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Bisphenol A (BPA) is a ubiquitous environmental pollutant, mainly from the production

and use of plastics and the degradation of wastes related to industrial plastics. Evidence

from laboratory animal and human studies supports the view that BPA has an endocrine

disrupting effect on Leydig cell development and function. To better understand the

adverse effects of BPA, we reviewed its role and mechanism by analyzing rodent

data in vivo and in vitro and human epidemiological evidence. BPA has estrogen and

anti-androgen effects, thereby destroying the development and function of Leydig cells

and causing related reproductive diseases such as testicular dysgenesis syndrome,

delayed puberty, and subfertility/infertility. Due to the limitation of BPA production, the

increased use of BPA analogs has also attracted attention to these new chemicals. They

may share actions and mechanisms similar to or different from BPA.

Keywords: bisphenol, bisphenol analogs, Leydig cells, steroids, reproductive function

INTRODUCTION

Leydig cells (LCs) are a group of cells specifically located in the interstitium of the testis [see review
(1)]. They secrete two important hormones: testosterone (T, androgen), which is an androgen, and
insulin-like 3 (INSL3) [see review (2)]. There are at least two generations of LCs, namely fetal
LCs (FLCs) and adult LCs (ALCs) (2). These two generations of LCs have different development
processes and different functions (2). In fetuses, T and metabolically activated dihydrotestosterone
(DHT) from T by 5α-reductase is essential for the development of the male reproductive tract (3).
Failure to synthesize Tmay cause abnormalities in the male reproductive tract, such as hypospadias
and small penis [see review (4)]. Androgens are also essential for testis descent (4). INSL3 binds to
its receptor in the gubernaculum and pulls the testis from the kidney position to the lower part of
abdomen (5). Insl3 knockout in mice leads to cryptorchidism, indicating that it is important for
testis descent (6, 7). Therefore, defects in FLCs may cause the fetal part of Testicular Dysgenesis
Syndrome (TDS) (8). TDS was coined to refer to diseases such as cryptorchidism and hypospadias
in neonates and testicular cancer, as well as decreased fertility in men with common fetal causes
(9). Although the exact cause is unclear, the high incidence of male reproductive tract defects in
male neonates has brought significant attention to children’s health (10, 11). In adults, T is essential
for the onset of puberty, the maintenance of secondary sexual characteristics, the promotion of
spermatogenesis, and the promotion of muscle health (4). INSL3 is essential for regulating bone
metabolism in adult males (12) and acts as an anti-apoptotic factor against germ cell apoptosis (13).

There is increasing evidence that environmental pollutants can cause TDS, androgen deficiency,
and infertility. A group of highly studied environmental chemicals comprises bisphenol A [2,2-bis
(4-hydroxyphenyl) propane, BPA, Figure 1] and related compounds, such as bisphenol AF, AP, B,
C, F, H, S, Z, and other similar chemicals (Table 1).
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FIGURE 1 | Illustration of BPA on LC development. Bisphenol A (BPA) or its analogs can bind both estrogen receptors (ESR1 and ESR2) and estrogen-related

receptors (ERR1–3), which blocks LC gene expression, binds to androgen receptor (NR3C4) as an antagonist to block the activation of LC genes. BPA can also bind

membrane G-coupled receptor (GPER) or ESR1, which activates ERK1/2 pathway to inhibit the differentiation of Leydig cells. The combined consequence of BPA

action leads to lower testosterone synthesis.

BPA is widely used in our industrial and consumer
products and seriously pollutes our environment. BPA was first
synthesized in 1891. Since then, BPA has been widely used
in various products and applications as a common ingredient
in plastic manufacturing. Plastics containing BPA are used to
make children’s toys, food containers, water bottles, medical
equipment, and other durable materials (14–16). Many countries
and regions are synthesizing BPA, including the United States,
China, and European countries (16–19). Plastics are widely used
in our consumer products and have changed our lifestyles,
including the environment (20, 21). The widespread use of
BPA-containing plastics has prompted BPA to spread in the
environment. Therefore, BPA is ubiquitous in the environment,
including air, drinking water, water systems, sewage sludge, soil,
house dust, and food (16, 22). Humans are exposed to BPA
mainly through food intake, dust, and skin contact (14, 15).
BPA exposure through water and food is considered to be the
main source (16, 22). Surveys indicate that 90% of urine samples
in the general population of the United States can detect BPA
levels (14, 17). The average urine BPA concentration in American
people is about 2.5–10.95 ng/ml (14, 17). BPA can also penetrate
the placenta and enter the fetal circulation. The average level
of BPA in pregnant women’s plasma is 0.3–18.9 ng/ml, and the
average level of BPA in fetal plasma is 0.2–9.2 ng/ml (23, 24),
and the level of BPA in placental tissue is 1.0–104.9 ng/g. BPA
can enter breast milk, and the BPA level in breast milk is 0.28–
0.97 ng/ml (23, 24). After ingestion through the oral route, BPA
rapidly combines with blood proteins, and the concentration of
free BPA in the blood is about 1 ng/ml (15).

