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Purpose: To study the impact of dose distribution on volume-effect parameter and
predictive ability of equivalent uniform dose (EUD) model, and to explore the
improvements.

Methods and Materials: The brains of 103 nasopharyngeal carcinoma patients treated
with IMRT were segmented according to dose distribution (brain and left/right half-brain
for similar distributions but different sizes; VD with different D for different distributions).
Predictive ability of EUDVD (EUD of VD) for radiation-induced brain injury was assessed by
receiver operating characteristics curve (ROC) and area under the curve (AUC). The
optimal volume-effect parameter a of EUD was selected when AUC was maximal (mAUC).
Correlations between mAUC, a and D were analyzed by Pearson correlation analysis.
Both mAUC and a in brain and half-brain were compared by using paired samples t-tests.
The optimal DV and VD points were selected for a simple comparison.

Results: ThemAUC of brain/half-brain EUD was 0.819/0.821 and the optimal a value was
21.5/22. When D increased, mAUC of EUDVD increased, while a decreased. The mAUC
reached the maximum value when D was 50–55 Gy, and a was always 1 when D ≥55 Gy.
The difference of mAUC/a between brain and half-brain was not significant. If a was in
range of 1 to 22, AUC of brain/half-brain EUDV55 Gy (0.857–0.830/0.845–0.830) was
always larger than that of brain/half-brain EUD (0.681–0.819/0.691–0.821). The AUCs of
optimal dose/volume points were 0.801 (brain D2.5 cc), 0.823 (brain V70 Gy), 0.818 (half-
brain D1 cc), and 0.827 (half-brain V69 Gy), respectively. Mean dose (equal to EUDVD with
a = 1) of high-dose volume (V50 Gy–V60 Gy) was superior to traditional EUD and dose/
volume points.
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Conclusion: Volume-effect parameter of EUD is variable and related to dose distribution.
EUD with large low-dose volume may not be better than simple dose/volume points.
Critical-dose-volume EUD could improve the predictive ability and has an invariant
volume-effect parameter. Mean dose may be the case in which critical-dose-volume
EUD has the best predictive ability.
Keywords: equivalent uniform dose, brain injury, predictive ability, volume-effect parameter, nasopharyngeal carcinoma
INTRODUCTION

Dose/volume parameters are widely used to estimate the
probability of normal tissue injury (1–4). However, these
parameters are only part of the information contained in the
dose volume histogram (DVH) curve. For instance, dose delivered
to 1 cc (D1 cc) is only a discrete point on DVH. Some normal tissue
complication probability (NTCP) models utilize all information of
the DVH curve by compressing the entire curve into a single factor
(5–7). However, most DVH reduction models are based on
estimated complication probability under uniform irradiation
(5), which could not be used for non-uniform dose distributions
directly. To solve this problem, the equivalent uniform dose
(EUD) is often introduced (8–10).

EUD is a simple power-law assumption that may not
correspond to the weight changes of all doses. If the doses vary
over a wide range, this uncertainty may increase and lead to a
decrease in predictive ability—the fitting of power exponent (a or
1/n) should be more accurate in a small dose range than in a large
dose range. Since both volume and dose are factors of EUD
formula, the proportions of volume bins in different dose ranges
should theoretically influence the volume-effect parameter. To
increase the weight of critical dose, the power exponent might be
larger in the case that the proportion of inessential low-dose
volume becomes larger. In order to identify these potential
defects and try to improve them, this study explored the
impact of dose distribution on the EUD-based prediction
model o f radia t ion- induced bra in in jury (BI) for
nasopharyngeal carcinoma (NPC) patients, taking into account
2

the large enough low-dose volume and typical symmetrical
objects including structure, field setup and location of injury.
METHODS AND MATERIALS

Patient Selection and Radiation Therapy
A total of 103 NPC patients treated with intensity-modulated
radiotherapy (IMRT) in 31 fractions and concurrent platinum-
based chemotherapy were retrospectively reviewed from January
2009 to March 2015 (Table 1). All patients were followed every 3
months in the first 2 years and every 6 months during the next 3
years, and then annually thereafter. The median follow-up time
was 69.2 months (range, 61.2–120.8 months). Full-course
radiation planning was designed and optimized by inverse
treatment planning system, 7 (18/103) or 9 (85/103) isocentric
fields being set up. The prescribed dose was 68–72 Gy to the
planning target volume (PTV) of gross tumor volume (GTV),
60–64 Gy to the PTV of high-risk clinical target volume (CTV),
and 50–54 Gy to the PTV of low-risk CTV.

