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LETTER TO EDITOR

Whole-exome sequencing in clear cell sarcoma of soft tissue
uncovers novel prognostic categorization and drug targets

Dear Editor,
In this study, we addressed the clinical outcome of

clear cell sarcoma (CCS) of soft tissue by conducting
the first mutational landscape of CCS. We also revealed
the potential of targeted therapies in CCS, suggesting
that CCS patients with ataxia-telangiectasia mutated alter-
ations may be likely to benefit from treatment with an
ataxia telangiectasia and Rad3-related inhibitor.
CCS is a rare soft tissue sarcoma first reported by

Enzinger in 1965.1 Due to the rarity and the difficulty in
the diagnosis of CCS, the genomic characteristics of CCS
have not been systemically investigated and the patho-
genesis and optimal treatment have not been determined.
Therefore, we retrospectively investigated 21 CCS samples
from SunYat-senUniversity Cancer Center and conducted
high-depth whole-exome sequencing (WES) on these sam-
ples (Figure S1 and Tables S1 and S2). We confirmed
the pathologic diagnosis by the gene fusion/translocation
detection of EWSR1.
First, the somatic mutation patterns of CCS were iden-

tified. A total of 1949 mutations were detected (Figure 1A
andTable S3). Themedianmutationnumberwas 77,which
was comparable with other subtypes of sarcoma in the
cancer genome atlas sarcoma (TCGA-SARC) (Figures S2
and S3). The predominant somatic mutation type was C:
G > T: A transitions at CpG dinucleotides (Figure S4),
reflecting an age-related mutation pattern.2 We further
identified the signatures of mutations, resulting in two sta-
ble signatures (Figure 1B, Figures S5 and S6 and Table
S4). A total of 66 cancer-related genes were mutated in
these samples, nine of which occurred in at least two sam-
ples (Table S5). Interestingly, we found that two tumour
samples harboured a hotspot mutation (rs1242535815) in
the promoter region of TERT, which is a driver gene in
many cancers.3,4 We further found that four out of 35 CCS
cases (11.4%) in the genomics evidence neoplasia informa-
tion exchange (GENIE) database (version 9.0)5 also carried
the rs1242535815 mutation (Table S3), suggesting that this
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mutation is a potential driver of CCS. In Figure S7, the top
25 mutated cancer-related genes were listed in these two
cohorts (N = 56), and 16 of them were recurrently mutated
genes (Figure 1C).
Second, widespread somatic copy number variations

(CNVs) were detected in 21 CCS tumours (Figure 1A). Fre-
quent arm-level alterations included copy number gains
in 7p (33%, q = .00125), 7q (29%, q = .00343), 8p (48%,
q< .0001), and 8q (71%, q< .0001) and copy number losses
in 16 (33%, q = .0008), 19p (33%, q = .0067), and 19q (33%,
q = .0013) (Figure 2A and Table S6). The alterations of
chromosomes 7 and 8 were similar to those in melanoma,
while the frequent losses of chromosome 16 were sim-
ilar to those in TCGA-SARC (Figure S3 and Table S7).
Twenty focal copy number amplifications and 18 focal copy
number deletions were identified using genomic identifi-
cation of significant targets in cancer 2.06 (Figure 2B and
Tables S8 and S9). Previous studies showed that the dele-
tion of 9p21.3 is negatively correlated with the prognosis
of lymphoepithelioma-like carcinoma.7 In this study, the
deletion of the 9p21.3 region was observed in 38% of the
patients (8/21, Figure 2C), and this deletion was negatively
correlated with the relapse-free survival and overall sur-
vival of the CCS patients (Figure 2D,E).
Third, according to the gene set enrichment analysis8

of the genes with CNV, we found that these genes
were involved in several cancer-related pathways, includ-
ing the antigen processing and presentation, the Janus
kinase/signal transducer and activator of transcription
(JAK/STAT) signalling pathway, p53 pathway, and the cell
cycle (Figure S8). The p53 pathwaywas altered primarily by
deletion of TP53, followed by deletion ofCDKN2A,CHEK2
and ATM (Figure 3A). The JAK/STAT pathway was fre-
quently dysregulated, mainly due to the deletion of sup-
pressors of cytokine signalling family genes and PTPRD
(Figure 3B). We found that the change in the cell cycle
pathway was related not only to the deletion of CDKN2A
but also to the amplification of CDK2/4/6 (Figure 3C). To
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F IGURE 1 Mutation landscape of clear cell carcoma (CCS). (A) The number of somatic mutations and copy number altered genes for
each CCS sample in this study (N = 21). Sex, age, and tumor stages are listed at the bottom according to the samples. (B) The signatures are
displayed in the 96-substitution classification, with the X-axis representing the mutation types and the Y-axis representing the estimated
mutation for each mutation type, identified by Bayesian non-negative matrix factorization (NMF) algorithm; (C) The recurrent mutated
cancer-related genes in this study (N = 21) and in the GENIE cohort (N = 26)