There is increasing evidence that BPA is associated with
the occurrence of reproductive toxicity (25, 26) and other
health problems such as diabetes (27), neurotoxicity (28–30),
immunotoxicity (31), and cancer (32–34).

BPA is classified as an endocrine disruptor that mainly
mimics the effects of estrogen and disrupts the synthesis of
male androgens (35–37). BPA is one of the most studied
endocrine disrupting compounds. The toxicological effects of
BPA may cause TDS (38) and other reproductive toxicities.
The relationship between BPA and TDS and other reproductive
effects has been well-studied in human epidemiology (18, 19,
39, 40). Due to the reproductive toxicity of BPA, some new
BPA analogs, such as bisphenol AF, AP, B, C, F, H, S, and Z,
were introduced into the market (Table 1) (41–43). These new
compounds have received little attention. Many data on BPA
reproductive toxicity have been collected from mice and rats. In
this review, we mainly discuss the effects of BPA and its analogs
on the development and function of LCs.

ACTION OF BPA

Estrogen Receptors
The classic mechanism of estrogens requires them to bind to
estrogen receptor (ESR), a type of nuclear receptor (44). There are
two subtypes of ESR, namely ESR1 and ESR2 (45, 46). Estrogen
binds to ESR to form a nuclear ESR dimer that binds to the ligand.
This dimer binds to the DNA sequence (GGTCACAGTGACC)
and is called an estrogen response element (ERE) in the target
gene promoter to induce ESR transactivation (44). ESRs bind to
the same sets of ERE in the target genes (47). When different
isoforms exist in the same cell, the ESR bound to the ligand can
form homodimers or heterodimers.

In addition to the genomic pathway of ESR,
cytoplasmic/membrane-bound ESR interacts with many other
proteins to mediate the activation of several kinase pathways that
are hormone-dependent (48).

Frontiers in Endocrinology | www.frontiersin.org 2 July 2020 | Volume 11 | Article 447

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Li et al. Bisphenols and Leydig Cells

TABLE 1 | Bisphenol analogs and their structures.

Bisphenols Abbreviation CAS No. MW Structure

Bisphenol A BPA 80-05-7 228.28

Bisphenol AF BPAF 1478-61-1 336.23

Bisphenol AP BPAP 1571-75-1 290.36

Bisphenol B BPB 77-40-7 242.31

Bisphenol C BPC 14868-03-2 281.13

Bisphenol E BPE 2081-08-5 12.24

Bisphenol F BPF 620-92-8 200.24

Bisphenol FL BPFL 3236-71-3 350.41

Bisphenol H BPH 24038-68-4 380.48

Bisphenol P BPP 2167-51-3 346.50

Bisphenol S BPS 201-250-5 250.27

Bisphenol Z BPZ 843-55-0 268.35

4,4′-Thiodiphenol TDP 2664-63-3 218.27

Tetramethyl bisphenol A TMBPA 5613-46-7 284.39
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Estrogen-related receptors α, β, and γ (ERRα, ERRβ, and
ERRγ, also known as ERR1–3) are another subfamily of
orphan nuclear receptors with sequence similarity to ESR1 (49).
However, 17β-estradiol (E2) is not its natural ligand, and ERR has
constitutive activity (50). ERRs contain a DNA binding domain
with two highly conserved zinc finger motifs in a specific DNA
binding element (TCAAGGTCA, called ERRE). ERR and ERRE
are combined into monomers or homodimers or heterodimers
with coactivators (51). In addition to ERRE, ERR can also be
bound to ERE. ESR1, but not ESR2, can also be combined with
ERRE (52), so ESR1 and ERRs will affect each other.

In addition, estrogen can bind to G protein-coupled
membrane estrogen receptor (GPER, also known as GPR30),
which is a member of the G protein receptor superfamily.
This receptor mediates the rapid signaling of estrogen. After
activation, estrogen can induce ERK1/2 activation by releasing
HB-EGF through transactivation of EGFR (53). GPER works
through a pertussis toxin-sensitive pathway that depends on
Gβγ (53). Then, GPER activation through Gαs protein activation
(54) stimulates adenylate cyclase, increases cAMP, and weakens
the EGFR-MAPK signaling axis (55). The activation of cAMP
further leads to the activation of PKA-CREB signal (56,
57) and the transcriptional activation of CREB. GPER also
activates other signaling, including PI3K (58), PKC (59), and
calcium (60).

Estrogen Receptors in LCs
In rodents, there are two generations of LCs: namely, FLCs and
ALCs (2). The two generations of LCs have different development
trajectories and functions (2, 61). The first generation of FLCs was
found in fetal age (GD) 12 of mice, GD14 in rats, and fetal testes
of human around gestational age (GW) 6 (62, 63). After birth,
FLCs involute, and a few FLCs persist in the adult testes (64, 65).

The second-generation ALCs begin to develop around the
9th day after birth (PND) in rats, transit to progenitor LCs in
PND21 (pre-pubertal period), develop into immature LCs during
PND28-35, and finally mature to ALCs around PND56 (66).

