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Abstract

Accurately estimating performance accuracy of machine learning classifiers is of fundamental 

importance in biomedical research with potentially societal consequences upon the deployment of 

best-performing tools in everyday life. Although classification has been extensively studied over 

the past decades, there remain understudied problems when the training data violate the main 

statistical assumptions relied upon for accurate learning and model characterization. This 

particularly holds true in the open world setting where observations of a phenomenon generally 

guarantee its presence but the absence of such evidence cannot be interpreted as the evidence of its 

absence. Learning from such data is often referred to as positive-unlabeled learning, a form of 

semi-supervised learning where all labeled data belong to one (say, positive) class. To improve the 

best practices in the field, we here study the quality of estimated performance in positive-

unlabeled learning in the biomedical domain. We provide evidence that such estimates can be 

wildly inaccurate, depending on the fraction of positive examples in the unlabeled data and the 

fraction of negative examples mislabeled as positives in the labeled data. We then present 

correction methods for four such measures and demonstrate that the knowledge or accurate 

estimates of class priors in the unlabeled data and noise in the labeled data are sufficient for the 

recovery of true classification performance. We provide theoretical support as well as empirical 

evidence for the efficacy of the new performance estimation methods.
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1. Introduction

Machine learning-based prediction has become the cornerstone of modern computational 

biology and biomedical data science. Numerous approaches have been developed and 

applied in these fields, including those related to the function of biological macromolecules,
1,2 the effect of genomic variation,3 precision medicine,4,5 or computer-aided clinical 

decision making.6 A significant part of this research considers binary classification where 

the learning algorithms have been extensively studied and characterized, both theoretically 
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and empirically.7 The objective in binary classification is to train (learn) a model (function) 

that can distinguish one type of objects from another; e.g., predicting the effect of single 

nucleotide variants as pathogenic or benign.3 However, these algorithms have a broader 

value because multi-class, multi-label and even structured-output learning are often framed 

as extensions of binary classification, sometimes in a straightforward manner.8

In addition to learning, binary classification has also been extensively studied with respect to 

the performance evaluation of predictive models.7 Typically, the prediction algorithm 

outputs a real-valued score for a given input example, after which a thresholding function is 

applied to map the prediction score into one of the elements of the output space (e.g., 

pathogenic vs. benign). In some cases, one first chooses the decision threshold and then 

computes the performance measures for the model on the binarized predictions. In others, 

calculating the performance measures entails some form of aggregating over all decision 

thresholds. The first category of evaluation metrics includes classification accuracy, or the 

probability that a randomly selected, previously unseen, example from the population will be 

correctly classified. Other, more specialized measures, include the true positive rate 

(sensitivity, recall), true negative rate (specificity, 1 − false positive rate) or precision 

(positive predictive value, 1 − false discovery rate).7 These measures may also be combined 

to compute derived quantities such as the balanced sample accuracy, F-measure7 or 

Matthews correlation coefficient.9 The second group of metrics include two-dimensional 

plots such as the Receiver Operating Characteristic (ROC) curve and the precision-recall 

curve that visualize the trade-offs between various quantities as a function of the decision 

threshold. These curves can be further summarized into a single quantity by computing the 

area under the curve. Alternatively, metrics such as F-measure can be computed for each 

decision threshold to report the maximum value over all thresholds; e.g., Fmax.10 This allows 

each algorithm to select its own decision threshold and also comparisons between algorithms 

that binarize their outputs with those that do not. It is worth mentioning that cost-sensitive 

learning and evaluation,11,12 as well as information-theoretic approaches13,14 can also be 

considered in certain classification scenarios; however, these evaluation strategies are 

beyond the scope of this work.