Toxicity Endpoints
The MRI images were reviewed by two radiologists and a radiation
oncologist. Diagnostic criteria for BI were as follows (4): 1) solid
lesions with small nodular enhancements on postcontrast T1-
weighted sequence, or ring lesions with “Swiss cheese” or “soap
bubble” patterns, featuring marginal enhancements and central
necrosis; 2) focalized or extensive edema surrounding necrosis,
typically presented on T2-weighted images as finger-like areas
TABLE 1 | Basic characteristics for 103 patients.

Characteristics Injury Non-injury P

Gender 0.64
Male 25 (75.8%) 50 (71.4%)
Female 8 (24.2%) 20 (28.6%)
Age (median) 45 42.5 0.40
T stage* <0.01
T1 0 (0%) 0 (0%)
T2 2 (6.1%) 13 (18.6%)
T3 8 (24.2%) 40 (57.1%)
T4 23 (69.7%) 17 (24.3%)
Brain injury 33 –

Left 11
Right 13
Both 9
January 2022 | Volume 11 | Article 7
*When T stage and dosimetric parameters were analyzed together in multivariate analysis, T stage was removed (P >0.05).
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with hyperintensity; and 3) no evidence of intracranial NPC
invasion. Patients who met all the criteria were diagnosed as BI.

Segmentation for Different Reference
Volumes
The brain was contoured in each case as only the pure brain
parenchyma was considered, excluding the cavernous sinuses,
the brainstem, optic chiasm, optical tract, pituitary gland,
mammillary bodies, and Meckel’s caves (11, 12). At the overall
level, the dose distribution of left and right half-brain should be
similar to that of whole brain (analyzed in results) because the
isocentric fields were symmetrical, and the tumors were generally
in the middle. In order to obtain reference volumes with similar
dose distributions but different sizes, the brain was divided into
left half-brain and right half-brain according to brain midline
(13). Reference volumes with different dose distributions were
obtained directly from DVH (V0 Gy to V70 Gy, per 5 Gy).

Dosimetric Parameters
EUD was calculated with the equation:

EUD = o
i
viD

a
i

� �1
a

where Di is the ith dose bin (1 Gy/bin) of a DVH, vi is the
relative volume of that bin and a is the volume-effect parameter
Frontiers in Oncology | www.frontiersin.org 3
(8). For comparison purposes, DV (dose delivered to volume V),
VD (volume covered by doses ≥D) and EUDVD (EUD of VD)
were calculated.

Statistical Analysis
SPSS 19.0 was used for statistical analysis. The VD proportions
(relative volume) of whole-brain and half-brain were compared by
using independent sample t-tests. Receiver operating characteristic
curve (ROC) was used for screening dosimetric parameters to
predict BI. The predictive ability was assessed by the area under
the curve (AUC). The a value in EUDmodel was adjusted from 1 to
30. The optimal volume-effect parameter a of brain/half-brain was
selected (or median when there were multiple optimal a values)
when AUC of EUDmodel was maximal (mAUC). The correlations
between mAUC, a and D were analyzed by Pearson correlation
analysis. The mAUC/a in brain and half-brain were compared by
using paired sample t-tests. The optimal simple dose/volume points
were selected from DV (V ranged from 0 to 5 cc, per 0.5 cc) and VD

(D ranged from 40 to 75 Gy, per 1 Gy) for a simple comparison.