ESRs, ERRs, and GER are differently expressed in LCs during
the development, depending on two generations of LCs and
species. ESR1 has been detected in mouse (67) and rat (68) FLCs,
as well as mouse (69) and rat (70) ALCs. ESR2 was also found in
mouse and rat (71) FLCs as well as mouse and rat (72) ALCs. It
has been shown that the GPER level of rat LC is higher (73). In
human fetal testes, ESR1 and ESR2 are located in FLCs (74, 75).
Human LCs also have low levels of ESR1 and ESR2 and high
levels of GPER (76–78). All three ERRs are found in mouse
tumor LCs (79). In ESR1 knockout mice, ALCs are hypertrophic
and serum T levels are elevated (80, 81). However, the ESR2
knockout mice did not change, but the average cell volume of
ALC decreased (81).

The Action of BPA and Its Analogs via
Estrogen and Estrogen-Related Receptors
in LCs
Both FLCs and ALCs mainly synthesize T from steroid
cholesterol. High-density lipoprotein transport through

scavenger receptor class B member 1 (SCARB1) contributes to
the formation of most cholesterol in LCs (82, 83). Under the
stimulation of luteinizing hormone (LH) or human chorionic
gonadotropin (hCG) by binding to LH receptor (LHCGR) on
the surface of LCs, adenylate cyclase is activated to increase
intracellular adenosine 3′,5′cyclic monophosphate (cAMP)
levels, triggering protein kinase A signaling (84). Then,
the expression and phosphorylation of steroidogenic acute
regulatory protein (StAR) is activated (85, 86) and, together
with the translocation protein (TSPO) (87), they transport
cholesterol to the mitochondrial inner membrane. In this
organelle, there is a complex of P450 cholesterol side chain
cleavage enzyme (CYP11A1), which catalyzes the production
of pregnenolone by cholesterol (88). Pregnenolone diffuses
from the mitochondria to the smooth endoplasmic reticulum,
where 3β-hydroxysteroid dehydrogenase (HSD3B), 17α-
hydroxylase/17,20-lyase (CYP17A1), and 17β- hydroxysteroid
dehydrogenase 3 (HSD17B3) catalyzes a chain-reaction to
generate T (89).

INSL3 is encoded by Insl3 in LCs and is secreted into
the circulatory system (6, 90). Insl3 is also only expressed
by two types of LCs. Insl3 encodes a G protein, a leucine-
rich repeat sequence GPCR 8 (also known as relaxin family
peptide receptor 2, RXFP2). Knockdown of INSL3 or RXFP2
resulted in failure of testis descent (90–92), indicating that

INSL3 is critical for testis descent. INSL3 constitutive expression

depends only on LC number, but also on differentiation status.
INSL3 is different from T. When T synthesis is low, it is
restored to normal levels by supplementing LH levels (93).
Because INSL3 is specifically expressed by LCs, INSL3 is a
powerful sensitive biomarker that is affected by environmental
endocrine disruptors even when exposed to them during
pregnancy (94).

The detailed mechanisms of BPA and its analogs to interfere
with LC functions has been reviewed (95). When ESR1 was used
to compare the estrogen potency of BPA with E2 through the
endogenous estrogen regulatory gene in human MCF7 cells, the
potency of BPA was found to be four to six orders of magnitude
lower than E2 (96). Some of these studies have shown that
the BPA analog BPS has lower estrogen potency than E2 when
measured in nuclear receptormodels. However, BPS has the same
or higher estrogen potency as E2 by binding membrane ESR [see
review (95)].

In mouse MLTC-1 tumor LCs, BPA, and E2 have
similar potency and can inhibit LH-stimulated cAMP
production with <0.7 nM after 1 h, which may be caused by
GPER (97).

Mouse tumor LCs express ERRs (79). BPA significantly
binds to human ERR3, with an IC50 value of 13.1 nM, and
binds to the ERR3 receptor cavity, and its two OH groups
form a hydrogen bond; one forms a hydrogen bond with
Glu275 and Arg316, and the other binds to Asn346 (98).
BPA and ERR3 effectively bind as antagonists (28), and may
inhibit cAMP-induced Star promoter activation by inhibiting
the transcriptional activity of Nur77 (99). These results indicate
that BPA works by binding different receptors, depending on
the concentration. High concentrations of BPA mainly target
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ESR1, while low concentrations of BPA mainly target GPER
and ERR3.

Direct Inhibition on LC Steroidogenic
Enzymes
Besides the receptor-mediated actions, BPA also directly
interferes with androgen synthesis. The direct effects of BPA
on rat and human T synthetic enzymes, including CYP17A1,
HSD3B, and HSD17B3, were evaluated using testis microsomes.
BPA directly inhibited rat and human CYP17A1, HSD3B, and
HSD17B3 enzyme activities. IC50 values of BPA for rat and
human testicular HSD3B were about 27 and 8µM; IC50 values
for rat and human CYP17A1 were about 65 and 19µM,
and BPA inhibited both rat and human HSD17B3 around
100µM (100). Adult rat LCs also express both HSD11B1 and
HSD11B2 (101), behaving in oxidative inactivation of cortisol
or corticosterone, which can suppress androgen synthesis (102).
BPA inhibited human HSD11B1, with an IC50 of about 15µM
and rat enzyme with IC50 of about 19µM. BPA also weakly
inhibited both human and rat HSD11B2 with IC50 values
about 100 or over 100µM (103). These results indicate that
BPA directly inhibits steroidogenic enzyme activities at the
higher concentrations.

