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RyR1‑related myopathy mutations in ATP 
and calcium binding sites impair channel 
regulation
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Abstract 

The type 1 ryanodine receptor (RyR1) is an intracellular calcium (Ca2+) release channel on the sarcoplasmic/endoplas-
mic reticulum that is required for skeletal muscle contraction. RyR1 channel activity is modulated by ligands, includ-
ing the activators Ca2+ and ATP. Patients with inherited mutations in RyR1 may exhibit muscle weakness as part of a 
heterogeneous, complex disorder known as RYR1-related myopathy (RYR1-RM) or more recently termed RYR1-related 
disorders (RYR1-RD). Guided by high-resolution structures of skeletal muscle RyR1, obtained using cryogenic electron 
microscopy, we introduced mutations into putative Ca2+ and ATP binding sites and studied the function of the result-
ing mutant channels. These mutations confirmed the functional significance of the Ca2+ and ATP binding sites identi-
fied by structural studies based on the effects on channel regulation. Under normal conditions, Ca2+ activates RyR1 
at low concentrations (µM) and inhibits it at high concentrations (mM). Mutations in the Ca2+-binding site impaired 
both activating and inhibitory regulation of the channel, suggesting a single site for both high and low affinity 
Ca2+-dependent regulation of RyR1 function. Mutation of residues that interact with the adenine ring of ATP abro-
gated ATP binding to the channel, whereas mutating residues that interact with the triphosphate tail only affected 
the degree of activation. In addition, patients with mutations at the Ca2+ or ATP binding sites suffer from muscle 
weakness, therefore impaired RyR1 channel regulation by either Ca2+ or ATP may contribute to the pathophysiology 
of RYR1-RM in some patients.
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Significance
The ryanodine receptor/calcium release channel (RyR1) 
is required for skeletal muscle excitation–contraction 
(EC) coupling. Mutations in RyR1 that render the channel 
leaky (unable to close properly) to calcium (Ca2+) cause 
an inherited form of muscle weakness known as RyR1-
related disorders (RyR1-RD). Using the high-resolution 
RyR1 structure solved in our laboratory we identified 
binding sites for the channel activators Ca2+ and ATP. 

Mutagenesis of these sites combined with functional 
studies confirmed that they are indeed the key ligand 
binding sites. Both the ATP and Ca2+ sites are involved in 
disease-causing mutations that alter the response of the 
channel to these physiological activators and likely con-
tribute to the pathophysiology of RyR1-RD.

Introduction
Calcium is a vital second messenger [6, 38] that regu-
lates numerous cellular signaling pathways, including 
muscle contraction [38], hormone secretion [57], and 
synaptic transmission [64]. Ryanodine receptors (RyRs) 
are located on the sarcoplasmic/endoplasmic reticu-
lum (SR/ER) and mediate the release of Ca2+ from 
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intracellular stores [56]. The three mammalian iso-
forms, RyR1, RyR2, and RyR3, share approximately 70% 
sequence identity. RyR1 and RyR2 are widely expressed 
and are the major SR Ca2+ release channels in skeletal 
and cardiac muscles, respectively [54, 77]. RyR3 was 
originally found in the brain, but it is also expressed in 
other tissues [58].

RyR1 is required for excitation–contraction (EC) cou-
pling in skeletal muscle. RyR1 is a homotetramer com-
prised of four 565  kDa protomers and as such is the 
largest known ion channel. In addition, regulatory and 
targeting proteins for enzymes including protein kinase 
A (PKA) and CaM kinase II (CAMKII), are associated 
with the channel and regulate its function [41, 45].

RYR1-related myopathies (RYR1-RM), or as recently 
proposed RYR1-related disorders (RyR1-RD) [31], 
are rare, inherited disorders, the prevalence of which 
have likely been underestimated at 1:90,000 individu-
als [1]. Indeed, RYR1-RD is the most common form 
of non-dystrophic muscle disease and includes indi-
viduals with malignant hyperthermia susceptibility that 
affects ~ 1:3000–1:8500 and possibly as many as 1 in 400 
[31]. RYR1-RD exhibits both autosomal dominant and 
recessive inheritance as well as de novo occurrences. 
RYR1-RD is characterized by pleotropic clinical presen-
tations ranging from mild to severe muscle weakness, 
and moderate to severe respiratory insufficiency, which is 
more often apparent in recessive cases. Some mutations 
in RYR1 (19q13.2) result in leaky channels that promote 
muscle weakness and damage in RyR1-RD patients [27]. 
Although there are currently no approved treatments, 
a clinical trial using a novel Rycal drug that fixes the 
leak in RyR1 channels is currently underway at the NIH 
(NCT04141670).