RESULTS

Analysis of Dose Distribution for
Symmetrical Segmentation
Average-DVH curves of left half-brains, right half-brains and
brains almost exactly overlapped (Figure 1). The VD proportions
FIGURE 1 | Average-DVH curves of left half-brains, right-half-brains and brains.
January 2022 | Volume 11 | Article 743941
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of reference volume points (V10 Gy, V20 Gy, V30 Gy, V40 Gy, V50 Gy,
V60 Gy, and V70 Gy) of half-brain and whole-brain were enrolled
for independent sample t-tests. All mean differences of VD

proportions between half-brain and whole-brain were less than
0.01% (P >0.5 in each pair).
Changes of a Value and mAUC in
Different Volumes
The mAUC of brain EUD was 0.819 and the optimal a value was
21.5. Similarly, the mAUC of half-brain EUD was 0.821 and the
optimal a value was 22. As the specific dose D of VD increased
from 0 to 70 Gy (per 5 Gy), the optimal a value of brain/half-
brain EUDVD decreased and was always 1 when D ≥55 Gy, and
the mAUC increased and reached the maximum value when D
was 50–55 Gy (Figure 2). In this study, 55 Gy was selected as a
critical dose of EUDVD model for BI.
Frontiers in Oncology | www.frontiersin.org 4
Impact of Different Reference Volumes on
mAUC and a Value
Volumes With Similar Dose Distributions But
Different Sizes
The mAUCs of EUDVD (D = 0–70 Gy, per 5 Gy) in brain group
and half-brain group were enrolled for paired samples t-tests.
Again, the optimal a values of EUDVD in brain group and half-
brain group were enrolled for paired sample t-tests. The
differences of both AUCs and a values between brain group
and half-brain group were not significant (P = 0.869/0.834).

Volume With Different Dose Distribution (D ≤55 Gy)
When D was less than or equal to 55 Gy, mAUC and optimal a
value of EUDVD were correlated with D strongly (Table 2). In the
range of a value from 1 to 22, AUC of brain EUDV55 Gy

(0.830–0.857) was always larger than that of whole brain EUD
(0.681–0.819), and similarly, AUC of half-brain EUDV55 Gy
FIGURE 2 | Changes of optimal a value and mAUC of EUDVD as the specific dose D changed.
TABLE 2 | Pearson correlation coefficients between D, mAUC, and a in EUDVD (P <0.01, 2-tailed).

D mAUC (brain) a (brain) mAUC (half-brain) a (half-brain)

D 1 0.932 −0.813 0.912 −0.877
mAUC (brain) 0.932 1 −0.947 0.937 −0.984
a (brain) −0.813 −0.947 1 −0.829 0.952
mAUC (half-brain) 0.912 0.937 −0.829 1 −0.915
a (half-brain) −0.877 −0.984 0.952 −0.915 1
January 2022 | Volume 11 |
D, specific dose of VD; mAUC, maximal AUC; a, volume-effect parameter of EUDVD; EUDVD, EUD of VD.
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(0.830–0.845) was always larger than that of whole half-brain
EUD (0.691–0.821) (paired sample t-tests, P <0.001).

Comparison of Dosimetric Parameter
The optimal dose/volume points for predicting BI in brain group
were D2.5 cc and V70 Gy, and those in half-brain group were D1 cc

and V69 Gy. For a simple comparison, AUCs, cutoffs, and Youden
indices of optimal dosimetric parameters were calculated and
listed (Table 3).

Feasible Volume of Mean Dose
The best volume-effect parameter might be 1 when reference
volume was covered by doses not less than critical dose. When a
value is equal to 1, EUD is equal to mean dose. Therefore, the
feasible volume of mean dose was analyzed. The AUC of mean
dose of VD was not inferior to that of traditional EUD when D
was 45–65 Gy, and it was not inferior to that of dose/volume
points when D was 50–60 Gy (Figure 3).
DISCUSSION

