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ABSTRACT More than 10 years ago, we published the paper describing the mothur
software package in Applied and Environmental Microbiology. Our goal was to create
a comprehensive package that allowed users to analyze amplicon sequence data us-
ing the most robust methods available. mothur has helped lead the community
through the ongoing sequencing revolution and continues to provide this service to
the microbial ecology community. Beyond its success and impact on the field, moth-
ur’s development exposed a series of observations that are generally translatable
across science. Perhaps the observation that stands out the most is that all science
is done in the context of prevailing ideas and available technologies. Although it is
easy to criticize choices that were made 10 years ago through a modern lens, if we
were to wait for all of the possible limitations to be solved before proceeding, sci-
ence would stall. Even preceding the development of mothur, it was necessary to
address the most important problems and work backwards to other problems that
limited access to robust sequence analysis tools. At the same time, we strive to ex-
pand mothur’s capabilities in a data-driven manner to incorporate new ideas and ac-
commodate changes in data and desires of the research community. It has been ed-
ifying to see the benefit that a simple set of tools can bring to so many other
researchers.
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Looking back on scientific journeys can be instructive to others who are over-
whelmed at the prospect of looking forward at their careers (1–6). By no means is

my scientific journey over, but since 2002, I have been on a journey that I did not realize
I was on. Now that the paper introducing the mothur software package is 10 years old
and has become the most cited paper published by Applied and Environmental Micro-
biology (7) (Fig. 1), it is worth stepping back and using the continued development of
mothur as a story that has parallels to many other research stories.

I fondly recall preparing a poster for the 2002 meeting of research groups supported
by the NSF-supported Microbial Observatories Program. I wanted to triumphantly show
that I had sequenced more than 600 16S rRNA gene sequences from a single 0.5-g
sample of Alaskan soil. This was greater sequencing depth than anyone else had
achieved for a single sample. As I was preparing the poster, I walked into the office of
Jo Handelsman, my postdoctoral research advisor at the University of Wisconsin, and
laid out the outline for the poster. She asked if I could add one of those “curvy things,”
a rarefaction curve, to show where I was in sampling the community. Rarefaction curves
and attempts to estimate the taxonomic richness of soil had become popular because
of the impactful review by Jennifer Hughes and her colleagues (8). Their seminal paper
introduced the field to operational taxonomic units (OTUs), rarefaction curves, and
richness estimates. I do not recall whether my poster had a rarefaction curve on it, but
Jo’s question and that review article primed my career.

Introducing DOTUR and friends. When Jo asked me to generate a rarefaction
curve for the poster, the request was not trivial. How would I bin the sequences into
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OTUs? Hughes and her colleagues did it manually and with fewer than 300 sequences.
Although I could possibly do that for my 600 sequences, my goal was to generate 1,000
sequences from the sample and to repeat that sampling effort with other samples. I
needed something that could be automated. Furthermore, the software that Hughes
used to build rarefaction curves, EstimateS (4), required a series of tedious data
formatting steps to perform the analyses we were interested in performing. I had found
my first problem. How would I assign sequences to OTUs and use that data to estimate
the richness and diversity of a sample? The second problem would involve comparing
the abundance of OTUs found in one sample to another sample. The solution to the
first problem, DOTUR (distance-based OTUs and richness), took us 2 years to develop
(9). DOTUR did two things: given a matrix quantifying the genetic distance between
pairs of sequences, it would cluster those sequences into OTUs for any distance
threshold to define the OTUs and then it would use the frequency of each OTU to
calculate a variety of alpha diversity metrics. The solutions to the second problem
would come from our work to develop software, including �-LIBSHUFF (10), SONS
(shared OTUs and similarity) (11), and TreeClimber (12). Around the same time, Cath-
erine Lozupone and Rob Knight were developing their UniFrac tools to compare
communities with a phylogenetic rather than OTU-based approach (13, 14). With these
tools, the field of microbial ecology had a quantitative toolbox for describing and
comparing microbial communities. Along the way Jo and I would demonstrate the
utility of such tools for answering questions like how many OTUs were there in that
sample of Alaskan soil and how many sequences were needed to sample each of those
OTUs (15)? Where were we in the global bacterial census (16)? How does the word
usage of Goodnight, Moon compare to that of Portrait of a Lady, and more importantly,
how is this relevant to microbial ecology (17)? Most edifying were the more than 2,400
papers that used DOTUR, SONS, TreeClimber, or �-LIBSHUFF to facilitate their own
research questions (Web of Science, 1 October 2019). Had we waited to solve all of the
problems that plagued 16S rRNA gene sequencing, we would still be waiting.