The RyR1 macromolecular complex includes calstabin 
[43, 45, 69, 74], PKA [52], CaMKIIδ [26, 70], the phos-
phatases PP1 and PP2A [15, 42], the phosphodiesterase 
PDE4D3 [32, 57], sorcin [19], calmodulin [49, 51, 53, 66, 
78], triadin [55], junction [33], and calsequestrin [4]. RyR 
channels are regulated by posttranslational modifica-
tions including phosphorylation [27, 44, 45], oxidation 
[2, 59, 60], and nitrosylation [5]. RyR channels exhibit a 
bell-shaped response to cytosolic Ca2+, with activation 
at micromolar levels and inhibition at millimolar con-
centrations [7]. ATP is a potent activator of RyR [48] and 
millimolar ATP concentrations enhance Ca2+-dependent 
activation of RyR1, manifested as increased open prob-
ability (Po) [8, 17, 30, 50, 63, 65]. In disease states, RyR 
channels may exhibit a stressed-induced leak that con-
tributes to the pathophysiology of heart failure [22, 39, 
40, 45], cardiac arrhythmias [69], diabetes [57], muscular 
dystrophy [3], age-dependent loss of muscle function [2], 
cancer-associated muscle weakness [68], post-traumatic 

stress disorder [36], Alzheimer’s Disease [9, 28], and 
Huntington’s Disease [16].

In 2015, three cryogenic electron microscopy (cryo-
EM) studies, including our own, described the high-
resolution architecture of the closed state of RyR1 [18, 
73, 76], revealing that RyR1 belongs to the six trans-
membrane (6TM) cation channel family. As opposed 
to most members of the 6TM family, RyR is not voltage 
gated; however, it contains an evolutionarily conserved 
pseudo-voltage-sensor domain (pVSD) [76] which lacks 
the positively charged residues present in voltage-gated 
channels. We also solved the structure of the open state 
of RyR1, activated by Ca2+, ATP, and caffeine, reveal-
ing the structural basis of channel gating and ligand-
dependent activation of RyR1 [14]. The cytosolic shell 
of RyR is composed of alpha-solenoid repeats, includ-
ing two N-terminal beta-trefoil domains (NTD-A and 
NTD-B) [67], three SPRY domains (SPRY1-SPRY3) [29], 
two pairs of RYR repeats (RY1&2 and RY3&4) [61, 75], 
and a pair of EF-hands (EF1&2) [71] inserted in the core 
solenoid [76]. The activation domain contains a thumb 
and forefinger motif (TaF), which clamps the zinc finger-
containing C-terminal domain (CTD) and provides allos-
teric coupling between the movement of the cytosolic 
shell and dilation of the pore aperture. The core solenoid 
(C-Sol), which is part of the activation domain, links the 
pore domain to the shell. Binding sites for Ca2+, caffeine, 
and ATP were identified at interdomain interfaces of the 
C-terminal domain and the transmembrane domain [14] 
where they likely stabilize interdomain interactions and 
amplify the effects of Ca2+ binding on the gating of the 
channel pore (Fig. 1).

Our previous work examined the pathophysiological 
mechanisms underlying RyR1-RD [27]. The present study 
extends these observations at the atomic level by focus-
ing on structure/function studies of the ATP and Ca2+ 
binding sites and disease causing mutations that affect 
these sites in patients with RyR1-myopathy. In the pre-
sent study, we used site-directed mutagenesis to assess 
the functional importance of the ATP and Ca2+ binding 
sites that we previously identified using cryo-EM. More-
over, RyR1 channel mutations found at the Ca2+ and ATP 
binding sites of patients with RYR1-RD resulted in defec-
tive regulation by Ca2+ and ATP that may contribute to 
muscle weakness in RYR1-RD patients.

Results
Architecture and function of the RyR1 ATP binding site
The ATP binding site of RyR1 is located at the junction 
of the cytoplasmic extension of S6 (S6c) tranmembrane 
helix and the CTD [14]. Based on the structure, T4979 
of the CTD contributes to the adenine ring binding site, 
and the positively charged K4211, K4214, and R4215 
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residues of the TaF interact with the triphosphate tail of 
ATP (Fig. 2A). Based on this model, we hypothesized that 
mutation of T4979 would reduce ATP binding to RyR1, 
whereas mutation of K4211, K4214, and R4215 would 
reduce ATP-dependent activation of RyR1, since ADP 
and AMP are less effective activators of RyR1 [10, 30].

