are much 
fewer approaches dealing with 3D inter-image interpolation. 
Thus, shape based interpolation based on surface evolution, 
but neglecting the gray value distribution has been used 
for bone shape interpolation2, image based dosimetric 
models3, organ and tissue discrimination4,5, tissue feature 
displacement6 and CT scanning planning7. Other techniques 
use classical interpolation algorithms, such as the ‘nearest 
neighbour’ approach, trilinear or B-spline techniques in 
combination with segmentation to a bone-no bone threshold, 
applied for example for the quantitative bone morphometry 
in the context of the registration of time-lapsed micro-
CT scans8. All those approaches focus more or less on the 
surface shape and neglect any gray-value distribution inside 
the volume of the given structure. We found in preliminary 
work that classical interpolation alone, without doing any bone 
to no-bone segmentation, results in acceptable interpolates 
for the gray-value distribution inside the bone volumes but 
fails completely when it comes to a shift of sharp bone edges. 
Initial tests with the Matlab (The MathWorks Inc., Natick, MA) 

function “interpn” for multidimensional interpolation showed 
that the result introduces discontinuities of the bone surface 
that are not physically meaningful. Even in a more recent 
work that used an advanced projection-on-convex-curve-set 
(POCS) technique9, this principle problem seems unsolved 
when looking at the presented interpolates (of MRI images 
in this case) which show a pronounced terrace pattern at the 
tissue boundaries. Overlaying a later segmentation against a 
threshold (as in7) might mitigate that behaviour sufficiently, 
but then, as a downside, the gray-value distribution is lost. 
We also looked into morphing techniques10 but decided that 
the available methods did not really address the special 
problems of our case. Thus we had to find a solution that 
combines a shape interpolation with an interpolation of gray-
values. The solution should be simple and easy to implement 
and not as complex as a Kriging algorithm11. In this paper we 
present a novel algorithm that takes radial profiles as the 
baseline for interpolation. 

Methods

As stated before, the principle of the method is to perform 
two interpolations at the same time: an interpolation of the 

Figure 1. Typical stack of pQCT-scans of the proximal part of a human tibia; slice distance 10 mm.

Figure 2. terraced shape of a surface model generated with MIMICS (MIMICS Research v 18.0, Materialize) from 10 mm spaced pQCT 
scans of the proximal part of a human tibia; A: isometric view, B: a coronal sectional view.
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outer shape of a bone as well as an interpolation of the internal 
gray-value distribution representing the inner structure of 
the bone and its local mineral density. This is achieved by 
taking the radial profile of this entity as the baseline element 
for interpolation. 

Figure 3 depicts the principles of the method. The term 
‘radial profile’ means the (one-dimensional) distribution of 
gray values along a radial ray starting at a point near the 
center of a cross-section of a circular bone structure. The 
principle idea is quite straightforward: A complete set of 
radial profiles for the entire 360° of a given cross section 
scan of a long bone provides us with a good description of:
1) �the outer shape by the radial position of the onset of bone 

density (a distinct jump in density when approaching the 
bone from the outside) as well as of

2) �the internal structure by the profile of gray-values along 
the radial rays. 

That allows for interpolation of the shape by interpolating 
the position of the bone onset and the internal structure by 
interpolating the gray-value-profile taking the bone onset 
point as a reference point. Performing this for a complete set 
of radial rays an interpolated slice is built up.

The interpolation technique itself can utilize linear or cubic 
spline interpolation. An arbitrary factor can be selected that 
defines how many equidistant slices should be generated 
between the two base slices.

Figure 3 shows the situation for the more simple linear 
interpolation approach. In this case the interpolation 
procedure is as follows:

Select two adjacent slices as base slices for the 
interpolation:
a) �Provide the original distance between the base slices and 

the desired distance between the interpolated slices; an 
interpolation factor will be calculated; e.g. if it is needed to 
have interpolated slices with a distance of 2 mm starting 
from 10 mm distant base slices the interpolation factor is 5.

b) �Manually: Select a center point in one of the base slices 
(red cross in Figure 3); it is not necessary to hit the real 
center correctly.

c) �Manually: Select a point outside the bone cross-section 
(e.g. yellow cross in Figure 3); the distance between the 
center point and this second point will define the radius of 
a circle around the center point; take care that the entire 
bone cross-section of both base slices is inside this circle. 
It defines the maximum length of a radial ray and the 
interpolation area; all values outside this circle will not be 
considered.