It is important to remember that we knew there were many problems with 16S rRNA
gene sequencing. We knew there were biases from extractions and amplification
(18–23). We knew there were chimeras (24–27). We knew that bacteria varied in their
rrn copy number. Generating a distance matrix was a prerequisite to using my tools.
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FIG 1 mothur has consistently been a popular software package over the past 10 years with more than
8,800 citations. Citation data taken from the Web of Science (https://www.webofscience.com) on 1 October
2019. The gray line segment depicts the projected number of citations for 2019 based on the current
number of citations for the year and historical trends.
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This was not trivial, but by cobbling together other tools, it was possible. We would
assemble, trim, and correct Sanger sequence reads using Chromas or STADEN (28),
align the sequences using ClustalW (29) or ARB (30), check for chimeras using partial
treeing or Bellerephon (27), and calculate a pairwise distance matrix using DNADIST
from the PHYLIP package (31). At the time, we knew that we had only a loose concept
of a species based on these distances (32). We hoped that an OTU defined as a group
of sequences more than 97% similar to each other would be a biologically meaningful
unit regardless of whether it fit our notion of a bacterial species. At the time, I felt that
the biggest problems that I could solve were how to cluster the sequences into OTUs
and how to use those clusterings to test our hypotheses. The only tool available at the
time that automated the clustering step was FastGroup, which implemented an
approximation of the single linkage algorithm (33). The high cost of sequencing was
also an impediment to experimentation and analysis in microbial ecology. It was rare
for a study design to have experimental replicates so that one could perform a
statistical test to compare treatment groups. For example, in our testing, we frequently
used a data set comparing Scottish soils from Alison McCaig and colleagues (34). This
data set consisted of two experimental groups, each replicated three times with 45
sequences per replicate. Although great focus has been placed on the depth of
sampling afforded by 454 and Illumina sequencing, the true benefit of the modern
sequencing platforms is the ability to affordably sequence a large number of technical
and biological replicates. In my opinion, this expansion in the number of replicates
more than makes up for the potential limitations incurred by their shorter read length.
In spite of the many technical challenges, we had excuses and heuristics to solve
problems that served our needs. It is telling that a recent review of “best practices” in
generating and analyzing 16S rRNA gene sequences shows that we still have not solved
many of these issues and that we have, of course, identified additional problems (35).

As we developed these tools, I found a unique niche in microbiology. My under-
graduate and graduate training as a biological engineer prepared me to think about
research questions from a systems perspective, to think quantitatively, and to under-
stand the value of using computer programs to help solve problems. As an undergrad-
uate student, I learned the Pascal programming language and promptly forgot much of
it. Although it was a good language for teaching programming concepts, it did not
catch on outside the classroom. Later, I learned MATLAB. Because it was an expensive
commercial programming environment and never caught on with biologists, I also
forgot much of it. Even if I forgot the programming syntax of these languages, what
learning these languages taught me was the logic and structure of programming. As a
postdoc, I would use this background to learn the Perl programming language to better
understand how LIBSHUFF (i.e., LIBrary SHUFFle), a tool for comparing the structure of
two communities, worked since it was written in Perl (36). After writing my own version
of LIBSHUFF, �-LIBSHUFF, and seeing the speed of the version written in C�� by my
collaborator, Bret Larget, I converted my Perl version of DOTUR into C��. At the time,
the conversion from Perl to C�� seemed like an academic exercise to learn a new
language. My Perl version of DOTUR took a minute or so to process the final collection
of 1,000 sequences, and the C�� version took seconds. Was that really such a big
difference? In hindsight, as we now process data sets with tens of millions of sequences,
the decision to learn C�� was critical. The ability to pick up computer languages to
solve problems, enabled by my prior training in engineering, was a skill that was
virtually unheard of in microbiology. Today, researchers without the ability to program
are at a significant disadvantage (37).