To assess the functional effects of the ATP binding site. 
T4979 was mutated to phenylalanine (T4979F), near 
the adenine ring of ATP, and a triple mutant of K4211/
K4214/R4215, each to serine, near the triphosphate tail of 
ATP was generated. These mutants were made in recom-
binant rabbit RyR1 and expressed in HEK293 cells. To 
assess the effects of these mutations, [α-32P]-ATP bind-
ing, [3H]-ryanodine binding, which is a surrogate meas-
ure of channel activity, and single channel recordings in 
planar lipid bilayers were performed. The RyR1 T4979F 

mutant channel exhibited reduced [α-32P]-ATP binding, 
with a Bmax of 2.5 ± 0.25  pmol ATP/pmol RyR1 com-
pared to a Bmax of 8.0 ± 0.77 pmol ATP/pmol RyR1 for 
WT RyR1. These data confirm that T4979 is a critical 
residue for ATP binding to RyR1. Furthermore, the Bmax 
of 8 suggests that there is likely a second ATP binding 
site in RyR1 with two molecules of ATP are binding per 
protomer of the homotetrameric channel. In contrast, 
the K4211S/K4214S/R4215S mutant channel exhibited 
normal [α-32P]-ATP binding to RyR1 (Fig.  2B), indicat-
ing that the complete triphosphate tail is not required for 
ATP binding to RyR1.

We then used [3H]-ryanodine binding to further 
evaluate activation of RyR1 by ATP binding. Ryano-
dine binds to pore of the RyR1 channel in the open 
state [12, 14] and therefore binding can be used as an 

Fig. 1  Architechture of RyR1 channel. A Schematic diagram of the domain architecture of RyR1. B Coulombic density map of RyR1 (PDBID: 7M6A). 
The accessory protein calstabin-1 is shown in yellow. Zoom in showing Calcium (C), ATP (D), and caffeine (E) binding sites with the coordinating 
residues [14, 76]
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indicator of channel activity. In the absence of ATP, the 
levels of [3H]-ryanodine binding to T4979F RyR1 and 
K4211S/K4214S/R4215S RyR1 were similar to that of 
the WT RyR1 (Fig.  2C). In contrast, in the presence of 
1  mM ATP, WT RyR1 exhibited significantly increased 
[3H]-ryanodine binding indicating channel activation, 
whereas T4979F and K4211S/K4214S/R4215S mutant 
channels did not (Fig.  2C). Thus, the ATP binding site 
identified by cryo-EM [14] is a functional site that regu-
lates activity of RyR1.

Previously, we reported that in the presence of 
30  µM [Ca2+]cyt, the open probability of WT RyR1 

channels was ~ 20%, while in the presence of Ca2+/
ATP/caffeine (30  µM, 1  mM, 2  mM), the open prob-
ability was ~ 90% [14]. This finding is consistent with 
many previous reports from multiple laboratories 
[47]. Single channel recordings were used as an addi-
tional assessment of the activation of RyR1 by ATP. WT 
RyR1 channels exhibited an open probability (Po) of 
20%, mean open time  (To) of 2.1  ms and mean closed 
time (Tc)  of 30.1  ms at 10  µM [Ca2+]cyt. Mutant RyR1 
channels T4979F and K4211S/K4214S/R4215S exhib-
ited similar single channel properties compared to 
WT RyR1 under this condition, suggesting normal 

Fig. 2  Structure of the ATP binding site. A The adenine ring binding site (T4979) and triphosphate tail interacting residues (K4211, K4214, and 
R4215) are labeled and depicted in stick representation. B [α-32P]-ATP/[3H]-ryanodine binding to ER microsomes of HEK293 cells expressing WT 
RyR1, T4979F, and K4211S/K4214S/R4215S. C, [3H]-ryanodine binding to ER microsomes of HEK293 cells expressing WT RyR1 and ATP binding site 
mutants in response to ATP. Data are presented as the mean ± S.E.M. N = 3 for each group. **P < 0.01
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Ca2+ dependent activation. Addition of 1  mM ATP 
dramatically increased WT RyR1 Po (Fig. 3A, B), with 
increased To  and reduced Tc  of single RyR1 channels 
(Fig. 3A, C, D). However, 1 mM ATP had no effect on 
the  Po  of T4979F or K4211S/K4214S/R4215S mutant 
channels (Fig.  3A–D). These data further indicate that 
these mutations eliminate ATP-dependent activation 

of RyR1 and confirm the functional importance of the 
ATP binding site idenbtified using cryo-EM (Fig. 2C).