d) �Take one of the base slices as the baseline of the new 
interpolated slice. Inside a 360 degrees loop with an 
arbitrary angle step size (normally 1° or 0.5°) around the 
center point, and for every angle (and corresponding radial 
ray) do the following steps:

Figure 3. Scheme of the linear interpolation; the case for an interpolation factor of 2 (only one interpolated slice at half distance) is 
depicted; red cross: manually selected center; yellow cross: manually selected radius of the interpolation area; left side: first base slice 
with one of the radial rays in blue; right side second base slice; corresponding radial ray in green. The dimension of the radial rays is 
distance from center in number of voxels. Depending on the direction of the ray w.r.t. the square shaped voxels the absolute distance is 
varying. The arrows show the shifting of the radial rays during the procedure (see in the text).
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e) �Generate the two radial profiles for the base slices (blue for 
slice #1, green for slice #2 in Figure 3).

f) �Define the onset point of bone related gray-value (the outer 
edge of the bone; see explanation in Figure 3). These points 
will be reference points for the following interpolation 
processes.

g) �Perform linear interpolation of bone onset: the bone onset 
for the interpolated profile is linearly interpolated between 
the two reference points for the new target slice taking 
interpolation factor and targeted position into account 
(see a quantitative description in the annex 1).

h) �Perform linear interpolation of the gray values in the 
following way: one of the base slice profiles is shifted (see 
blue profile in Figure 3, shifted profile in blue dashed line), so 
that the reference points are congruent; then the congruent 
profile values of the two profiles along the radial beam are 
linearly interpolated taking interpolation factor and targeted 
position into account (result is dashed orange line in Figure 
3; see a quantitative description in the annex 1).

i) �Position the new radial profile along the radial beam 
corresponding to the new bone onset point (see final 
position as orange curve in Figure 3).

j) �Overlay it to the new slice and modify the corresponding 
gray-values of the voxels touched along this radial ray.

The result is a new cross-sectional structure inside the 
selected circle.

Typical results for a given radial ray in a linear interpolation 
are shown in Figure 4. One can clearly see the linear morphing 
of the profile in position and shape into the three new profiles.

In order to avoid sudden transitions between the 
interpolation sections it is useful to use spline interpolation 
instead of linear interpolation. We have done this with a 
cubic spline approach. The processing for the cubic spline 
interpolation is analogous to the linear spline except that 
more than two base slices are required, in our case four. 
Here, the procedure is as following: 

Select four slices of equal distance as base slices for 
the interpolation. The interpolation zone is between the 
innermost two slices.
a) �Provide the original distance between the base slices and 

the desired distance between the interpolated slices. the 
interpolation factor will be calculated as for the linear 
interpolation case.

b) �Manually: Select a center point in one of the inner base 
slices.

c) �Manually: Select a maximum radius length (selecting a 
point outside the bone cross section). Keep care that the 
corresponding circle is large enough so that it includes all 
four base cross-sections. 

d) �Take one of the inner base slices as the baseline of the new 
interpolated slice. Do a loop over 360 degrees with an 
arbitrary angle step size (normally 1° or 0.5°) around the 
center point and for every angle (and corresponding radial 
ray) do the following steps:

e) �Generate the four corresponding radial profiles for the 
base slices.

Figure 4. typical radial profiles of a linear interpolation 
approach with two base slices (green and blue, distance 10 
mm) and resulting interpolated profiles (IP1 to IP3) of a human 
tibia shaft near the proximal epiphysis performed with an 
interpolation factor of 4, therefore three interpolated profiles; 
threshold value for bone onset detection was set to 100.

Figure 5. typical radial profiles of a cubic interpolation approach 
with an interpolation factor of 4; for cubic spline interpolation 
four base slices (red, green, blue and cyan; distance 10 mm); 
interpolation factor of 4 provides three interpolated slices (IP1 
to IP3) between the inner initial slices (initial lowa, green and 
initial higha, blue); threshold value for bone onset detection was 
set to 100; for the cubic spline algorithm the two outermost 
profiles lowb and highb are required; the boundary conditions 
are the same as for Figure 4, so that a direct comparison can be 
made with the linear interpolation result. 
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f) �For every profile, define the onset point (index of profile 
vector) of bone related gray-value (the outer edge of the 
bone); these points will be reference points for the following 
interpolation processes.