Modern radiotherapy techniques such as IMRT, volumetric arc
radiotherapy (VMAT), and stereotactic body radiotherapy
(SBRT) are able to spare normal tissue and reduce side effects
(5), resulting in rather non-uniform dose distributions for
normal tissue (14). To make sure the traditional NTCP models
based on uniform dose still work, effective volume reduction
Frontiers in Oncology | www.frontiersin.org 5
scheme and effective dose reduction scheme have been proposed
(15–17). Together, the EUD equation and the Lyman
assumptions are often referred to as the Lyman–Kutcher–
Burman (LKB) model which has been widely used (5). Other
EUD-related models include Logit-EUD model, Schultheiss
model (18), Poisson-EUD model, Källman model (19), and
Parallel model (20). Regardless of which model is selected to fit
clinical data, the intrinsic difference of dichotomous data is the
basis of prediction accuracy. In the study Ospina, the six NTCP
models above showed almost identical predictive ability for late
bladder complications with similar ROC (21). EUD is essentially
a redistribution function of dichotomous data. To improve its
predictive power, EUD must be able to improve the AUC.

EUD-based optimization of radiation plan has been reported
in some studies (22–24). However, there is no guarantee that the
parameters are generic and stable in different radiotherapy
techniques (such as IMRT and SBRT). As mentioned in the
introduction, the volume-effect parameter might be influenced
by the dose distribution. In this study, radiation-induced BI
model for NPC patients was selected as the object due to its
following advantages: 1) fewer setup errors and organ
movements; 2) clear boundaries for delineation; 3) clear
imaging findings; 4) clear dose–injury relationship with almost
no effects of infection or other factors; 5) symmetrical structure
and dose distribution for symmetrical segmentation; and 6)
relatively concentrated high-dose region and relatively
independent injury in temporal pole for asymmetric
segmentation. In this study, average-DVH curves of left half-
TABLE 3 | Comparison of dosimetric parameters for brain injury prediction.

AUC (95% CI) Cutoff Sensitivity Specificity Youden index

brain
EUDV55 Gy 0.857 (0.775–0.938) 61.80 Gy 0.758 0.857 0.615
D2.5 cc 0.801 (0.708–0.895) 67.54 Gy 0.697 0.829 0.526
V70 Gy 0.823 (0.735–0.912) 1.37 cc 0.758 0.829 0.586

half-brain
EUDV55 Gy 0.845 (0.776–0.914) 61.31 Gy 0.786 0.811 0.597
D1 cc 0.818 (0.748–0.888) 67.22 Gy 0.786 0.756 0.542
V69 Gy 0.827 (0.759–0.896) 0.62 cc 0.786 0.756 0.542
January 2022 | Volume 11 |
A B

FIGURE 3 | AUC of mean dose of VD as D changed: (A) AUC in brain group; (B) AUC in half-brain group.
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brain, right half-brain and brain overlapped almost exactly, and
the differences were negligible, indicating that half-brain could
be viewed as an independent structure with a dose distribution
similar to that of brain. In addition, VD with different D could be
viewed as reference volumes with different dose distributions.

The purpose of half-brain delineation was to study whether
the a value and mAUC were influenced by volume size. In this
study, both the optimal a values and their changes were similar in
brain group and half-brain group, and also mAUC, indicating
that volume size may not be a significant factor. Instead, the dose
distribution may be an important factor. The results showed that
the optimal a value of EUDVD was correlated with D strongly,
and it gradually decreased to 1 with the increase of D, indicating
that the optimal a value is variable if the dose distribution is
uncertain. The variation of volume-effect parameter in different
volumes may be due to the variation of dose distribution rather
than to the variation of volume size itself.

An important role of EUD is to convert the doses of entire
organ to suit the findings of Emami (25). However, modern
radiotherapy techniques rarely involve one third, one half or
entire organ being irradiated uniformly. The EUD conversion of
entire organ doses may reduce the predictive efficacy, especially
in a large organ with only a small volume exposed to high dose,
since the low-dose volume may affect the role of crucial doses
and increase the uncertainty of a value. The study of
Heemsbergen showed that the local dose–effects were most
pronounced in intermediate-high dose regions for late
gastrointestinal toxicity (26). If the EUD was limited to a
defined high-dose region, the a value would be more stable
and the AUC should be larger. However, if the volume of critical
dose was removed excessively, the AUC would decrease. In this
study, the mAUC of EUDVD reached the maximum value when
D was around 50–55 Gy, indicating that 50–55 Gy might be the
critical low dose for BI. On the other hand, regardless of what a
value was selected, AUC of EUDV55 Gy was always larger than
that of traditional EUD, further supporting the removal of low-
dose volume.