Architecture and function of the RyR1 Ca2+ binding site
Comparison of difference maps calculated from RyR1 
preparations with or without 30  μM Ca2+ revealed a 
Ca2+ binding site located at the interface of the CTD 

Fig. 3  Effects of ATP binding site mutations on the gating of RyR1 channels. A Representative single channel traces of WT RyR1 (top), T4979F 
(middle), and K4211S/K4214S/R4215S (bottom) under 10 µM Ca2+ only (left) or 10 µM Ca2+ and 1 mM ATP (right). B Po, C To, and D Tc of single WT 
RyR1, T4979F, and K4211S/K4214S/R4215S mutants. Data are presented as mean ± S.E.M from 6 single channels for each group. *P < 0.05
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and the C-Sol [14]. This Ca2+ binding site is primarily 
comprised of five amino acids (Fig.  4A) which are con-
served between RyR and the homologous inositol tris-
phosphate receptor (IP3R) channels [14, 21]. E3893 and 
E3967 from the C-Sol and T5001 from the CTD directly 
interact with Ca2+, and H3895 and Q3970 from the 
C-Sol indirectly interact with Ca2+ (Fig. 4A). In order to 
assess Ca2+-dependent ryanodine binding, we mutated 
E3893 and E3967 to either alanine or aspartic acid, 
expressed each mutant in HEK293 cells, and then deter-
mined [3H]-ryanodine binding to isolated ER vesicles. 
As shown in Fig.  4B, WT RyR1 exhibits a bell-shaped 
Ca2+ response with peak activation at 100  μM Ca2+. In 
contrast, E3893A, E3893D, E3967A, and E3967D mutant 
RyR1 channels exhibited both impaired activation at low 
[Ca2+] and impaired deactivation at high [Ca2+] (Fig. 4B).

To further assess the role of the Ca2+ binding site in 
RyR1 channel gating, we examined the single chan-
nel properties of the E3893A, E3893D, E3967A, and 
E3967D RyR1 channel mutants. WT and Ca2+-binding 
site mutants appropriately displayed low Po at 150  nM 
cytosolic Ca2+ (Fig. 5); however, at 10 μM [Ca2+]cyt, WT 
RyR1 channels were activated (Fig. 5A), whereas E3893A, 
E3893D, E3967A, and E3967D mutant channels were 
not activated (Fig. 5B–F). Furthermore, 10 mM cytosolic 
Ca2+ inhibited RyR1 WT channels, but the Ca2+-binding 
site mutants were not inhibited (Fig.  5B–F). Thus, the 
Ca2+-binding site mutants were insensitive to both 
Ca2+-dependent activation at [Ca2+]cyt below 100  μM, 
and Ca2+-dependent inhibition at [Ca2+]cyt above 1 mM 
(Fig. 5B–F). Furthermore, these data suggest that a single 
Ca2+-binding site confers both the high and low affinity 
[Ca2+]cyt dependence of RyR1 channel activity.

RYR1‑RD‑associated mutations near ATP and Ca2+ binding 
sites
RYR1 mutations can cause skeletal muscle dysfunction in 
children and adults, resulting in a wide range of disabili-
ties, and are the most common cause of congenital myo-
pathy [27]. We have established an RYR1-RD database 
by assembling genetic, structural, biophysical, and clini-
cal information from more than 2200 RYR​1-RM affected 
patients [27]. This database contains an RyR1 mutation at 
T4980M (rabbit RyR1 T4979M) associated with congeni-
tal myopathy [23, 24, 37]. RyR1-T4980 is located in the 
ATP binding site where it may interact with the adenine 
ring of ATP (Fig.  2A). The patient in the database with 
this mutation also had a second mutation, A538T; how-
ever, this mutation is located in the NTD of RyR1, which 
is far from ligand binding sites and myopathy hotspots. 
To study the effects of these RyR1 myopathic mutations, 
T4979M, A538T and A538T/T4979M mutant chan-
nels were expressed in HEK293 cells. 1 mM ATP did not 
increase the Po of RyR1 T4979M and A538T/T4979M 
mutant channels, whereas the mutant RyR1 A538T chan-
nel responded normally to ATP (Fig.  6A). A538T chan-
nels exhibited similar ATP-dependent activation as WT 
RyR1 channels (Fig.  6B). RyR1 T4979M and A538T/
T4979M mutant channels also displayed significantly 
decreased [α-32P]-ATP binding compared to WT RyR1 
channels, while RyR1 A538T exhibited normal ATP bind-
ing (Fig.  6C), Taken together, these results show that 
mutation of threonine to methionine at 4980 of human 
RyR1 significantly attenuates ATP binding and activation 
of the RyR1 channel. Impaired ATP-dependent activation 
of RyR1 may contribute to muscle weakness in RYR​1-RD 
affected patients.

