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Abstract: Unsatisfactory failure rates following rotator cuff (RC) repair have led orthopaedic surgeons
to explore biological augmentation of the healing enthesis. The subacromial bursa (SB) contains
abundant connective tissue progenitor cells (CTPs) that may aid in this process. The purpose of the
study was to investigate the influence of patient demographics and tear characteristics on the number
of colony-forming units (CFUs) and nucleated cell count (NCC) of SB-derived CTPs. In this study,
we harvested SB tissue over the supraspinatus tendon and muscle in 19 patients during arthroscopic
RC repair. NCC of each sample was analyzed on the day of the procedure. After 14 days, CFUs were
evaluated under a microscope. Spearman’s rank correlation coefficient was then used to determine
the relationship between CFUs or NCC and patient demographics or tear characteristics. The study
found no significant correlation between patient demographics and the number of CFUs or NCC of
CTPs derived from the SB (p > 0.05). The study did significantly observe that increased tear size was
negatively correlated with the number of CFUs (p < 0.05). These results indicated that increased tear
size, but not patient demographics, may influence the viability of CTPs and should be considered
when augmenting RCrepairs with SB.

Keywords: subacromial bursa; rotator cuff; mesenchymal stem cells; connective tissue progenitors;
shoulder

1. Introduction

Rotator cuff (RC) pathology is one of the most common etiologies of shoulder dys-
function with more than 4.5 million physician visits annually [1]. The leading treatment
choice following failure of conservative measures remains surgical repair of the torn tendon
back to its humeral attachment. Day et al. reported that from 2007 to 2015, there was
a 188% increase in total RC repairs in the United States [2]. Despite advancements in
surgical material and techniques, retear rates following RC repairs approximate 10 to 94%
depending on the patient population [3–5]. A major issue following repair of the tendon
to bone interface is failed enthesis regeneration; instead of the enthesis regenerating to its
native form, healing results in a mechanically inferior fibrous scar [6–8].

Several approaches for augmenting the healing tendon have been proposed and
developed, including pharmacological, biological scaffolds and stem/progenitor cell trans-
plantation [9–11]. “Stem cell” transplantation for tendon repair has been explored from
many sources, including embryonic stem cells (ESCs), induced pluripotent stem cells (iP-
SCs), and adult stem cells such as mesenchymal stem cells (MSCs) and adipose-derived

J. Clin. Med. 2021, 10, 4006. https://doi.org/10.3390/jcm10174006 https://www.mdpi.com/journal/jcm

https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-5936-6782
https://doi.org/10.3390/jcm10174006
https://doi.org/10.3390/jcm10174006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jcm10174006
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm10174006?type=check_update&version=2


J. Clin. Med. 2021, 10, 4006 2 of 8

stem cells [12,13]. Currently, in the United States, the FDA does not permit ex vivo cul-
ture expansion of cells as Regulation 21 CFR 1271 requires products to be homologous,
minimally manipulated, and lack systemic effects [14,15]. Thus, the majority of stem cell re-
search has searched for local populations of MSCs that that can be utilized intraoperatively
in an efficient manner for a low cost [11,14,16].

Previous literature has demonstrated that the subacromial bursa (SB) harbors a high
concentration of cells that meet the International Society for Cellular Therapy (ISCT) criteria
for MSCs [17–21]. When freshly harvested from patients, cells with characteristics of MSCs
are more accurately described as connective tissue progenitors (CTPs) [11,13,22,23]. The
bursal CTPs have been shown to have high proliferation/differentiation potential, as
well as superior engraftment to host tendon in animal models [19,24–27]. Due to the
ease of accessibility and inexpensive nature of harvesting the SB intraoperatively, surgical
techniques have been developed to efficiently augment RC repairs with these CTPs [28–30].
Additionally, this process does not fall under the complex FDA regulations applied to that
other “stem cell” therapies such as ESCs and iPSCs [14,31].

In order to determine which patients may be good candidates for biological augmen-
tation during RCrepairs, it is important to understand how patient demographics alter
characteristics of CTPs, as this may affect healing. Patients who are old, obese, diabetic, and
smoke have previously been reported to have higher rates of RC repair failures compared
to healthy patients [32–35]. Muench et al. was the first to demonstrate that SB CTPs
demonstrated high proliferation potential regardless of patient demographics and RC
tear characteristics [36]. The study was limited as it used nucleated cell count (NCC) as a
proxy for cell proliferation, which is less specific for cellular activity of CTPs compared to
colony-forming units (CFUs) [13,22,37].