Introducing mothur. Shortly after DOTUR was published, I received an e-mail from
Mitch Sogin, a scientist at the Marine Biology Laboratory (Woods Hole, MA), who asked
whether DOTUR could handle more than a million sequences. Without answering his
question, I asked where he found a million sequences. Little did I know that his e-mail
would represent another pivot in the development of these tools and my career. His
group would be the first to use 454 sequencing technology to generate 16S rRNA gene
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sequences (38). Although DOTUR could assign millions of sequences to OTUs, it was
slow and required a significant amount of RAM (random access memory). As I left my
postdoc to start my independent career across the state from Sogin’s lab at the
University of Massachusetts in Amherst, my plan was to rewrite DOTUR, SONS,
�-LIBSHUFF, and TreeClimber for the new world of massively parallelized sequencing.
The new tool would become mothur.

Milling about at a poster session at the 2007 ASM General Meeting in Toronto,
Canada, I ran into Mitch who asked what my plans were for my new lab. I told him that
I wanted to make a tool like ARB, a powerful database tool and phylogenetics package
(30), but for microbial ecology analysis. His retort was, “You and what army?” Up to that
point, I had written every line of code and had been answering many e-mails from
people asking for help. He was right, I would need an army. It would be difficult, but
I needed to learn to let go and share the development process with someone else. My
“army” ended up being Sarah Westcott, who has worked on the mothur project from
its inception. Today, mothur is nearly 200,000 lines of code, and Sarah has touched or
written nearly every line of it. Beyond writing and testing mothur’s code base, she has
become a conduit for many who are trying to learn the tools of microbial ecology. She
patiently answers questions via e-mail and on the package’s discussion forum (https://
forum.mothur.org). The community and I are lucky that Sarah has stayed with the
project for more than a decade. To be honest, such dependency on a single person
makes the project brittle. In hindsight, it would have been better to have developed
mothur with more of an “army” or team so that there is overlap in people’s under-
standing of how mothur works. Although a distributed team approach might work in
a software engineering firm, it is not practical in most academic environments where
there is limited funding. There are certainly projects that make this work, but they are
rare.

Competition has been good and healthy. mothur has not been developed in a
vacuum, and it does not have a monopoly within the field. As indicated above, each of
our decisions was made in the historical context of the field and with constant pressure
from others developing their own tools for analyzing 16S rRNA gene sequence data.
Competition has been good for mothur and for the field.

From the beginning, there have been online tools available at the Ribosomal
Database Project (RDP) (39), greengenes (40), and SILVA (41). These tools allowed users
a straightforward method of comparing their data to those collected in a database.
There are two primary downsides to these tools. First, researchers running the online
tool must pay the computational expenses. When their hardware becomes outdated
because it is expensive to replace or maintain, processing times slow down. Eventually,
this limitation would result in the termination of the greengenes website. Second, these
platforms provide a one-size-fits-all analysis. These tools allow a user to analyze only
16S rRNA gene sequences and in some cases 18S rRNA gene sequences. If a user
sequences a different gene, then the tool will not serve them. These observations
resulted in two design goals we have had with mothur: bringing the analysis to a user’s
computer and separating a tool from a specific database. For example, we commonly
use a sequence alignment method that was originally developed for greengenes (42),
but we use a SILVA-based reference alignment because of its superior quality (43, 44).
In addition, we offer the Bayesian classifier developed by the RDP (45) and allow users
to train it to any database they want, including customized databases. In both exam-
ples, users can align or classify non-rRNA gene sequence data. As the bioinformatics
tools have matured, both RDP and SILVA now offer integrated pipelines for analyzing
large data sets, albeit in one-size-fits-all black box implementations.