Fig. 4  Structure of the calcium binding site. A ribbon structure of the Ca2+ binding site showing interacting residues. B [3H]-ryanodine binding to 
ER microsomes of HEK293 cells expressing WT RyR1 and calcium binding site mutants. Data are presented as mean ± S.E.M from 6 single channels 
for each group. **P < 0.01
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Fig. 5  Effects of mutations in the Ca2+ binding site on the gating of RyR1 channels. Representative single channel traces of WT RyR1 (A), E3893A 
(B), E3893D (C), E3967A (D), and E3967D (E), under 150 nM Ca2+, 10 µM Ca2+, or 10 mM Ca2+. F, Po versus Ca2+ concentration curve. Data are 
presented as mean ± S.E.M from 6 single channels for each group
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There are also RYR1-RD associated mutations near 
the Ca2+-binding site, including the human RyR1 
mutation Q3969K (rabbit Q3970K) and S4028L. The 

Q3970K mutation is linked to a form of RYR1-RD 
formerly referred to as multi-minicore disease [62]. 
Q3970K mutant channels displayed a right shift in Ca2+ 

Fig. 6  ATP binding and single channel analyses of the RyR1-RM patient-related ATP binding site mutants. A [α-32P]-ATP/ [3H]-ryanodine binding to 
ER microsomes of HEK293 cells expressing WT RyR1, T4979M, A538T and A538T/T4979M. B Single channel analysis of WT RyR1, T4979M, A538T and 
A538T/T4979M (bottom) under 10 µM Ca2+ only (left) or 10 µM Ca2+ and 1 mM ATP (right). C [3H]-ryanodine binding to ER microsomes of HEK293 
cells expressing WT RyR1, T4979M, A538T and A538T/T4979M. Data are presented as mean ± S.E.M from 6 for each group
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dependent activation measured using single channel 
determinations and [3H]-ryanodine binding (Fig.  7A–
C). Our previous work regarding the S4028L muta-
tion showed that the RyR1 channel from this patient’s 

muscle biopsy exhibited elevated Po at low, non-activat-
ing [Ca2+]cyt, consistent with a leaky RyR1 channel that 
likely plays a role in the patient’s muscle weakness [27]. 
To assess the role of posttranslational modifications in 

Fig. 7  Single channel analysis and [3H]-binding of the RyR1-RM patient-related Ca2+ binding site mutants. A Representative single channel traces 
of WT RyR1 and Q3970K under 150 nM Ca2 + , 10 µM Ca2+, or 10 mM Ca2+. B Po versus Ca2+ concentration curve. C [3H]-ryanodine binding to ER 
microsomes of HEK293 cells expressing WT RyR1 and Q3970K mutant. Data are presented as mean ± S.E.M from 6 single channels for each group
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determining the leaky behavior of disease-associated 
mutant RyR1 channels, RyR1-S4028L patient muscle 
lysates were treated with protein phosphatase 1 (PP1) 
and the reducing agent dithiothreitol (DTT), to reverse 
PKA phosphorylation and oxidation of the channel. Fol-
lowing this treatment, the mutant RyR1-RD linked RyR1-
S4028L channels still exhibited increased sensitivity to 
Ca2+-dependent activation and showed increased activ-
ity at very low non-activating [Ca2+] ~ 150 nM, which is 
consistent with channel leak, albeit to a lesser extent than 
the phosphorylated and oxidized mutant channels (Addi-
tional file 1: Figure 1). These data indicate that the RyR1-
RD linked mutation alone increases the sensitivity of 
the channel to Ca2+-dependent activation rendering the 
channel leaky and that stress-induced posttranslational 
modifications further exacerbate the channel dysfunction 
and resultant leak.

Discussion
We previously solved the structure of RyR1 to near-
atomic resolution using cryo-EM and identified ATP and 
Ca2+ binding sites [14, 76]. In the present study, we have 
characterized the function of the ATP and Ca2+ bind-
ing sites of RyR1 using mutagenesis and measurements 
of channel activity. Importantly, the RYR1-RD linked 
mutation T4980M, which is located in the ATP binding 
site, impairs ATP binding and ATP-dependent activa-
tion of the RyR1 channel. The RyR1-RD linked mutation 
Q3969K, which is located in the Ca2+ binding site, abol-
ishes Ca2+-dependent activation. These findings suggest 
that interference with Ca2+- and ATP-dependent regu-
lation of RyR1 may contribute to the pathophysiology of 
RyR1-RD including muscle weakness.