Other Mechanisms of BPA
Studies using Nr3c4 (androgen receptor) knockout mice (104,
105) and Tfm mice (106, 107) showed that androgen is very
critical for LC development. Knockout of Nr3c4 in Sertoli cells,
LCs, and peritubular myoid cells (104, 105) also caused the
delay of ALC development. BPA might act as antiandrogen via
blocking the activation of NR3C4. Lee et al. used a yeast detection
system for the antiandrogenic effects of BPA and found that BPA
antagonized DHT binding at 50 nM (108).

BPA-induced reactive oxygen species (ROS) generation has
also been proposed for BPA-mediated suppression of T synthesis
in LCs. ROS has been shown to disrupt LC steroidogenesis
(109, 110). BPA was orally administered to adult male rats
at 0.005, 0.5, 50, and 500 µg/kg/day for 45 days, and it
significantly increased testicular ROS levels, suggesting that BPA-
induced ROS might also be involved in its inhibition of T
synthesis in LCs (111). Rats were administered BPA via gavage
at 10 mg/kg/day BPA for 14 days, and it lowered T levels
and decreased testis weight and inhibited antioxidants (such
as SOD2 and catalase) and co-treatment with an antioxidant
(lipoic acid) was able to reverse it (112). Male adult rats were
administrated via gavage of 200 mg/kg BPA for 4 weeks, and
it inhibited serum LH and T levels after decreasing SOD,
GPx, and GSH and increasing ROS generation and antioxidants
can attenuate BPA-induced inhibition (113). Adult male Wistar
albino rats (aged 3 months) were gavaged with 50, 500, and
1,000 µg/kg BPA and/or vitamin E (40 mg/kg) for 3 months,
and BPA significantly lowered T levels, testis weights, and sperm
count, and vitamin E could attenuate it (114). These results
indicate that BPA at high or very high doses also increases
ROS levels.

ANIMAL STUDIES

Effect of in utero BPA Exposure on Male
Reproductive Tract Development
Reports on the effects of in utero BPA exposure on T production
and male reproductive tract development are conflicting. This
difference may be due to the dosage, developmental period, and
species. Pregnant CD mice orally exposed to 50 µg/kg BW/day
BPA from GD16 to 18 and F2 male pups had an increase in AGD
on PND3 (115) (Table 2).

However, other studies have shown that BPA inhibits T
synthesis in fetal testes. Oral administration of BPA from GD1
to GD22 to pregnant rats inhibited T production in neonates
(129). Pregnant SpragueDawley rats were administered 4, 40, and
400 mg/kg BW BPA via gavage daily from GD12 to 21, and BPA
dose-dependently reduced serum T levels and down-regulated
the expression of Insl3 and Hsd17b3 and their proteins at 40 and
400 mg/kg and that of Lhcgr, Cyp11a1, and Cyp17a1 and their
proteins at 400 mg/kg (26). BPA inhibited FLC proliferation at
400mg/kg (26). Pregnant Sprague Dawley rats were administered
0.002, 0.02, 0.5, 50, or 400 mg/kg BW or 0.001, 0.01, 0.1, 1, or 10
µg/kg BW 17α-ethynyl estradiol (EE, as the positive control of
ESR1 agonist) daily s.c. from GD11 to GD20. Gene microarray
analysis in GD20 fetal testes revealed that BPA at 400 mg/kg and
EE at 10 µg/kg significantly down-regulated the expression of
FLC genes, including Scarb1, Star, Cyp11a1, Cyp17a1, and Svs5
(116), and they had similar down-regulation patterns, suggesting
that BPA exerts ESR1-mediated inhibition of FLC function (116).
High doses of BPA exert similar effects to E2. Horstman et al.
also exposed pregnant Sprague Dawley rats to 0.001 or 0.1 µg/kg
BW/day EE or 0.02, 0.5, and 400 mg/kg/day BPA via s.c. from
GD11 to GD20 and found that the highest concentration of
EE and BPA down-regulated the expression of Star gene and
proteins (117) (Table 2). These studies indicate that BPA may
show different actions at low and high doses and it may mainly
bind to ESR1 to take action at the high doses.

Effects of in utero BPA Exposure on
Postnatal Male Reproduction
There are also conflicting reports about the effects of in utero BPA
exposure on the production of T after birth. This difference may
also be due to dose, duration of treatment, and species. Pregnant
rats were orally administered with 4 or 40 mg/kg BW/day BPA
from GD6 to PND20, and BPA did not affect AGD in PND21
male offspring. This study cannot conclude the inhibitory effect
of BPA on T secretion (118). From GD7 to PND18, pregnant
Long Evans rats were administered doses of 2, 20, and 200 µg/kg
BW/day, which had no effect on AGD at PND2 and nipple
retention at PND14 in male offspring, suggesting that low doses
of BPA cannot cause TDS (119). Pregnant mice were exposed to
50 µg/kg BW/day BPA from GD16 to GD18, which increased
AGD and prostate size and decreased epididymal weight without
affecting testicular weight at PND3, 21, and 60 (115) (Table 2).