With the growth in popularity of 16S rRNA gene sequencing, there has naturally
been an expansion in the number of people developing tools to analyze these data.
Months after the paper describing mothur was published, the paper describing QIIME
was published (46). Over the past 10 years, many have attempted to create analogies
comparing the two programs: Pepsi versus Coke, Apple versus Windows, etc. It is never
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clear which software is which brand and whether the comparisons are meant as a
complement or an insult. Regardless, both programs are very popular. From my
perspective, most of the differences are cosmetic (http://blog.mothur.org/2016/01/12/
mothur-and-qiime/). To me the most meaningful difference between mothur and QIIME
is the choice of algorithms used to cluster sequences into OTUs. QIIME’s advocacy for
open and closed reference clustering and USEARCH- or VSEARCH-based de novo
clustering results in lower-quality OTU assignments relative to the de novo clustering
algorithms available within mothur (47, 48). QIIME is set of wrapper scripts that help
users to transition data between independent packages. For example, with QIIME
(through version 1.9.1), it was even possible to run mothur through QIIME. One can also
run the Bayesian classifier through QIIME using the original code developed by the RDP.
Structuring QIIME as a set of wrappers caused great frustration for many users because
there were numerous software dependencies that had to be installed. The benefits
included the ability for users to access a wider set of tools and for developers to tie their
tool into the popular software package. Although the QIIME developers would go on
to create virtual machines and use packaging tools to simplify installation, these fixes
required sophistication by users who we knew struggled with the basics of navigating
a command line. In contrast, when a user runs mothur, they are running mothur. The
Bayesian classifier code that is in mothur is a rewritten version of the original code.
When we rewrite someone’s software, we do it with an eye to improving performance,
access, and utility for non-16S rRNA gene sequence data. For example, while 454 data
were popular, PyroNoise was an effective tool for denoising flowgram data (49).
Running the original code required a large Linux computer cluster and knowledge of
bash and Perl scripting. When we rewrote the code for mothur, we made it accessible
to people using any operating system with a simple command interface (i.e., trim.flows
and shhh.flows). Our approach requires significant developer effort but saves consid-
erable user effort. As this benefit is multiplied across thousands of projects, the savings
to users has been considerable.

Beyond the large packages like mothur and QIIME, there has been significant growth
in stand-alone software tools for sequence curation (e.g., PyroNoise [49], PANDAseq
[50], and DADA2 [51]), chimera checking (e.g., UCHIME [52], ChimeraSlayer [53], and
Perseus [54]), and clustering (e.g., USEARCH [55], VSEARCH [56], and Swarm [57]). Where
possible and when warranted, we have implemented many of these algorithms directly
into mothur. We have also used this diversity of methods to perform head-to-head
comparisons. Most notable is the area of clustering algorithms where there have been
a large number of algorithms developed without an obvious method to objectively
compare them (47, 48, 58, 59). We applied an objective metric, Matthew’s correlation
coefficient (MCC), to evaluate numerous algorithms for clustering sequences into OTUs.
By performing this type of analysis, we were able to objectively compare the algo-
rithms, make recommendations to the field, and develop new algorithms that outper-
formed the existing ones. Beyond evaluating clustering algorithms, we have also
evaluated methods of denoising sequence data (60–62), assessed reference alignments
(43, 44), considered the importance of incorporating secondary structure information in
alignments (63), quantified the variation along the 16S rRNA gene (44), and compared
the statistical hypotheses tested by commonly used tools (64). We have embraced the
competition and diversity of all methods being used to analyze amplicon data. This
competition forces us to identify the strengths and weaknesses of various methods so
that we can make recommendations to other researchers.