In skeletal muscle, the cytosolic ATP concentration is 
about 5  mM [25], but under physiological conditions, 
ATP regulation of RyR1 is influenced by Mg2+, a potent 
inhibitor of the RyR [13], and most cellular ATP is pre-
sent as MgATP. Other nucleotides, such as CTP, GTP, 
ITP, and UTP, have no effect on RyR activity [46], which 
is consistent with our finding that the adenine base 
binding site is required for ATP binding to the RyR. We 
showed that T4979 is required for proper ATP-depend-
ent regulation of RyR1 as RyR1-T4979F shows no bind-
ing with [α-32P] ATP. It is possible that the introduction 
of phenylalanine with a bulky hydrophobic group in the 
binding site of the adenine of ATP (T4979F) prevents 
the entry of ATP into that site, thus explaining why ATP 
binding to the T4979F mutant RyR1 is reduced. Other 
adenine nucleotides such as ADP, AMP, or adenosine can 
also increase the Po of RyR1, but with reduced efficacy 
[10, 30] suggesting that the phosphate groups of ATP are 
required for robust activation of RyR1. Previous work 
has reported that the triphosphate groups are the most 

important element for inducing a long open state in RyR2 
[35], in the present study we have extended these stud-
ies by presenting data identifiying the specific amino acid 
residues in RyR1 that are responsible for binding to the 
triphosphate tail of ATP in it’s binding site. Indeed, in the 
present study, we demonstrate the structural basis for the 
critical role of the triphosphate tail of ATP in the activa-
tion of the RyR as the K4211S/K4214S/R4215S mutant 
RyR1, which replaces the positively charged lysine and 
arginine with a neutral serine, disrupts ATP-dependent 
activation of RyR1. The reduction in positively charged 
residues is presumed to decrease binding to the triphos-
phate tail of ATP in a way that mimics the reduced inter-
action of ADP and AMP with RyR1, both of which are 
much weaker activators of the channel [10, 30]. Since 
ATP is always present at mM levels in muscle it is reason-
able to hypothesize that its binding to RyR1 is required 
for robust activation of the channel by Ca2+. The mutant 
channels which cannot bind ATP are likely less active 
and may contribute to impaired muscle contractility and 
weakness in RYR1-RD patients.

Global cytosolic [Ca2+]cyt in resting cells is approxi-
mately 100–150  nM and rises to at least 1  µM follow-
ing Ca2+ release through RyR1 during EC coupling. 
Mutations of RyR1 residues E3893 and E3967 to 
either A or D significantly reduced the high affinity 
Ca2+-dependent-activation of RyR1 compared to the 
WT channel (Fig.  4), which is consistent with previous 
work showing that mutation of those 2 Glutamic acid 
residues to Glutamine (Q) or Valine (V) interfered with 
Ca2+ regulation of the channel [72]. However, unexpect-
edly, these same mutations also prevented the low affinity 
Ca2+-dependent deactivation of RyR1. This finding sug-
gests that the Ca2+-dependent activation and inhibition 
involves a single Ca2+ binding site. One possible mecha-
nism to explain this phenomenon is that at low Ca2+ con-
centration (from nM to µM), this Ca2+ binding site was 
occupied by one Ca2+, which forms a brige between the 
CTD and CSol to stabilize the open state of the RyR1 
channel, whereas at high Ca2+ concentration (mM), 
CTD and CSol each bind to one Ca2+, which disrupts the 
CTD-CSol interface to make the channel close. A patient 
with a Q3970K mutation at this site exhibited the same 
impaired Ca2+-dependent activation and deactivation as 
the E3893A/D and E3967A/D mutant channels, which 
is consistent with a previous study showing that RyR1-
Q3970K displayed low Ca2+ dependent channel activity 
[11]. It is likely that the additional positive charge from 
the lysine substitution in the Q3970K mutant channel 
reduces Ca2+-binding at this site. Similarly, the replace-
ment of glutamic acid at 3967 or 3893 with the neutral 
alanine may reduce the affinity of the Ca2+ and thus 
impair both activation and deactivation, indicating the 
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negative charges of glutamic acid are critical for the 
Ca2+ binding of RyR1. Replacing the glutamic acid at 
3967 with an aspartic acid preserves the negative charge; 
however, since the side chain of glutamate is larger than 
that of aspartic acid, the interaction with Ca2+ may be 
weakened.

A previous study suggested that E4032 is part of the 
Ca2+ binding site of RyR1, as mutation of E4032 reduced 
Ca2+ activation in both RyR1 and RyR2 [20, 34]. How-
ever, our cryo-EM RyR1 structure indicates that E4032 is 
not close enough to the Ca2+ binding site to form a direct 
interaction with the bound Ca2+. Nevertheless, it may 
stabilize the CTD-CSol interface via hydrogen bonding to 
the amide nitrogens at the end of one of the CTD helices 
[14]. Interestingly, a mutant channel RyR1-S4028L which 
has been linked to RYR1-RM [27], exhibited increased 
Ca2+-dependent activation of RyR1 at low non-activating 
[Ca2+]cyt, which is consistent with channel leak [27], sug-
gesting that the polar side chain of serine is necessary to 
stabilize the CTD-CSol interface. Moreover, blocking or 
reversing post-translational modifications of RyR1 (PKA 
phosphorylation and oxidation) revealed that the channel 
mutation alone is sufficient to cause Ca2+ leak and that 
the posttranslational modications are additive in terms of 
leak.