g) �Cubic spline interpolation of bone onset: the bone onset 
for the interpolated profile is interpolated as a cubic 
spline between the reference points of the two inner 
profiles for the new target slice taking interpolation factor 
and targeted position into account (see a quantitative 
description in the annex 1).

h) �Cubic spline interpolation of the gray values: shift all 
profiles with respect to one selected so that the reference 
points are congruent; then the congruent profile values of 
the two inner profiles along the radius are interpolated as 
cubic spline based on the values of all profiles and taking 
interpolation factor and targeted position into account 
(see a quantitative description in the annex 1).

i) �Position the new radius profile along the radius beam 
corresponding to the new bone onset point.

j) �Overlay it to the new slice and modify the corresponding 
gray-values of the voxels touched along this radius.

Our software tool performs most of these actions 
automatically. The user has to provide a set of coarsely 
scanned equidistant slices, the interpolation mode (linear 
or cubic spline) and to specify the desired distance for the 
interpolated slices. The tool interpolates between the two first 
scans (the first gap) linearly in all cases because the required 
lower scan is missing. When cubic spline mode is selected, 
it employs this mode as long as the required four adjacent 
base slices are available. For every interpolation gap the tool 
asks for the selection of a center point and for the selection 
of a maximum radius point (the issues that are indicated as 
manualy in the procedure). That can be done graphically 
by two mouse clicks setting two crosses like in in Figure 3. 
The final gap can, same as the first, only be interpolated 

linearly. Note that the method is applicable for geometries 
with approximately circular cross-sections only. The method 
works best when a closed cortical shell is available. 

Typical results for a given radial cubic spline based 
interpolation procedure are given in Figure 5. Depending 
on the properties of the outer baseline slices the morphing 
of the new family of profiles (IP1 to IP3) is no more strictly 
linear in position and shape. For nonlinear geometrical 
structures for instance near the epiphyses, interpolation with 
the cubic spline approach yielded generally better results. 
Therefore, the remainder of this manuscript concentrates on 
results obtained using the cubic spline method. However, the 
interpolation between the outermost slices can only be linear 
because the additional slice for the cubic spline calculation is 
missing. The difference in computational power is significant 
(2 seconds for a single linear interpolation process vs. 
60 seconds for the cubic spline interpolation on a normal 
desktop computer using MATLAB R2012b, The MathWorks 
Inc.), but otherwise there is no real argument to prefer the 
linear interpolation.

A critical element in both the linear and the cubic spline 
interpolation is the proper detection of the bone onset 
points. In the algorithm a threshold value can be specified. 
The spongiosa parts of the epiphyses in particular often 
have a very thin outer cortical layer that tends to disappear 
in the pQCT image because of the partial volume effect. The 
bone seems to be “open” and we only find a weak transition 
between non-bone gray-value of the outside and the low 
mean gray-value of the spongiosa. When the algorithm does 
not identify this point properly it produces unreliable results 
for the corresponding radius. This situation can normally be 
detected by the algorithm and warnings can be issued to the 
operator, so that the threshold value can be optimized.

Quite frequently, the new profile does not cover the entire 
range between the (new) reference points because of the 

Figure 6. Typical sequence of cross section gray values in the diaphyseal area: top line measured cross sections at positions 121, 124, 
128, 131 (in mm); bottom line corresponding interpolated (spline) cross sections 124 and 128, interpolated from base slices 121 and 131. 
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incomplete overlay of the different, relatively shifted profiles. 
That means that the innermost voxels around the center 
point remain unmodified. However, this is not critical when 
interpolating long bone scans.

Evaluation results

For evaluation of the new method, the proximal 24 cm 
of a human tibia bone (ex vivo) have been scanned by pQCT 
from midshaft (position 0) to the proximal tibia plateau 
(position 240), using a Stratec XCT3000 device (Stratec 
Medizintechnik, Pforzheim, Germany). The inter-slice 

distance was 1 mm, and the slice thickness provided by the 
machine is 2.2 mm. The in-slice resolution was 0.5 mm. The 
total dimension of a single scan was 655x655 voxels. For the 
interpolation slices of 10 mm distance have been selected as 
the baseline cross-sections. Then, cubic spline interpolation 
with an interpolation factor of 10 has been performed 
resulting in the reproduction of the nine missing slices at 
1mm inter-slice distance. The interpolated cross-sections 
could now directly be compared to the measured slices.