It looked like the brain tissue went from being a series organ
to being a parallel organ when a value decreased from 21.5/22 to
1, which might not fit the original definition of volume-effect
parameter. However, volume-effect parameter of series/parallel
organ is essentially an indirect estimation for complication which
depends on the location and extent of direct biological damage.
In this study, volume-effect parameter of whole volume seemed
to only play a role in reducing the interference of low-dose
volume. If a novel radiotherapy technique leads to more/less low-
dose volume, a larger/smaller a value may be needed. Therefore,
a parallel/series organ should not be defined directly by the
volume-effect parameter.

In this study, whole-volume EUD was not superior to all
simple dose/volume points, while EUDV55 Gy could improve the
predictive ability, although the difference may not be significant
(with AUCs within the 95% CI of the others). However, an
overwhelming predictor is almost impossible considering that
the continuous variables are highly correlated (for example, D1 cc

is never significantly superior to D1.01 cc), so the significant trend
Frontiers in Oncology | www.frontiersin.org 6
of AUC may also be important. Given a larger AUC and a more
stable a value, EUDVD with an optimal D should be a better
choice which is less influenced by dose distribution. From the
results, in order to fit the low-dose volume together, the best
weight relationship of critical doses lost, which may be the reason
why whole-volume EUD did not show an advantage.

Mean dose may be the case in which EUDVD has the best
predictive ability, but the critical dose needs to be determined
first. In this study, the optimal reference volume of EUD model
for BI may be V50 Gy–V55 Gy (V46 Gy–V53 Gy for equivalent dose
in 2 Gy per fraction). When the reference volume ranged from
V45 Gy to V65 Gy, the AUC of mean dose was not inferior to
traditional EUD, and when the reference volume ranged from
V50 Gy to V60 Gy, the AUC of mean dose was better than
traditional EUD and dose/volume points, indicating that even
if there is some error in critical dose, the predictive ability is still
advantageous in a certain dose range. In fact, it is easier and more
reliable to find an optimal mean dose than to fit an unstable
parameter. On the other hand, since the volume covered by 55
Gy is related to BI and contributes to the predictive ability, the
sub-high dose volumes of brain should be fully delineated (not
just temporal lobe) and enrolled in optimization plan to better
protect brain tissue. EUDV55 Gy may be a suitable dose constraint
index for brain.

It should be clarified that the fundamental purpose of
different reference volumes is not to study a sub-structure
EUD against traditional EUD, but to enlarge the potential
errors (EUD with a large low-dose volume is not better than
simple dose/volume points; volume-effect parameter is variable
in different dose distribution) in a typical organ and try to
improve them. In addition, the higher incidence of BI may be
related to advanced T-stage and follow-up bias (symptomatic
patients were more likely to complete follow-up). There are
several limitations in this study. Firstly, the optimal a value was
selected by simple calculation with limited accuracy, although
the optimal EUDVD does not need an “accurate” a value other
than 1. Secondly, the optimal a value of 1 is just an assumption
that requires more evidence. Thirdly, the conclusions may not be
applicable to other organs and more researches are needed.
Finally, the division of reference volume is crude, and further
studies and more accurate control groups are needed.
CONCLUSION

Volume-effect parameter of EUD is variable and related to dose
distribution. Before referencing a EUD-based model, the
similarity of dose distribution should be confirmed. EUD with
large low-dose volume may not be better than simple dose/
volume points. EUD of critical-dose volume could improve the
predictive ability and has an invariant volume-effect parameter.
No matter what a value is selected, critical-dose-volume EUD
may always be better than whole-volume EUD. Mean dose may
be the case in which critical-dose-volume EUD has the best
predictive ability.
January 2022 | Volume 11 | Article 743941
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