mothur’s core principles. As mothur has evolved with the needs of the community,
several core principles have emerged that direct its development. First, mothur is a free,
open-source software package. This has been critical in shaping the direction of
mothur. We were content for mothur to be an improved combination of DOTUR and
SONS and leverage existing tools for other steps. Yet, we quickly appreciated the need
for providing other steps in a sequence analysis pipeline to make other tools more
accessible. This decision was motivated by learning that the code for greengenes’s (42)
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and ARB/SILVA’s aligners were not open source or publicly available. Thus, we realized
that such an important functionality needed to be open to the community (43). More
recently, the rejection of closed-source, commercial tools can be seen by the broader
adoption of open-source alternatives. This has been the case with the rising popularity
of VSEARCH over USEARCH within the microbial ecology community (55, 56).

Related to ensuring that mothur’s code is open source, our second core principle is
that we maintain transparency to our users. Perhaps a user does not need to interro-
gate every line of code, but they need to understand what is happening. Many
programs, including online workflows, encapsulate large elements of a pipeline in a
single command. In contrast, mothur forces the user to specify each step of the
pipeline. Although the former approach makes an analysis easier for a beginner, it
stifles users that need greater control or understanding of the assumptions at each
step. This control over the pipeline has made it easier for researchers to customize
databases or adapt the pipeline to analyze non-16S rRNA gene sequence data. Fur-
thermore, we have provided ample instructional materials to teach users how to
implement robust pipelines and the theory behind each step through the project’s
website (https://www.mothur.org) (Fig. 2).

Third, as I mentioned above, there has been a plethora of methods proposed for
generating amplicon sequence data and curating, aligning, checking for chimeras,

FIG 2 mothur homepage. From the mothur home page at www.mothur.org, users can download mothur,
access a user forum, navigate a wiki with extensive documentation, find blog posts that provide additional
examples of how to use mothur, join the mothur Facebook group, and subscribe to the mothur mailing list.
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classifying, and clustering the data. I am proud of the data-driven approach we have
taken to comparing these methods. A description of a new method has limited value
if it is not benchmarked against other methods or control data sets. Through this core
principle and mothur’s large reach into the community, we have helped to develop
standards in the analysis of 16S rRNA gene sequence data.

Fourth, a focus on enabling reproducibility has always been central to the function-
ality of mothur. From the beginning, mothur’s logfiles have represented a transcript of
the user’s command and outputs. When it became clear that researchers were not
submitting their sequence data to the Sequence Read Archive (SRA), we worked with
the SRA developers to create a mothur command (make.sra) that creates a package for
submitting sequence data through a special mothur portal. A more ambitious project
had its seed on 1 April 2013 when we announced a new “function” in mothur:
write.paper. The new command required that the user provide a 454 sff file and a
journal title or impact factor. With this information, mothur would generate a paper.
This April Fools’ Day joke was poking fun at software that provided an analysis black
box but also at many users’ sentiments that data analysis should be so cut and dry. A
few years later, we revisited this concept in the scope of reproducibility. Why not
explicitly script an analysis from downloading data from the SRA through the rendering
of a paper ready for submission? This idea gave rise to the development of the
Riffomonas reproducible research tutorial series that enables researchers to write their
own version of write.paper (65).

Perhaps the most important core principle is that my research group uses mothur
to analyze the data we generate. This has proven critical, as it again represents
transparency and hopefully provides confidence to mothur’s users that we are not
making recommendations that we do not follow ourselves.