The present study identifies functional ATP and 
Ca2+-dependent regulatory sites in RyR1. Moreover, 
these are also the sites of RyR1-RM disease causing muta-
tions, indicating that defective regulation of RyR1 by 
Ca2+ and ATP may be a component of the pathophysiol-
ogy of this form of myopathy.

Materials and methods
Ryanodine receptor mutagenesis and expression
The recombinant RyR1 constructs T4979F, K4211S/
K4214S/R4215S, E3893A, E3893D, E3967A, E3967D, 
T4979M, and Q3970K were generated by introduc-
ing the respective mutations into fragments of rabbit 
RyR1 using QuikChange II XL Site-Directed Mutagen-
esis Kit (Agilent). Each fragment was subsequently sub-
cloned into a full length RyR1 construct in pcDNA3.1 
vector and confirmed by sequencing. The primers 
used to introduce specific mutants (codons in paren-
theses, mutated nucleotides in bold) are as follows: 
5′-cacggcttcgagacccac(ttc)ctagaggagcacaatctg for T4979F, 
5′-gtgggagatgccccaggtc(agc)gagtcc(agc)(agc)cagttcatcttc 
for K4211S-K4214S-R4215S, 5’-gcagctgctctgt(gcg)
gggcacaacaacg for E3893A, 5′-ctgcagctgctctgt(gac)
gggcacaac for E3893D, 5′-caacagcctcacc(gcg)tacatc-
cagggcc for E3967A, 5′-acagcctcacc(gac)tacatccagggcc 
for E3967D, 5′-cacggcttcgagacccac(atg)ctagaggag for 
T4979M, and 5′-ctcaccgagtacatc(aag)ggcccctgcac for 
Q3970K. For all mutants, the second primer was the 

complementary reverse to the forward primer. HEK293 
cells grown in DMEM supplemented with 10% (vol/vol) 
FBS (Invitrogen), penicillin (100 U/mL), streptomycin 
(100  µg/mL), and L-glutamine (2  mmol/L) were trans-
fected with WT or mutant RyR1 cDNA using Lipo-
fectamine 2000 (ThermoFisher Scientific). Cells were 
collected 48 h after transfection.

ER vesicles preparation
ER vesicles from HEK293 cells expressing WT or mutant 
RyR1 were prepared by homogenizing cell pellets on ice 
using a Teflon-glass homogenizer with two volumes of 
solution containing 20  mmol/L (mM) Tris-maleate (pH 
7.4), 1  mM EDTA, 1  mM DL-Dithiothreitol (DTT) and 
protease inhibitors (Roche). Homogenate was then cen-
trifuged at 4,000 xg for 15 min at 4 °C and the resulting 
supernatant was centrifuged at 40,000 xg for 30  min at 
4  °C. The final pellet, containing the ER fractions, was 
resuspended and aliquoted in 250  mM sucrose, 10  mM 
MOPS (pH 7.4), 1 mM EDTA, 1 mM DTT and protease 
inhibitors. Samples were frozen in liquid nitrogen and 
stored at −80 °C.

SR microsome preparation
Skeletal muscle SR microsomes were prepared as pre-
visouly described [27]. Briefly, muscle samples were 
homogenized on ice using a Teflon-glass homogenizer 
with 2 volumes of: 20  mmol/L (mM) Tris-maleate (pH 
7.4), 1  mM EDTA, 1  mM DL-dithiothreitol (DTT) and 
protease inhibitors (Roche). The resulting homogenate 
was then centrifuged at 4,000  g for 15  min at 4  °C and 
the supernatant was centrifuged at 50,000 g for 45 min at 
4  °C. Pellets were resuspended in lysis buffer containing 
300 mM sucrose.

[3H] Ryanodine and [α‑32P]‑ATP binding
Skeletal muscle SR microsomes or ER vesicles from 
HEK293 cells expressing WT or mutant RyR1 were incu-
bated in media containing 5 nM [3H]-ryanodine or 5 nM 
[α-32P]-ATP, 1  M NaCl, 20  mM HEPES, and 0.5  mM 
EGTA at 37  °C for 2  h. The concentration of free Ca2+ 
was calculated with WinMaxC (version 2.50; www.​stanf​
ord.​edu/​~cpatt​on/​maxc.​html). For ATP activation, 1 mM 
ATP and 1  mM free Ca2+ were added during incuba-
tion. The binding mix was then filtered through What-
man GF/B filters presoaked with 1% polyethyleneimine. 
The filters were washed three times with 5 mL of ice-cold 
washing buffer containing 0.2 M NaCl and 5 mM HEPES 
(pH 7.5) to remove unbound [3H]-ryanodine, and the 
amount of remaining [3H]-ryanodine was determined 
by liquid scintillation counting. Nonspecific binding was 
determined by measuring [3H]-ryanodine binding in 

http://www.stanford.edu/~cpatton/maxc.html
http://www.stanford.edu/~cpatton/maxc.html
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the presence of 10 μM unlabeled ryanodine. All binding 
assays were done in duplicate.