Pregnant CD-1mice who were administered low doses of BPA
(2 and 20 µg/kg/day) via gavage of from GD11 to GD17 had
significantly lower relative testicular weight compared to 8 and
12-week-old male mice without affecting serum T levels (120).
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TABLE 2 | Bisphenol A (BPA) and animal studies.

Species Regimen Outcome References

In utero exposure on FLC development and function

CD mouse po 50 µg/kg/day from GD16 to 18 Increase of AGD and decrease of epididymal weight without

affecting testicular weights at PND3

(115)

SD rat po 4–400 mg/kg/day from GD12 to 21 Reduction of serum T levels and expression of Lhcgr, Insl3, and

Hsd17b3 and FLC proliferation at 40 or 400 mg/kg

(26)

SD rat s.c. 0.002–400 mg/kg/day from GD11 to 20 Reduction of expression of Scarb1, Star, Cyp11a1, Cyp17a1, and

Svs5 at 400 mg/kg

(116)

SD rat s.c. 02–400 mg/kg/day from GD11 to 20 Reduction of expression of Star at 400 mg/kg (117)

In utero exposure on postnatal LC development and function

SD rat po 4 or 40 mg/kg/day form GD6 to PND20 Effect on at PND21 and inconclusive effect on T synthesis (118)

LE rat po 2–200 µg/kg/day from GD7 to PND18 No effect on AGD examined at PND2 and nipple retention at

PND14

(119)

CD mouse po 50 µg/kg/day from GD16 to 18 Decrease in epididymal weight without affecting testicular weights

at PND21 and 60

(115)

CD mouse po 2, 20 µg/kg/day from GD11 to 17 Reduction of relative testicular weights at PND56 and 84 without

affecting serum T levels

(120)

SD rat po 0.0025–250 mg/kg/day from GD6 to PND90 Reduction of testis/epididymis weights only at 250 mg/kg (121)

LE Rat po 2.5–25 µg/kg/day from GD12 to PND21 Increase of LC number and reduction of LHCGR and HSD17B3

and T secretion at PND90

(122)

Neonatal exposure on postnatal LC development and function

SD rat s.c. 0.002–97 mg/kg/day from PND0-9 No effect of preputial separation, T levels, and fertility rate on

PND10 and PND150

(123)

LE rat po 2.4 µg/kg/day from PND21 to 35 Reduction of serum LH and T levels (124)

Adult exposure on postnatal LC development and function

Swiss mouse po 5–100 µ/kg BW/day from PND21 to 35 Reduction of absolute testis weights, seminal vesicle weight and

sperm counts and fertility rate

(125)

SD rat po from PND21 for 56 days Reduction of free T levels without affecting LH levels (126)

Wistar rat s.c. 20–200 mg/kg BW BPA from PND21 for 42 days Inhibition of plasma T and LH levels and down-regulation of

Cyp11a1 and Scarb1

(127)

SD rat s.c. 1 mg/kg BW BPA at adulthood for 14 days Decrease in plasma T level and increase in LH level (128)

SD rat po 10 mg/kg BW BPA at adulthood for 14 days Reduction of serum T levels and testis weight (112)

SD rat po 0.005–500 µg/kg BW BPA at adulthood for 45 days the testis as well as HSD3B1, HSD17B3, and StAR protein levels

and T levels

(111)

AGD, anogenital distance; GS, gestational day; LH, luteinizing hormone; PND, postnatal day; po, gavage; s.c., subcutaneous; T, testosterone.

Sprague Dawley pregnant rats were given 0.006, 0.025, 0.25, 2.5,
25, and 250 mg/kg BW/day by oral administration from GD6
to GD21, and their male pups were directly administered via
gavage of the same doses of BPA from PND1 to PND90. BPA only
suppressed the weight of testes and epididymis at a dose of 250
mg/kg (121) (Table 2).

However, when pregnant CD-1 mice were given 0.1, 1, or 10

mg/kg BPA BW/day by gavage and another plasticizer bis (2-

ethylhexyl)-phthalate (DEHP) from GD1 to GD21, and further,
in the weaning period (PND1-21), the mixture down-regulated

the Star expression and reduced sperm count in epididymis at

PND42 (130). This effect may be confused by the addition of
DEHP. In pregnant Long-Evans rats gavaged with 2.5–25 µg/kg
BW/day from GD12 to PND21, BPA stimulated LC proliferation
during prepuberty and increased the number of LCs at PND90,
but down-regulated LHCGR and HSD17B3 and decreased T
secretion by LCs (122) (Table 2). These different actions of BPA
might be due to the doses of BPA.