Challenges of making open source count. Anyone can post code to GitHub with
a permissive license and claim to be an open-source software developer. Far more
challenging is engaging the target community to make contributions to that code.
Frankly, we have struggled to expand the number of people who make contributions
to the mothur code base. One challenge we face is that if we looked to others to
contribute code to mothur, they would need to know C��. Given the paucity of
microbiologists that can program in a compiled language like C��, expecting that
community to provide contributors who can write code in a syntax that prizes execu-
tion efficiency over developer efficiency was not realistic. In contrast, the QIIME
development team could be more distributed because their code base was primarily
written in Python, which prizes developer efficiency over execution efficiency. QIIME is
a series of wrappers that allow users to execute other developers’ code, making the use
of a scripting language like Python attractive. Their choices resulted in many tradeoffs
that have impacted ease of installation, usability, execution speed, and flexibility. If we
were offered funding to rewrite mothur, we would likely rewrite it as an R package that
leaned heavily on the R language’s C�� interface packages. Of course, such choices
are always best in hindsight. When we started developing mothur, the ability to
interface between scripting languages like R and Python and C�� code was not as well
developed as it is today. For example, the modern version of the Rcpp package was first
released in 2009 and its popularity was not immediate (66). The development of
mothur has been a product of the environment that it was created in. Although these
decisions have largely had positive outcomes, there have been tradeoffs that caused us
to sacrifice other goals.

Beyond contributing to the mothur code base, we sought out other ways to include
the community as developers. The paper describing mothur included 15 coauthors,
most of whom responded to a call to provide a wiki page that described how they used
an early version of mothur to analyze a data set. Our vision was that authors might use
the mothur wiki to document reproducible workflows for papers using mothur but also
to provide instructional materials for others seeking to adapt mothur for their uses
(https://www.mothur.org/wiki). Unfortunately, once the incentive of coauthorship was
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removed, researchers stopped contributing their workflows to the wiki. Again, this
vision and the lack of the community’s adoption of wikis as a mechanism for reporting
workflows were products of the environment. Although wikis were popular in the late
2000s, they lacked the ability to directly execute the commands that researchers
reported. Such technology would not be possible until the creation of IPython note-
books (2011) and R markdown (2012). Another problem with the wiki approach was
that potential contributors did not see the wiki as a community resource. I frequently
received e-mails from scientists telling me that there was a typo on a specific page
when the intention was that they could correct the typos without my input. We have
been more successful in soliciting input and contributions from the user community
through the mothur discussion forum and GitHub-based issue tracker. As mothur has
matured, we have been dependent on the user community to use these resources to
tell us what features they would like to see included in mothur and where the
documentation is confusing or incomplete (https://forum.mothur.org). Often we can
count on people not directly affiliated with mothur to provide instruction and their own
experience to other users on the forum. We are constantly trying to recruit our “army”
and are happy to take any contributions we can. Whether the contributions are to the
code base, discussion forum, or suggestions for new tools, these contributions have
been invaluable to the growth and popularity of mothur.

Failed experiments. If we never failed, we would not be trying hard enough. Over
the past decade, we have tried a number of experiments to improve the usability and
utility of mothur.

One of our first experiments was to use mothur to generate standard vector graphic
(SVG)-formatted files of heatmaps and Venn diagrams depicting the overlap between
microbial communities. Such visuals were helpful for exploring data; however, I quickly
realized that I would never put a mothur-generated figure into a paper I wrote. Such
visuals require far too much customization to be publication quality. Although QIIME
has incorporated visualization tools through the Emperor package (67), the challenge
of users taking default values has downsides, especially when those defaults do not
follow good data visualization principles. For example, ordinations with black back-
grounds and three-dimensional (3-D) ordinations in a two-dimensional (2-D) medium
now litter the literature. Instead, we have encouraged users to use R packages to
visualize mothur-generated results using the minimalR instructional materials that I
have developed (http://www.riffomonas.org/minimalR/).

A second experiment was the creation of a graphical user interface (GUI) for running
mothur. Forcing users to interact with mothur through the command line has been a
significant hurdle for many (Fig. 3). Unfortunately, the development effort required to
create and maintain a GUI is significant and there is limited funding for such efforts. The
newest version of QIIME (starting with version 2.0.0) has emphasized interaction with
the tools through a GUI (68), and the related QIITA project offers a web-based GUI (69).
It remains to be seen how this experiment will go. Another downside of using a GUI is
that there is a risk that reproducibility will suffer if users do not have a mechanism to
document their mouse clicks. A significant downside for web interfaces is the frequent
inability to document or return to old versions of software and databases. As was
experienced with greengenes, if the website is terminated, reproducing old analyses
becomes impossible. In mothur, documentation of commands and parameter values is
explicit in that users can provide a file with a list of commands and the software returns
a logfile with all commands and output recorded. Given the heightened focus on
reproducibility in recent years, we have extended significant effort in developing
instructional materials teaching users how to organize, document, and execute repro-
ducible pipelines that allow a user to go from raw sequence data to a compiled paper
(65, 70).