The purpose of this study was to further investigate the influence of patient de-
mographics and tear size on the number of CFUs and NCC of SB-derived CTPs. The
authors hypothesized that patient demographics and tear size would not be correlated to
proliferative characteristics of SB CTPs.

2. Materials and Methods
2.1. Patient Selection

Patients were selected for this study from December 2016 to May 2018. These in-
dividuals had to be undergoing arthroscopic RC repair to be considered for enrollment.
Institutional review board approval was acquired before initiation of the study (IRB no.
IE-07-224-2). Inclusion criteria for patients selected for the study included an age > 18 years
and clinical indication for arthroscopic RC repair following the failure of alternative con-
servative therapy. Exclusion criteria included patients with a history of systemic infectious
disease (sexually transmitted infections, Hepatitis infection, etc.) and patients who were
pregnant, imprisoned, or deemed to be another form of a vulnerable population. Prior
surgery to the affected shoulder was not cause for exclusion from the study. For every
participant, basic demographic information (age, sex, height, weight, BMI), pertinent med-
ical and surgical history, whether the patients smoked (never, former, current), and the
duration they smoked (months) was collected. Smoking information was then used to
determine a Brinkman index score based on cigarettes per day multiplied by years smoked
to quantify the amount someone has smoked. The presence of diabetes mellitus, thyroid
disease, and hypertension were also collected.

2.2. Surgical Removal of Subacromial Bursal Tissue

Harvest of SB was performed using techniques feasible in the setting of arthroscopic
RC repair [25]. Bursal tissue samples were obtained using an arthroscopic grasper device
in two locations in each patient for comparison, above the supraspinatus tendon and above
the supraspinatus muscle. The samples were placed into sterile specimen cups filled with
sterile normal saline. After collection, samples were immediately transported from the
operating room to a laminar flow hood for processing.
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2.3. Subacromial Tissue Processing

For each sample, 200 mg was carefully weighed for plating. As previously described,
the sample was then digested in 2 mg/mL Collagenase P (Sigma-Aldrich, St. Louis, MO,
USA) in Dulbecco’s modified Eagle’s medium (DMEM) (1× Thermo Fisher Scientific,
Waltham, MA, USA) at 37 ◦C for 2 h [24,37]. Following digestion, the cells were filtered
through a 70-mm cell strainer (Fisher Scientific, Pittsburgh, PA, USA), the remnant was
disposed of and the cells were centrifuged at 800× g for 5 min to obtain a cell pellet [21].

2.4. Nucleated Cell Count

After digestion, the cellular concentrations (cells/mL) were counted using a Z1 Coulter
Particle Counter (Beckman Coulter Life Sciences, Indianapolis, IN, USA), calibrated to
detect particles > 8 mm, using a transparent cuvette containing 100 mL of cellular solution
and 9.9 mL of 0.9% NaCl solution for a total volume of 10 mL. The number of nucleated
cells was then calculated, using this cellular concentration, by multiplying by the volume
of DMEM (10 mL). The cell mass density (cells/mg) was then calculated by normalizing
with respect to the total mass of the harvested tissue.

2.5. Colony-Forming Units

After NCC, the cells were plated in complete culture medium containing DMEM,
10% fetal bovine serum (FBS) (Thermo Fisher Scientific), and 0.1% penicillin/streptomycin
(Thermo Fisher Scientific) on Corning Primaria 100-mm dishes (Thermo Fisher Scientific)
at a density of 103 and 104 for each bursa sample and were grown at 37 ◦C in a CO2
incubator at 5% humidified CO2 [19,21]. Complete DMEM medium was changed every 3
to 4 days. After 14 days in culture, dishes of each density were stained with 0.5% crystal
violet solution for 10 min. The cells were then washed twice with distilled water, and the
number of colonies per dish was counted. Colonies measuring < 2 mm in diameter or
faintly stained colonies were not included [19,24,37].

2.6. Radiographic Analysis

All patients received magnetic resonance imaging (MRI) of the involved shoulder
prior to surgery. MRI was utilized to determine tear size for each patient in the anteropos-
terior (AP) view. All MRIs were evaluated by two independent sports medicine trained
orthopaedic surgeons.

2.7. Statistical Analyses

Continuous data were summarized using mean and standard deviation (SD), as well as
median and interquartile ranges (IQR). Categorical variables were presented as frequencies
and percentages. Spearman’s rank correlation coefficient was utilized to assess statistical
correlations between patient demographics and the number of CFUs and NCC of colonies
by SB CTPs. These analyses were completed for both bursa over the RC tendon and bursa
over the RC muscle. All p values of <0.05 were considered statistically significant. Analyses
were performed using Stata 17 (StataCorp LLC, College Station, TX, USA).