Effects of Neonatal and Prepubertal BPA
Exposure on Postnatal Male Reproduction
There are also conflicting reports on the effects of BPA exposure
on postnatal T production and reproduction. This difference
may also be due to dose, duration of treatment, and species.
Male Sprague Dawley rats were daily s.c. administered 0.002–97
mg/kg BW BPA or 0.9 mg/kg BW E2 from PND0 to PND9, and
BPA did not affect preputial separation (an androgen-dependent
process), T levels, and fertility rate on PND10 and PND150, while
E2 inhibited these parameters (123). However, Long Even rats
were orally exposed to 2.4 µg/kg BW/day BPA from PND21 to
PND35, and BPA inhibited serum LH and T levels (124). Rats
were exposed to 2.4 µg/kg BW/day BPA from GD12 to PND21,
and BPA inhibited T levels in adulthood (124). Prepubertal
mice were administered BPA via gavage for 56 days, and they
had significantly lower free T levels without a change in LH
levels (126). Prepubertal Wistar male rats (28 days old) were
injected subcutaneously with 20, 100, and 200 mg/kg BW/day
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BPA, and BPA inhibited plasma T and LH for 6 weeks but did
not affect FSH levels. BPA down-regulated steroidogenic enzymes
and cholesterol carrier proteins in LCs and decreased LC number
(127) (Table 2).

Effects of Adult BPA Exposure on Male
Reproduction
Adult male Swiss mice were given BPA by gavage of 5, 25, and 100
µg/kg BW for 28 days. BPA significantly lowered absolute testis
weights, seminal vesicle weight, and sperm count and fertility
rate (125). Adult male rats were exposed subcutaneously to 1
mg/rat BPA for 14 days. BPA decreased plasma T level and
increased LH levels, suggesting that BPA directly inhibits LC
function (128). Adult rats were administered via gavage of 10
mg/kg BW/day BPA for 14 days. BPA lowered T levels, decreased
testis weight, and inhibited antioxidants, and co-treatment with
an antioxidant (lipoic acid) could reverse it (112). Adult male rats
were administered by gavage of 0.005, 0.5, 50, and 500 µg/kg
BW/day BPA for 45 days. BPA significantly decreased insulin,
insulin receptor, insulin receptor substrate-1, phosphoinositide
3-kinase (PI3K), and GLUT-2 in the testis as well as HSD3B1,
HSD17B3, and StAR protein levels and T levels (131). Adult male
rats were gavaged with 400 or 800µmol/kg BW/day BPA for 14
days. BPA significantly decreased CYP17A1, POR, CYP1B1, and
CYP2A1 protein levels without affecting HSD3B1 protein levels
(132) and this potency of BPA was similar to 4µmol/kg BW/day
E2 (132). Treatment of ALCs with 0.01µM BPA decreased
T synthesis by down-regulating expression of Cyp17a1 (124)
(Table 2). This further demonstrates that BPA has different
effects depending on doses.

HUMAN STUDIES

Human Epidemiological Study
Some epidemiological studies have explored the relationship
between human exposure to BPA during pregnancy and male
reproductive diseases. The results are contradictory. Fénichel
et al. measured unconjugated BPA levels in cord blood in 152
boys born after GW34 with cryptorchidism and 106 controls and
did not find any association between BPA and cryptorchidism
(133). Cord blood BPA levels were measured in 52 neonates
with cryptorchidism and 128 controls in France. No correlation
was found between BPA and T or cryptorchidism, but a
significant negative correlation was found between BPA and
INSL3 (18). Because INSL3 and T are important for testis
descent, no relationship of BPA with cryptorchidism might be
involved in more confounding factors. Serum BPA levels were
detected in 98 (1–4 years old) unilateral cryptorchidism boys
and 57 controls. No association between free BPA levels and
cryptorchidism was found. However, they did find a significant
association between total BPA levels and cryptorchidism (134).
Fernandez et al. measured free BPA levels in term placenta in 28
boys of cryptorchidism/hypospadias and 51 controls, finding an
association between BPA levels and cryptorchidism/hypospadias
in the third tertile of cases (135). Miao et al. investigated maternal
occupational exposure to BPA and AGD in 56 BPA-exposed male
offspring and 97 unexposed controls and found that BPA was

significantly negatively correlated with AGD (136). Liu et al.
investigated the effect of BPA on sex hormone levels in 100
mother–infant pairs in two hospitals in China and found that
maternal urinary BPA levels were negatively correlated with male
fetal cord blood T levels and T/E2 ratios in male fetal cord blood
without association with AGD (137). Therefore, more human
studies are needed to clarify the effect of BPA on FLC functions
of male fetuses and newborns.

For BPA-mediated effects on adult reproduction, Adoamnei
et al. measured urinary BPA levels, serum LH levels, and sperm
counts in 215 healthy young men (ages 18–23 years) in southern
Spain, and found that urinary BPA was positively associated
with serum LH levels and negatively with sperm concentrations,
suggesting that BPA disrupts LC function and spermatogenesis
(138). Den Hond et al. measured the urinary BPA levels and
serum sex hormones in 163 subfertile men in four fertility clinics
and found that there was a negative association between urinary
BPA concentrations and serum T levels (139). Meeker et al.
measured urinary BPA levels and serum reproductive hormone
levels in 167 infertile men and found an inverse relationship
between urinary BPA levels and free T (T/SBBG) (140). Mendiola
et al. reported on 375 men with partners of pregnant women in
four cities of the United States and found that urinary BPA level
was not associated with semen quality, but was negatively related
to free T index and positively related to SHBG (141).