validate our findings, we analysed the somatic CNVs of
CCS in the GENIE database (Figure S9). Furthermore, we
performed fluorescence in situ hybridization (FISH) tests
forCDK4 andMDM2 amplification in the two tumour sam-
ples available. The results showed that the CNVs detected
by FISH were consistent with those detected by WES (Fig-
ures S10 and S11). In addition, RNA sequencing was per-
formed on six CCS samples, HGF andMET were found to
be upregulated, and CD8+ cell infiltration was low (Figure
S12).

Finally, as the deletion of ATM and CHEK2 occurred
with a relatively high frequency in CCS, we wanted to
know whether inhibition of other DDR pathways might
lead to the lethal synthesis of CCS. We tested two highly
selective DDR inhibitors that are either currently used in
the clinics (poly ADP-ribose polymerase (PARP) inhibitor-
olaparib) or clinical trials (ATR inhibitor-AZD6738).9,10 We
performed the assays on a CCS cell line (SU-CCS-1) that
we could find in the American type culture collection. SU-
CCS-1 cells were isolated from the pleural effusion of a
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F IGURE 2 Somatic copy number variations (CNVs) of clear cell carcoma (CCS) in this study. (A) CNV landscape of 21 CCS samples. (B)
Focal amplification (red) and deletion (blue) across CCS samples. (C) The deletion (including heterozygous deletion and homozygous
deletion) of 9p21.3. Relapse-free survival (D) and overall survival (E) analysis for CNV status of 9p21.3. Statistical significance was estimated
by a two-sided log-rank test
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F IGURE 3 Pathways altered in clear cell carcoma (CCS). Frequent mutations, including somatic mutations, amplifications, and
deletions, were enriched in the p53 (A) Janus kinase/signal transducer and activator of transcription (JAK/STAT) (B), and cell cycle (C)
pathways. The mutation frequency is expressed as a percentage of the CCS cohort in this study(N = 21)

patient with CCS, which showed a heterozygous loss of
ATM at the CNV level, and a decrease in the protein lev-
els of ATM and CHK2 in the cells (Figure 4A and Fig-
ure S13). When we treated the cells with either olaparib
or AZD6738, from the cell viability assay, we observed that
AZD6738 significantly reduced the viability of SU-CCS-
1 cells, with an IC50 of 0.5μM. On the other hand, ola-
parib could only reduce the viability of SU-CCS-1 cells at
a much higher dose, with an IC50 of 2μM (Figure 4B).
When we treated both cell lines with 1μM of AZD6738
for 3 days, significantly reduced viability was seen in SU-
CCS-1 cells (14%) compared to U2OS cells (56%, Figure 4C,
p < .0001). When we combined drug treatment with radi-
ation, all three treatments significantly inhibit tumour cell
growth, however, only the combination of radiation with
AZD6738 significantly reduced tumour cell numbers (Fig-
ure 4D, p < .0001). Overall, these results suggested that

ATR inhibition can induce a strong synthetic lethal effect
in CCS cells. The limitation of this study is that we have
not been able to obtain more CCS cell lines or use animal
models for the experiment.
In summary, our study provides the first comprehensive

view of the genomic alterations of CCS. Our study also sug-
gests that CCS patients withATM alterations may be likely
to benefit from treatment with an ATR inhibitor.
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F IGURE 4 Clear cell carcoma (CCS) cell line-SU-CCS-1 is sensitive to ATR inhibition. (A) ATM alteration is associated with metastatic
disease in CCS (Fisher’s exact test, p = 0.0147); (B) western blot (WB) of ATM level in CCS cell line (SU-CCS-1) vs. osteosarcoma cell line
(U2OS); (C) SU-CCS-1 cells were treated with two selective inhibitors targeting ATR (AZD6738) and PARP (Olaparib), and cell viability assay
showed that SU-CCS-1 is more sensitive to ATR inhibition than PARP inhibition; (D) Five days after treatment, cell viability assay showed
that there are much less viable SU-CCS-1 cells when ATR was inhibited. (Student t-test, * p < .05, **** p < .0001)
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