A final example of a failed experiment was a collaboration with programmers
through Google Summer of Code to develop commands in mothur that ran the random
forest and SVM (support vector machine) machine learning algorithms. Similar to the
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challenges of developing attractive visuals, fitting the algorithms’ hyperparameters,
testing, and deploying the resulting models require a significant amount of customi-
zation. Furthermore, machine learning is an active area of research where methods are
still being developed and improved. Thankfully, there are numerous R and Python
packages that do a better job of developing these models (71, 72).

In each of our “failed” experiments, the real problems were straying from what
mothur does well and failing to grasp what we really wanted the innovation to do.

The future. I will continue to develop mothur for as long as other researchers find
it useful. One challenge of such a plan is maintaining the funding to support its
development. The development of mothur was initially enabled by a subcontract from
a Sloan Foundation grant to Mitch Sogin to support his VAMPS (Visualization and
Analysis of Microbial Population Structures) initiative. We used that seed funding to
secure an NSF grant and then a grant from NIH for tool development as part of their
Human Microbiome Project. Since that project expired in 2013, we have not had
funding to specifically support mothur’s development. I have been fortunate to have
start-up and discretionary funds generated from other projects to help support mothur.
Although there is funding for new tools, there appears to be little appetite by funders
to support existing tools. Emblematic of this was the NIH program, Big Data To
Knowledge (BD2K), which solicited proposals through the program announcement
“Extended Development, Hardening and Dissemination of Technologies in Biomedical
Computing, Informatics and Big Data Science (PA-14-156).” This opportunity appeared
perfect, except that the National Institute of Allergy and Infectious Diseases (NIAID), the
primary supporter of microbiome research at NIH, did not participate in the announce-
ment. Tools like mothur are clearly successful, but they need funding mechanisms to
continue to mature and support the needs of the research community.

As with anything in science, methods become passé. When we first developed
mothur, T-RFLP (terminal restriction fragment length polymorphism) and DGGE (dena-

FIG 3 Start-up window when running mothur in Mac OS X in the interactive mode. mothur can also be
run on Windows or Linux. In the interactive mode, users enter individual commands at the mothur
prompt. Alternatively, users may run mothur by supplying commands from the command line or using
batch scripts.
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turing gradient gel electrophoresis) were still commonly used. Today it would be hard
to argue that data from those methods meaningfully advance a study relative to what
one could obtain using 16S rRNA gene sequence data. Looking forward, many want to
claim that amplicon sequencing is today’s DGGE. They claim that researchers should
instead move on to shotgun metagenomic sequencing. It is important to note that the
two methods answer fundamentally different questions. 16S rRNA gene sequence data
describes the taxonomic composition, while metagenomic sequence data tells a re-
searcher about the functional potential and genetic diversity of a community. Both
tools provide important information, but they cannot easily replace each other. Al-
though metagenomic data does provide highly resolved taxonomic information, its
practical limit of detection is at least an order of magnitude higher than that of
amplicon data. For example, we analyzed 10,000 16S rRNA sequences from each of
about 500 subjects (73). We can think of this as representing about 1,000,000 genome
equivalents (10,000 16S rRNA genes/subject � 500 subjects/5 16S rRNA gene sequenc-
es/genome). Assuming a genome is 4 Mbp, this would represent a sequencing depth
of 4 Tbp. Although such a sequencing effort is technically possible, the cost of such an
endeavor would be considerable and unlikely to be pursued by most researchers. We
estimate that generating and sequencing the libraries at the University of Michigan
sequencing core would cost approximately $150 per library. The parallel 16S rRNA gene
sequences data would cost approximately $8 per library. Furthermore, analyzing such
a large data set with an approach that captures the full genetic diversity of the
community would be financially and technically prohibitive. Going forward, sequencing
technologies will continue to evolve to capture longer and more high-quality data, and
there will always be a need for characterizing the taxonomic diversity of microbial
communities. With this in mind, there will always be a place for tools like mothur that
can analyze amplicon sequence data.