In vitro Studies Using Human Testis
The effect of BPA on FLC function was evaluated in human fetal
testes. Exposure of BPA to human GW6-11 fetal testis explants
for 3 days did not affect T secretion at 1 nM, but significantly
lowered T secretion at 10 and 10µM (142). Ben Maamar et al.
found that BPA exposure to human GW7-12 human fetal testis
explants for 3 days significantly inhibited T synthesis under the
basal and LH or hCG-stimulated conditions at 10µM (143, 144).
BPA exposure also inhibited T secretion under a basal condition
at 10 nM, but not under a LH-stimulated condition at this low
concentration (143). Similar data were observed on the basis of
BPA exposure to GW6-11 human testis and LH-stimulated T
synthesis (41). Interestingly, Eladak et al. performed the first and
second trimester human fetal testis xenograft to explore effect
of BPA on T secretion and found that exposure of host mice to
10µM BPA in water or 0.5 or 50 µg/kg BPA via gavage for 35
days did not influence T secretion from xenografts (41, 145).

BPA ANALOGS

Exposure of BPA Analogs
Due to strict restrictions on the production and use of BPA,
several BPA analogs are gradually replacing BPA. Recent studies
have reported that there was widespread exposure to a variety
of chemicals with structural or functional similarity to BPA,
referred to as BPA analogs (Table 1). BPA and its analogs were
reported to exist in food stuffs (16, 146) and indoor dust (147)
in both China and the United States. BPS and BPF are highly
detectable in many water supply systems (148) and paper (149).
BPA analogs can enter human tissues, circulation, and urine.
In a survey for 190 women in Hangzhou, China, showed that,
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besides BPA (average level of 2.5 ng/mL), BPS (0.19 ng/mL) and
BPAF (0.092 ng/mL) were also detectable in breast milk (150).
In the serum samples of 181 Chinese pregnant women, BPS,
BPF, BPAF, BPB, BPP, BPZ, BPAP, TBBPA, tetrabromobisphenol
S (TBBPS), and tetrachlorobisphenol A (TCBPA) were detected,
and TBBPS was 0.593 ng/mL and BPS was 0.113 ng/mL (151).
BPB was detected in the urine of Portuguese volunteers, and its
level was similar to BPA (152) (Table 1).

In vitro Studies of BPA Analogs
Despite extensive research on the effects and toxicity of BPA on
the male reproductive endocrine system in mammals, including
humans, little is known about the activity of most BPA analogs.
Several studies have been conducted on the toxicological effects
of certain BPA analogs on Leydig cell function.

As mentioned above, LCs contain NR3C4 and androgen
agonists, and antagonists can affect their development and
function. The effects of BPA, BPF, BPS, and tetrabromobisphenol
(TBBPA) on the activation of human NR3C4 were studied in
vitro. BPA, BPF, and TBBPA antagonized NR3C4 activation with
IC50 values of 39, 20, and 0.982µM, while BPS did not affect it
(153) (Table 3). Using a human recombinant androgen receptor
(NR3C4) competitive binding test, it was found that BPB binds
NR3C4 at a potency similar to BPA (157, 158). However, BPS
bound NR3C4 weakly (157). BPA and its analogs were compared
using in vitro and in vivo reporter assays for androgen agonism
and antagonism. BPA significantly antagonized DHT androgenic
activity in mouse fibroblast cell line NIH3T3 with TMBPA>

BPAF >BPAD >BPB >BPA, whereas TBBPA and TCBPA were
inactive (159). In another assay, like BPA, the following BPA

analogs, TBBPA, BPAF, BPB, BPZ, BPE, 4,4-BPF, 2,2-BPF, BPC,
TGSA, and TMBPA were NR3C4 antagonists between 3 and
100µM, where BPS and TCBPA were inactive (160).

A series of estrogen receptor luciferase assays of BPA analogs
in all 127 test compounds showed that BPC bound ESR1 with
the highest affinity, with IC50 of 2.81 nM, and other BPA analogs
such as BPAF (53.4 nM), BPM (56.8 nM), BPZ (56.9 nM), BPP
(176 nM), BPB (195 nM), BPAP (259 nM), and BPA (1,780 nM)
(155) (Table 3). Estrogen receptor binding experiments have
shown similar effects of these BPA analogs (154, 156) (Table 3).
Comparing the estrogen activity of BPA and its analogs in
human breast cancer cell line MCF-7, the results showed that
the estrogen activity was TCBPA> BPB> BPA> TMBPA (159).
Using an in vivo uterotrophic assay in ovariectomized mice, anti-
estrogenic activity against E2 was observed with TMBPA and
TBBPA (159).

Compared with ESR1, BPAF also binds to ESR2 more
effectively. The IC50 value of BPAF for ESR2 as an antagonist is
18.9 nM. Reporter gene assay showed that BPAF is a full agonist of
ESR1, inactive to ESR2, and has very weak binding to ERR3 (161).

In vitro studies showed that after 24 h of treatment, BPAF
was found to dose-dependently inhibit the production of P4 in
mLTC-1 tumor LCs after 24 h of treatment with an IC50 value

of 70.2µM. BPAF also lowered intracellular cAMP levels and

down-regulated Scarb1 andCyp11a1 expression without affecting
Star expression (162). This indicates that at high concentrations,
BPAF has similar effect to BPA.