Figure 6 shows interpolation results for the region between 
positions 121 and 131, which are located in the neat shaft 
area. In this area the changes in shape and cross sectional 
area are relatively small, so that the interpolation algorithm 

Figure 7. Typical sequence of measured and interpolated slices in gray values (taken from a representation by the software AMIRA 
(AMIRA v5.3.3. by Konrad-Zuse-Informationszentrum Berlin + Visage Imaging); upper row measured slices at positions 194, 197,201 
and 204 (in mm); the slices at position 194 and 204 have been taken as base slices for a cubic spline interpolation; the resulting slices 
at positions 197 and 201 are given in the bottom row.

Figure 8. Axial cross section of the metaphysis area: picture A shows a cross-sectional view when the 10 mm distant base slices 
(positions 164,174,184,194,204,214) are given only; picture B shows the same view when all measured slices are taken into account 
(1 mm distance); picture C shows the result, when all linearly interpolated cross-sections are taken; picture D shows the case based on 
spline interpolation; all views generated by AMIRA.
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is not really challenged. By contrast, in the epiphyseal region, 
which is shown in Figure 7 (between 194 and 204 mm), 
there is substantial variation in cross-sectional shape, and 
the corticalis tends to fade away. As already mentioned this 
makes interpolation more challenging for any algorithm in epi- 
and metaphyseal regions than in the shaft. Even so, the optical 
inspection shows a good adaptation of the outer shape. While 
most of the contours of the interpolated slices are smooth, we 
have some minor cripple at the outer edge at the upper right. 
That is due to the somewhat low quality of the baseline slice 
204 at this edge. For our purpose of generating 3D geometric 
models for FE analysis this is not a critical flaw. 

For a better localization Figure 8 shows an axial cross 
section of this region.

In Figure 8 the strengths and weaknesses of our method 
become quite obvious. The 10 mm resolution leads to the 
terraced axial cross-section and causes big problems for 
tools like AMIRA, MIMICS or AVISO when generating 3D 
geometries out of those slices. The interpolated set of slices 
can smooth these edges very efficiently. Yet, we can also see 
that the method did not capture the convex outer envelope 
at the right upper side. The differences between linear and 
spline interpolation are not very striking, the left edge being 
a bit smoother but not a significantly better reproduction of 
the template.

Moreover, the strengths and weaknesses of our 
interpolating algorithm become obvious in Figure 9. An 
acceptable smoothing result is obtained in those areas where 
the bone surface is closed. In the open and topological less 
distinct area, however, and thus for most of the proximal 
epiphysis the algorithm fails. It can also clearly be seen, 
that AMIRA especially has problems in smoothing the distal 
epiphyseal area where our algorithm shows very good results.

In order to be able to compare interpolated and measured 
slices quantitatively we introduced a diversity index as 
defined in equation 1:

ID=
(H1i-H2i)2

i=1

nΣ
 H1i

2+  H2i
2

i=1

nΣ i=1

nΣ
         (1)

where H
mi

 is the gray value of voxel i at base slice m and n 
the number of voxels. As one can see from the equation, our 
diversity index is the root mean square error (RMSE) divided 
by a maximally possible RMSE

max
, when the main structures 

of a slice are not overlapping at all. Comparable to the usually 
given RMSE7 this index emphasises higher errors. I

D
 is 0 when 

two slices are identical and it is 1 if the slices are different 
without any local overlap of the structures inside. 

Figure 10 depicts the variation of the diversity index (I
D
) 

with increasing distance from a base slice (position 0). For 
the epiphyseal region, I

D
 steadily increases and reaches 

values close to 1 in a distance of 10 mm (dark blue curve). 
At a distance of only 2 mm, I

D
 reaches a value of 0.45. This 

reflects the diversity of adjoining pQCT slices in the epiphyseal 
region. Accordingly, when comparing the reference slice 
to the interpolated slices in increasing distance (dark red 
curve) we find nearly the same behaviour, indicating validity 
of our interpolation algorithm. For the shaft region, diversity 
from 0 is much smaller with a maximal I

D
 of 0.5, both for the 

measured as well as for the interpolated slices, which reflects 
greater preservation of bone ‘shape’ per unit length in the 
shaft area. 