Single‑channel recordings
ER vesicles were fused to planar lipid bilayers formed by 
painting a lipid mixture of phosphatidylethanolamine 
and phosphatidylcholine (Avanti Polar Lipids) in a 5:3 
ratio in decane across a 200  µm hole in polysulfonate 
cups (Warner Instruments) separating two chambers. 
The trans chamber (1.0  mL), representing the intra-SR 
(luminal) compartment, was connected to the head stage 
input of a bilayer voltage clamp amplifier. The cis cham-
ber (1.0  mL), representing the cytoplasmic compart-
ment, was held at virtual ground. Asymmetrical solutions 
used were as follows for the cis solution: 1  mM EGTA, 
250/125  mM Hepes/Tris, 50  mM KCl, 0.64  mM CaCl2, 
pH 7.35; and for the trans solution: 53  mM Ca(OH)2, 
50  mM KCl, 250  mM Hepes, pH 7.35. The concentra-
tion of free Ca2+ in the cis chamber was calculated as 
previously described [14]. ER vesicles were added to the 
cis side and fusion with the lipid bilayer was induced by 
making the cis side hyperosmotic by the addition of 400–
500  mM KCl. After the appearance of potassium and 
chloride channels, the cis side was perfused with the cis 
solution. At the end of each experiment, 10  µM ryano-
dine was added to block the RyR channel. Single-channel 
currents were recorded at 0  mV using a Bilayer Clamp 
BC-525D (Warner Instruments), filtered at 1  kHz using 
a Low-Pass Bessel Filter 8 Pole (Warner Instruments), 
and digitized at 4 kHz. All experiments were performed 
at room temperature (23  °C). Data acquisition was per-
formed by using Digidata 1322A and Axoscope 10.1 soft-
ware (Axon Instruments). The recordings were analyzed 
using Clampfit 10.1 (Molecular Devices) and Graphpad 
Prism software.

Immunoprecipitation and immunoblotting
RyR1 were immunoprecipitated from extracts of human 
patient muscle biopsy using anti- anti-RyR1-specific anti-
bodies (2 μg) in 0.5 ml of a modified radioimmune pre-
cipitation assay buffer (50  mm  Tris–HCl, pH 7.2, 0.9% 
NaCl, 5.0  mm  NaF, 1.0  mm  Na3VO4, 1% Triton X-100 
and protease inhibitors) overnight at 4  °C as previously 
described [2]. The immune complexes were incubated 
with protein A-Sepharose beads (Sigma-Aldrich) at 4 °C 
for 1 h and the beads were washed three times with the 
modified radioimmune precipitation assay buffer. The 
immunoprecipitated proteins were size-fractionated on 
SDS–polyacrylamide gels (4–20% for RyR1) and trans-
ferred to nitrocellulose membranes for 2  h at a current 
of 200  mA. Immunoblots were probed with the follow-
ing primary antibodies: anti-RyR1 (Affinity Bioreagents, 
1:2,000 dilution), anti-Cys-NO (Sigma-Aldrich, 1:1,000 

dilution), or anti-phospho-RyR-Ser(P)-2844 (Affin-
ity Bioreagents, 1:5,000 dilution). To determine channel 
oxidation, the carbonyl groups in the protein side chains 
were derivatized to 2,4-dinitrophenol (DNP) by reac-
tion with 2,4-dinitrophenylhydrazine. The DNP signal 
associated with total oxidized protein or with RyR was 
determined using a specific anti-DNP antibody accord-
ing to the manufacturer’s instructions (Millipore). All 
immunoblots were developed using an Odyssey system 
(LI-COR Biosciences), with infrared-labeled anti-mouse 
or anti-rabbit IgG (Abcam, 1:10,000 dilution) secondary 
antibodies.

Statistics
All results are presented as the mean ± SEM. Statistical 
analyses were performed using the unpaired Student’s t 
test, 2-tailed (for 2 groups), or the 1-way ANOVA with 
Tukey–Kramer post hoc correction (for groups of 3 or 
more) unless otherwise indicated. P < 0.05 was consid-
ered to be statistically significant.
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channel leak. (A) The mutant RyR1-S4028L channel was PKA phosphoryl-
ated at Ser2844 and oxidized (DNP) compared to control. PP1 and DTT 
were used to reverse the oxidation and phosphorylation. (B) The mutant 
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