Although binary classification has been extensively studied and is well understood,7 there 

remain problems related to the open world setting that require attention. Open world refers 

to the framework in knowledge representation and artificial intelligence in which the 

observation of a phenomenon generally establishes its presence; however, the lack of the 

observation cannot be interpreted as the evidence of absence of the phenomenon. One such 

example is protein function assignment,15 where an experimental assay can definitively 

establish, say, that a particular protein is an enzyme. High-throughput experiments can 

similarly establish the presence of the phenomenon, albeit with some error as in generating 

protein-protein interaction networks using yeast two-hybrid systems.16 However, no protein 

has ever been experimentally assayed for all functions and, additionally, an unsuccessful 

experiment does not necessarily establish the lack of particular activity. This is because an 

absence of required molecular partners, an inadequate set of experimental conditions (e.g., 

pH, temperature17), or a human error can combine to result in a failed experiment.b When 

presented with such data, one is de facto given a set of positive examples (e.g., enzymes) and 

a set of unlabeled examples (e.g., a sample of all proteins) and the learning setting is referred 
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to as positive-unlabeled learning.18 Although the unlabeled set contains an unknown fraction 

of positive examples, the standard practice ignores this fact and considers all unlabeled 

examples to be negative. One then trains a prediction model (interestingly, this approach is 

optimal for a wide range of loss functions referred to as composite loss functions19) and 

estimates its performance, after which the predictor is deployed with a particular estimated 

quality. In other words, machine learning models in the positive-unlabeled setting are 

trained/evaluated on positive vs. unlabeled data, whereas the ideal predictor, certainly one 

expected by the downstream user, would be trained/evaluated on positive vs. negative data. 

Following Elkan and Noto,20 we will refer to the predictors trained on positive vs. negative 

data as traditional classifiers and models trained on positive vs. unlabeled data as non-

traditional classifiers. Similarly, we will refer to the two different types of evaluation as 

traditional and non-traditional evaluation.

The primary objective of this work is to study non-traditional classifiers and the adverse 

effects of non-traditional performance evaluation when the intent is to carry out a traditional 

evaluation. We show that the traditional performance of these classifiers can be recovered 

with the knowledge or an accurate estimate of class priors (i.e., the fractions of the positive 

and negative examples in a representative unlabeled set) and the labeling noise (i.e., the 

fraction of negative examples in the labeled data set that have been mistakenly labeled as 

positive). We conduct extensive and systematic experiments to evaluate the proposed 

methods and draw conclusions pertaining to the best practices of performance evaluation in 

the field.

2. Methods

2.1. Performance measures: definitions and estimation

In this section, we give definitions of several widely used performance measures and their 

standard estimation formulas. To this end, we first describe the probabilistic framework used 

in the definitions. Consider a binary classification problem of mapping an input x ∈ 𝒳 to its 

class label y ∈ 𝒴 = 0, 1 . Assume that x and y come from an underlying, fixed but 

unknown joint distribution h(x,y) over 𝒳 × 𝒴.c Let h(x) denote its marginal density over x. It 

follows that h(x) can be expressed as a two-component mixture:

h(x) = πh1(x) + (1 − π)h0(x), (1)

for all x ∈ 𝒳, where h1 and h0 represent the distributions of the positive and negative 

examples (inputs), respectively, and π ∈ (0,1) is the proportion of positive examples in h, 

also referred to as the class prior for the positive class.

Next, we give definitions of the three most fundamental performance measures: (1) true 

positive rate (γ), the probability that a positive example is correctly classified, (2) false 

positive rate (η), the probability that a negative example is incorrectly classified as positive, 

bEven with exhaustive experimentation and no human error, the “negative” findings are rarely published.
cFor convenience, we use terms density and distribution interchangeably.
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and (3) precision (ρ), the probability that a positive prediction is correct. Mathematically, 

given a binary classifier y :𝒳 𝒴, they are defined as

γ = 𝔼h1
[y(x)], η = 𝔼h0

[y(x)], ρ =
π𝔼h1

[y(x)]
𝔼h[y(x)] = πγ

θ (2)

where 𝔼h denotes expectations w.r.t. h and θ = 𝔼h[y(x)] is the probability of a positive 

prediction. A classifier with a high γ and ρ, but low η is desirable. However, these measures 

are at odds with each other; i.e., typically, increasing a classifier’s γ leads to a smaller ρ and 

a larger η. A classifier that always predicts either 0 or 1 can optimize them individually at 

the expense of others. Consequently, they are often used together to gauge a classifier’s 

performance; for example, in an ROC curve analysis. Moreover, other performance 

measures combine them explicitly or implicitly in their formulation. Though θ itself is not 

widely used as a measure of classifier performance, it also appears in the expression of 

several important measures (a classifier for which θ > π is sometimes said to “overpredict”). 

A particularly useful expression of θ in terms of γ,η and π is derived as follows.