3. Results
3.1. Subjects

Nineteen patients underwent arthroscopic RC repair, performed by a single surgeon
(ADM) from December 2016 to May 2018. The mean age of patients was 57.2 ± 4.5 years
(median 57 years; IQR 54–60 years) and the majority of patients were female (n = 10;
52.6%). The mean weight was 92.5 ± 16.4 kg (median 88.5; IQR 82.6–102.9), the mean
height was 169.5 ± 9.9 cm (median 167.6; IQR 161.3–176.5), and the mean BMI was
32.5 ± 5.5 kg/m2 (median 32.4; IQR 29.2–34.4). The mean tear size was 18.6 ± 9.3 mm
(median 13.5; IQR 11.0–27.0). The majority of patients in the series (84.2%) had a history
of smoking (never: n = 6, 31.6%; current: n = 10, 52.6%; former: n = 3, 15.8%), resulting
in a mean Brinkman Index of 300.6 ± 386.8 (median 50.0; IQR 0–573.3). Lastly, regarding
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chronic comorbidities, no patients in the series had rheumatoid arthritis, 21.1% of the
cohort had diabetes mellitus, 15.8% had thyroid disease, and 66.7% had hypertension.

3.2. Correlation between Number of CFUs and Patient Demographics

There were no statistically significant correlations between number of CFUs from
SB CTPs over RC tendon or muscle and the following patient demographics: age, sex,
height, weight, BMI, smoking, Brinkman Index, diabetes mellitus, thyroid disease, and
hypertension. Further details can be observed in Table 1.

Table 1. Spearman’s rank correlation coefficient analysis of the number of Colony-Forming Units (CFUs) by cells from
SB over the RC tendon and muscle. Correlation analysis between the number of CFUs and patient demographics was
completed. While tear size was negatively correlated to the number of CFUs from both the cells from the SB over the RC
tendon, there was no statistical correlation with other demographics. (* = significance p < 0.05).

Number of Colony Forming Units

Bursa over Rotator Cuff Tendon Bursa over Rotator Cuff Muscle

103 Cells/Well 104 Cells/Well 103 Cells/Well 104 Cells/Well

rho p-Value rho p-Value rho p-Value rho p-Value

Age −0.179 0.522 −0.319 0.246 −0.036 0.899 −0.013 0.965
Sex (Female) 0.000 1.000 −0.062 0.827 −0.031 0.913 0.186 0.508
Height (cm) 0.097 0.732 0.138 0.624 0.116 0.680 −0.091 0.746
Weight (kg) −0.000 1.000 −0.173 0.537 0.136 0.629 −0.127 0.652

BMI (kg/m2) −0.189 0.499 −0.368 0.177 −0.129 0.648 −0.161 0.567
Tear size (mm) −0.567 0.028 * −0.645 0.009 * −0.429 0.111 −0.434 0.106

Smoking (Non, Former, Current) −0.147 0.602 −0.137 0.627 0.221 0.429 −0.018 0.950
Brinkman Index (Ciggarettes/d × y) 0.113 0.690 0.105 0.709 0.270 0.331 0.094 0.739

Diabetes mellitus (Yes) −0.232 0.407 −0.077 0.785 −0.424 0.115 0.039 0.891
Thyroid disease (Yes) −0.347 0.205 −0.424 0.115 −0.193 0.491 −0.270 0.330
Hypertension (Yes) 0.196 0.483 0.196 0.483 0.223 0.411 0.196 0.483

Notably, tear size (mm) was the only variable that demonstrated a significant correla-
tion with number of CFUs by cells from SB over the RC tendon. Focusing on bursa over
the RC tendon, tear size was significantly correlated with number of colonies when ana-
lyzing 103 cells/well (rho = −0.567; p = 0.028) and 104 cells/well (rho = −0.645; p = 0.009).
Scatterplot representation of the Spearman’s rank correlation coefficient (rho) between tear
size and CFU number can be observed in Figure 1.
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Figure 1. Scatterplot representations of Spearman’s rank correlation coefficient analysis. The left scatterplot demonstrates
a significant (p < 0.028) negative correlation between tear size and number of CFUs from the cells of the SB over the RC
tendon (A). The right three scatterplots show no significant correlation between tear size and CFU from SAB over RC muscle
(B) or NCC of the cells from SB over RC tendon (C) and muscle (D). Grey shading around regression line represents 95%
confidence interval.
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3.3. Correlation between NCC and Patient Demographics

When analyzing the correlation between NCC from SB CTPs over the RC tendon
and muscle (Table 2), no statistical correlation was seen with any patient demographics.
This analysis included age, sex, height, weight, BMI, tear size, smoking, Brinkman Index,
diabetes mellitus, thyroid disease, and hypertension.