When MA-10 tumor LCs were treated with BPA analogs,
TBBPA induced T synthesis, while BPF and BPS increased P4
levels (153). Fetal human testis was exposed to BPA, BPF, and

TABLE 3 | Bisphenols as estrogen receptor agonists and androgen receptor (NR3C4) antagonists.

ESR1

agonist

ESR2

agonist

NR3C4

antagonist

Chemical EC50 (nM)a Rel to BPA EC50 (nM)b Rel to BPA EC50 (nM)c Rel to BPA EC50 (nM)a EC50 (nM)c Rel to BPA EC50 (nM)c Rel to BPA

BPA 1200 1 1780 1 180 1 350 1 250 1 17500 1

T IA IA IA IA IA IA IA IA IA IA 2.8 6250

E2 0.042 28571 0.88 2225 0.9 200 1.1 318 0.3 833 30 583

BPAF 130 9 53.4 33.3 ND ND 46 7.6 ND ND ND ND

BPAP - - 259 6.9 2600 0.07 - - - - 5400 3.2

BPB 320 4 195 9.1 ND ND - - ND ND ND ND

BPC 780 2 2.81 633 3900 0.05 3200 9.1 - - 1800 9.7

BPE 1400 1 ND ND ND - 460 1.3 ND ND ND ND

BPF 1600 1 ND ND 1800 0.1 1300 3.7 3800 0.07 5800 3.0

BPFL ND ND 2230 0.8 - - ND IA IA 30 583

BPH ND ND ND ND - - ND - - 1100 15.9

BPP 5600 0.2 176 10.1 ND ND - - ND ND ND ND

BPS 1300 1 ND ND ND ND 2100 6 ND ND ND ND

BPZ 400 3 56.9 31.3 80 2.3 500 1.4 1100 0.23 1600 10.9

TDP ND ND ND ND 480 0.4 ND ND 1100 0.23 5800 3.0

TMBPA 1100 1.1 1630 1.1 - - - - - - 1100 15.9

aPotency of bisphenols in estrogen receptor (ESR) and androgen receptor (NR3C4) luciferase reporter gene assays (154); bLigand binding assay (155); cLigand binding assay (156);

IA, inactive; ND, not detected; -, no active activity; REL, potency relative to BPA.
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BPS in vitro. These compounds inhibited T secretion at 10 nM
(41). Fetal mouse testis was exposed to BPA and its analogs; these
chemicals inhibited T secretion at higher concentrations, and the
minimum effective concentrations were 1µM for BPA and BPF
as well as 100 nM for BPS (41). These data indicate that there
is species-dependent difference for the inhibition of T synthesis
between humans and mice, and human is more sensitive to
BPA analogs than mouse. These chemicals also lowered Insl3
transcription level at 10µM in fetal mouse testis (41).

In vivo Studies of BPA Analogs
Only some reproductive and developmental toxicity studies
have been conducted on BPA analogs. BPAF did not change
fetal T secretion from male fetuses on GD18 when exposed to
BPAF by GD14 to 18 at a dose of 200–500 mg/kg/day (163).
Exposure of rats to 5, 25, and 50 µg/L BPA and its analogs
BPB, BPF, and BPS from GD1 to GD21 in drinking water caused
significantly low antioxidant enzyme, plasma testosterone, and
estrogen concentrations and altered morphological changes of
testis and epididymis in male offspring after birth (164). In vivo
studies of 5 mg/kg/day of BPA, BPB, BPF, and BPS exposed to
adult male rats for 28 days showed that they led to decreased
T levels and increased ROS levels (165). Male prepubertal rats
exposed to 5, 25, and 50µg/L BPA, BPB, BPF, and BPS in drinking
water for 48 weeks also showed a decrease in T levels in the
highest dose group (166). These results indicate that BPA analogs
BPB, BPF, and BPS have similar effects on the development of the
male reproductive system to BPA.

CONCLUSION

BPA is a ubiquitous environmental pollutant, mainly from
the manufacture and use of plastics and its degradation of

waste related to industrial plastics. More and more animal
experiments have shown that BPA has endocrine disruption to
the development and function of LCs. Studies on laboratory
animals have shown that the effect of BPA is usually more
harmful in the uterus, which is a critical stage of embryonic
development. BPA has been found to cause defects in the embryo,
such as feminization of the male fetus, atrophy of the testes
and epididymis, as well as shortened AGD and changes in adult
sperm parameters. BPA also disrupts the development of LCs
after birth and the function of LCs in adulthood. BPA may
have several molecular mechanisms: (1) binding to different ESR
(ERS1 and ERS2) and ERR (1-3) as agonists, and NR3C4 as
antagonist (Figure 1); (2) binding to the membrane receptor
(GPER) (Figure 1); (3) direct inhibition of steroidogenic enzyme
activity; and (4) stimulation of ROS production. Epidemiological
studies provide some data indicating that BPA can change male
reproductive function in men. There are dose-dependent effects,
including low-dose and high-dose effects and species-dependent
effects. Human testes may be more sensitive to the T inhibition
of BPA analogs.
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