When regarding the direct comparison between 
interpolated and measured slices, given in Figure 10 as well, 
we would therefore rank the I

D
 values obtained for diaphyseal 

interpolation (orange line), which were always well below 
0.2, as an excellent result of our interpolation algorithm. For 
the epiphysis, values around 0.4 suggest that the algorithm 
is reasonably accurate (green line). A limitation of the 
diversity index introduced here is the fact that translational 
shift is not taken into account. That means that completely 
identical patterns, which simply have been shifted in the 
slice plane, will be found as different and therefore feature 

Figure 9. Volume rendering results by AMIRA from left: from full data set (A), from coarse reduced data set (B), from interpolated data 
set (C); the right picture (D) shows a photo of the scanned bone from a similar perspective.
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a high diversity index. For that reason, the I
D
 index tends to 

overestimate, rather than to under-estimate the diversity to 
a certain extent.

An important quantity for the assessment of biomechanical 
strength of a bone is the cross-sectional moment of inertia, 
also known as second moment of area. We calculated a 
mineral-density-weighted version. Given a bending axis 
through the center of area of a cross-sectional plane it 
calculates to

CSMI = Σ
i
 d(i)

2
*A(i)*ρ(i)         (2)

where d(i) is the distance of a bone voxel i from the axis, A(i) 
the cross-sectional area of this voxel and ρ(i) its mineral 
density.

In Figure 11 the density-weighted CSMI for two orthogonal 
bending directions are given along the entire measured length 
of our tibia model and are compared between interpolated and 
measured geometries. There is generally good agreement 
between the interpolated and the measured values, except 
for the region beyond #204. In that region, we are in the 
epiphysial regime where the power of our method is limited, 
as mentioned above. In addition we have differences around 
#180 and #190 mainly in the y-directed case. Looking for 
an explanation we found that there were holes drilled in our 
tibia that reduced the CSMI of the measured slices at these 
points and in this direction significantly. This of course could 
not be reproduced by the interpolation. The cavity at #190 
seems to influence the base point at #184 which explains the 

underestimation at #182. 
In order to demonstrate the suitability of the new 

interpolation method in combination with a segmentation 
tool, we used the software package MIMICS (MIMICS Research 
v 18.0, Materialize) to perform 3D model construction with 
the different data sets. The result is shown in Figure 12. 

The terraced geometry that caused the problems 
described in the introduction can now be substituted by the 
3D-structure that is based on the interpolated data stack 
and comes quite close to the model generated from the 
high resolution data set. Yet, there are some differences 
at the outermost epiphysis. In this region the interpolation 
mechanism begins to fail because of the lack of clear outer 
borders of the bone. The surface is a bit more rough, which, 
however, should not cause problems for use in FE simulations. 

Discussion

A powerful method has been introduced that allows for 
interpolation and generation of intermediate slices between 
series of pQCT-scans that are too distantly spaced to allow 
for a generation of a reasonable 3D model. The method has 
been developed for the 3D-model generation of long bones 
like the tibia and is therefore adapted for that need. It has 
been shown that the method reproduces the evolution of the 
outer and inner shape very accurately, as well as the gray 
value distribution of the cross sections. This is especially 

Figure 10. Diversity analysis of measured and interpolated slices of two segments between #194 and #204 (metaphyseal region) and 
between #111 and #121 (shaft region); presented is either a comparison between a measured or interpolated slice with respect to the 
lower base slice (given as #0 in the diagram) or a direct comparison between measured and interpolated slice.
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useful for improving the input for segmentation tools like 
AMIRA, MIMICS or AVISO. The benefit has been shown by 
comparing results of 3D-model generation with the MIMICS 
software of the high resolution measured scan set as well as 
the reduced set and the set containing the high resolution 

slices recovered by interpolation. It has been found that the 
quality of the 3D-model based on the interpolated data set 
is close to a real, highly resolved scan set and significantly 
better than the results that are achieved when relying on 
smoothing algorithms in the segmentation tool. Depending on 

Figure 11. Density-weighted Cross-Sectional Moment of Inertia (CSMI) for the region between #104 to #234. Two different directions 
of bending have been analysed with x and y indicating their direction of the bending axis in the x-y-plane. Both scanned and interpolated 
geometries are given. The dotted lines give the position of the base points for interpolation. 