Table 2. Spearman’s rank correlation coefficient analysis of nucleated cell count (NCC) from the SB
over RC tendon and muscle. There was no statistical correlation with all patient demographics and
tear characteristics.

Nucleated Cell Count per Milligram

Bursa Over RC Tendon Bursa over RC Muscle

rho p-Value rho p-Value

Age 0.165 0.557 −0.040 0.889
Sex (Female) 0.000 1.000 0.000 1.000
Height (cm) −0.091 0.746 −0.138 0.624
Weight (kg) −0.363 0.184 −0.038 0.894

BMI (kg/m2) −0.361 0.187 −0.057 0.840
Tear size (mm) −0.097 0.732 −0.097 0.732

Smoking (Non, Former, Current) −0.445 0.096 −0.078 0.782
Brinkman Index (Ciggarettes/d × y) −0.299 0.280 0.028 0.922

Diabetes mellitus (Yes) 0.039 0.891 0.077 0.785
Thyroid disease (Yes) −0.039 0.891 −0.270 0.330
Hypertension (Yes) −0.229 0.411 −0.295 0.2865

4. Discussion

The most important finding of this study was that there was no significant correlation
between patient demographics and the number of CFUs or NCC of CTPs derived from the
SB over the RC tendon and muscle. Additionally, this study demonstrated a significant
negative correlation between increased tear size and the number of CFUs from bursa over
RC tendon.

With unsatisfactory retear rates and a long postoperative rehabilitation period [4,38–41],
orthopaedic surgeons have begun augmenting RC tears with the readily accessible SB [28–30].
Recent literature has demonstrated that the SB is an abundant source of CTPs that meet
the criteria set by the ISCT, including adherence to plastic culture plates, the expression of
specific cell surface molecules, and multi-lineage differentiation [17–21]. In vitro studies
have further demonstrated the high proliferative potential of these cells [19,24–27]. Al-
though bone-marrow aspirate has long been utilized as a source of CTPs for regenerative
orthopaedic surgery [22,23,42–44], studies now show that bursal CTPs have significantly
higher proliferation, CFUs, and differentiation ability compared to bone-marrow MSCs [24].
Additionally, Dyrna et al. demonstrated that bursal CTPs showed superior engraftment
and survival in tendon tissue than bone-marrow MSCs [27]. These results have led to the
development of multiple inexpensive techniques to augment RC repairs using the SB with
minimal manipulation [28–30].

Specific patient demographics and comorbidities have long been associated with RC
repair failure, such as advancing age [45,46], smoking [38,47–50], diabetes mellitus [51–54],
and obesity [33,55,56], among others [41,57]. When deciding which patients may be good
candidates for bursal biological augmentation of RC repairs, these demographics may
concern orthopaedic surgeons that their tissue may not be viable. Muench et al. were
the first to demonstrate that patient demographics and RC tear characteristics did not
alter the proliferation potential of bursal CTPs [36]. The study was limited in that they
used NCC, a nonspecific measure of cellular activity that cannot differentiate live, dead,
or other mononuclear cells. CTPs are defined partly by their ability to divide to form a
clonal population, known as CFUs, which may be a more clinically relevant measure of
CTP viability [13,22]. The present study demonstrated that the number of CFUs was not
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correlated to patient demographics, further supporting Muench et al.’s conclusion that the
SB may be used for biological augmentation regardless of patient demographics [36].

This study is limited as the in vitro nature of CTPs may not mimic the in vivo potential
of CTPs in the shoulder. Further studies are needed to understand the relationship between
CFUs and the in vivo interaction of CTPs with the healing tendon. Additionally, the study’s
small sample size (n = 19) may result in insufficient statistical power and possible type
II error.

Nevertheless, the results of the present study may further ease concerns that certain
patient demographics could alter the characteristics of SB CTPs. This tissue complex is
easily accessible during RC repair and, for a low cost, may be efficiently used to augment
RC repairs. Future clinical trials are needed to understand the effects of SB CTPs on healing
and outcomes of RC repairs.
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