Of course, this does not mean that such tools will remain static. We see three key
areas that we will continue to help the field to move forward. First, just as we adapted
through the transitions from Sanger to 454 to MiSeq and PacBio sequencing platforms
(60–62), we must learn whether data from Oxford Nanopore and other developing
sequencing technologies can be an alternative sequencing approach that generates
sequence data that is the same quality as existing approaches; thus far, the approach
has significant shortcomings for sequencing 16S rRNA gene sequences (74). As with the
earlier platforms, we must better understand its error profile so that sequencing errors
can be corrected. We have learned that moving forward requires that we maintain or
improve sequence quality. No doubt, data sets and read lengths will improve, but these
advances should not be made at the cost of data quality. Second, with these improve-
ments, we will need to continue to improve our algorithms. We have already seen that
attempts to use low-quality MiSeq and HiSeq data caused computational problems
leading to the creation of open and closed reference clustering methods, which
attempted to circumvent those problems (75, 76). Unfortunately, comparative analyses
showed that these methods fail relative to de novo clustering methods (47, 48). More
work is needed to improve reference-based clustering methods so that larger data sets
can be analyzed without sacrificing the quality of OTU assignments. Finally, there are
ongoing controversies that need further exploration. These controversies include the
validity and utility of amplicon sequence variants (77), the wisdom of removing
low-frequency sequences (78), and methods of identifying and removing contaminant
16S rRNA gene sequences (79, 80). With each of these areas of development, the
broader community can count on our same data-driven approach to answer these
questions. It is common for researchers to comment that they pick a specific method
or deviate from a suggestion because they “like how the data look.” When pressed for
an objective definition of how they know the data look “right,” they go quiet. Through
the use of data where we actually know what looks right and objective metrics of
quality, we will continue to base recommendations on data rather than a gut feeling.
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Conclusion. In the paper announcing mothur, we commented that the relationship
between 16S rRNA gene sequencing and analysis is very much like the Red Queen in
Lewis Carroll’s book, Through the Looking-Glass. Although some disagreed with this
analogy (81), I still feel it is apt. The sequencing technology and rapacious appetite of
researchers continue to race on. At the same time, bioinformatics tools must adapt to
facilitate our research. I am confident that mothur will be up to this exciting challenge.
Beyond its utility for analyzing amplicon sequence data, mothur’s history provides
lessons that are helpful for other projects that hope to develop a long historical arc.
First, mothur is a product of its time. We have always sought to solve a current need
to the best of our ability with the tools we had at the time. There are certainly caveats
to any analysis of 16S rRNA gene sequence data, but if we had waited until those
caveats were resolved, the field would never have progressed. Similarly, we made
design choices that we probably would not have made had we started the project
today. Second, as we have developed mothur, we have attempted to do so in a
data-driven approach where we compare multiple methods. It has not merely been
enough to propose a new method: we must show that it meaningfully advances the
field. Third, through our failures and successes, we have learned to focus on what
mothur is good at and create products separate from mothur when distinct needs arise.
For example, we have learned that mothur should not have a graphical interface or
data visualization tool. Instead, we provide instructional materials to teach users how
to use the command line interface and other computational skills like programming in
R for data visualization. Finally, mothur was born out of a need for automating the
analysis of large 16S rRNA gene sequence data sets. It has been refreshing to see the
computational skills of the microbial ecology field grow over the past 2 decades.
Looking ahead, we must all take stock of the challenges we face in microbial ecology
and how our individual skills and interests can address these challenges to turn them
into opportunities.
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