Figure 12. 3D-geometries generated by MIMICS from the different data sets: upper row isometric view; lower row coronal cut through 
the geometry; left side result from the measured high resolution set with 1 mm slice distance; in the middle reduced data set with scans 
of 10 mm distance; on the right interpolated data set with slice distance 1 mm as well.
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the divergence of shape also larger gaps (for instance in the 
shaft area) can be reasonably filled with interpolated slices.

As the tool is focused on the processing of long bone scan 
data it requires a compact structure that shows nearly round 
cross-sections without substantial elongation or any deep 
concave bays that go deeper than its center of area. Another 
requirement is that there should be clear detectable bone 
outer edges. At the epiphysis our tibia showed spongy-like 
openings that lead to failures in that area even when using a 
very low threshold value of 130. So we suggest to limit the 
application of our algorithm to the diaphysis and metaphysis 
regions of long bones where we can find a distinct corticalis.

The method can as well be applied for scans from medical 
imaging sources other than pQCT, e.g. MRI.

We have successfully applied the method in the context of 
novel exploitation of data from the MUST-study12, using FE 
simulation (publication in preparation). In order to perform 
that analysis, we had to overcome exactly the situation of 
sparse pQCT scans described in the introduction. Without 
having a real alternative the interpolated scans allowed us to 
generate 3D-geometry models of good quality that rendered 
this analysis possible. 

Outlook

At the moment the method is used by us for deriving 
3D-models for FE-simulations based on pQCT-scans of 
studies in the past. The software is currently working on a 
semi-automatic basis that requires definition of the center 
point and definition of the working radius. In a next step the 
implementation of a full automation is foreseen. 

Annex 1

Interpolation scheme:
Let o

A
, o

B
, o

C
, o

D
 be the distances of the bone onset points 

of corresponding radial profiles of 4 adjacent base slices 
A,B,C,D w.r.t. the center point of the interpolation. We want 
to derive 3 new equidistant interpolated slices between the 
slices B and C. The interpolation factor calculates to 

f
ip
 = d

base
/d

ip
;         (A1)

where d
base

 is the distance between B and C and d
ip
 the new 

targeted distance between slices. In our example f
ip
=4. 

Then the interpolated onset-points for the linear approach 
calculate to

o
ip
(i) = o

B
+(o

C
-o

B
)/f

ip
*i; i=1,..3         (A2)

with i being the index of the 3 interpolates.

In the cubic spline approach we use the Matlab function 
“spline”. This function computes a spline function o(s) 
(onset-point as function of slice position s) taking the four 
onset points (s

A
,o

A
),(s

B
,o

B
),(s

C
,o

C
),(s

D
,o

D
) with s

A
,..s

D
 being the 

position of the slices A,..D along the bone as base points. 
With the help of this function the new onset points can then 
be calculated as:

o
ip
(i)= o(s

B
+(s

C
-s

B
)/f

ip
*i); i=1,..3         (A3)

The gray-value interpolation is performed as follows:
Let the gray-value profiles of the four radial rays under 
consideration be the functions
g

A
(r), g

B
(r), g

C
(r), g

D
(r). Then one of the profiles is taken as 

reference (normally g
B
(r)) and the other 3 are shifted in a way 

that the onset-points coincide:

g
s
X( r)= g

X
(r-(r

X
-r

B
))         (A4)

with X standing for A,C or D. Then new interpolated profiles 
can be calculated for the linear interpolation case:

g
ip
(i,r) = g

B
( r)+(g

sC
(r)-g

B
(r))/f

ip
*i; i=1,..3         (A5)

For the cubic spline case for any r a spline function g(s,r) can 
be laid through the four points (s

A
,g

sA
(r)), (s

B
,g

B
(r)), (s

C
,g

sC
(r)) 

and (s
D
,g

sD
(r)) with the Matlab “spline” routine. The equivalent 

to equation A5 for the cubic spline approach becomes

g
ip
(i,r)= g((s

B
+(s

C
-s

B
)/f

ip
*i), r); i=1,..3         (A6)

The final interpolated slice i is generated in a way that for 
any voxel (of the reference slice B) along the ray with its center 
at a distance r the new interpolated g

ip
(i,r) is substituted. That 

is done for all radial rays with an angle step of maximum 1°.
Because of the shift of profiles, there will be small gaps 

in the interpolated profiles near the center and at the outer 
edge. For those gaps the gray-value of the reference slice B 
is kept. Outside the bone cross section that will not play any 
role. The effect of interpolation errors near the center will be 
quite low for mechanical properties so that we can accept it. 
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