θ = 𝔼h[y(x)] = π𝔼h1
[y(x)] + (1 − π)𝔼h0

[y(x)] = πγ + (1 − π)η (3)

In this paper, we focus on four performance measures that are widely used in biomedical 

research: (1) Accuracy (acc), the probability that a random example is correctly classified 

(2) Balanced accuracy (bacc), the average accuracy on the positive and negative examples, 

weighed equally, (3) F-measure (F), the harmonic mean of γ and ρ,d and (4) Matthews 

correlation coefficient (mcc), the correlation between the true and predicted class. 

Mathematically, they are defined as follows:

acc = πγ + (1 − π)(1 − η) (4)

bacc = 1 + γ − η
2 (5)

F = 1
1
2 ⋅ 1

γ + 1
2 ⋅ 1

ρ

= 2πγ
π + θ (6)

dWe only consider the F1 score in the family of F-measures.
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mcc =
𝔼h[y ⋅ y(x)] − 𝔼h[y] ⋅ 𝔼h[y(x)]

𝕍h[y] ⋅ 𝕍h[y(x)] (7)

where 𝕍h in Eq. (7) denotes the variance operator w.r.t. distribution h(x). Notice that, since y 

~ Bernoulli(π) under h, 𝔼h[y] = π and 𝕍h[y] = π(1 − π); similarly, 𝕍h[y(x)] = θ(1 − θ). 

Further, using the law of iterated expectations, 𝔼h[y ⋅ y(x)] = π𝔼h1
[y(x)] = πγ. Thus,

mcc = π
(1 − π)

γ − θ
θ(1 − θ) = π(1 − π)

θ(1 − θ) ⋅ (γ − η) (8)

Using the estimates of γ, η, π and θ from Table 1, we give the standard formulas for acc, 

bacc, F and mcc estimation, in terms of the classifier’s confusion matrix entries. For 

example, simple algebraic operations on Eq. (8) give

mcc = π(1 − π)(γ ⋅ (1 − η) − η ⋅ (1 − γ ))
θπ(1 − π)(1 − θ )

= tp ⋅ tn − fp ⋅ fn
(tp + fp)(tp + fn)(tn + fn)

Similarly, the standard estimation formulas for acc, bacc and F can be easily derived as:

acc = tp + tn
tp + fn + tn + fp , bacc = 1

2
tp

tp+fn + 1
2

tn
tn+fp , F = 2tp

2tp + fn + fp .

2.2. Positive-unlabeled setting

Let D represent a set of examples drawn from h(x); at this stage, the class of an x in D is 

unknown. Consider a labeling procedure that selects some examples from D for labeling. As 

is the case in many domains, the procedure tests only for the class of interest, the positive 

class. The procedure is successful when it deems the example as positive with high 

confidence. The successfully labeled examples are collected in a labeled set L, whereas the 

rejected examples along with the examples not selected for labeling, in the first place, are 

collected in an unlabeled set U. In spite of being labeled as positive, some examples in L 
might, in fact, be negative, due to the errors in the labeling procedure.

The typical, positive-unlabeled assumption made about the labeler is that the examples from 

D are selected independently of x, given y and further, that the same assumptions apply to 

the success of labeling.20,21 The assumptions ensure that the distributions of positives and 

negatives remain unchanged in L and U and only the class proportions are affected. Let 

f(x,y) and g(x,y) denote the underlying joint distribution of U and L, respectively. Note that 

y still denotes the true unobserved class and not class assigned by the labeler. For f(x) and 

g(x) denoting the marginals over x,
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f (x) = αh1(x) + (1 − α)h0(x), g(x) = βh1(x) + (1 − β)h0(x), (9)

for all x ∈ 𝒳, where α and β denote the proportion of positives in the unlabeled and labeled 

set, respectively. By design, L has a higher concentration of positives than D; i.e., β ∈ (π,1]. 

Similarly, U has a lower concentration of positives than D; i.e., α ∈ [0,π). When β = 1 we 

say that the labeled data is clean. When β < 1, the labeled data contains a fraction (1 − β) of 

negatives that are mislabeled. We will refer to the latter scenario as the noisy positive setting 

and 1 − β as the noise proportion.

The relationship between h, f and g is further constrained, since D is partitioned by L and U. 

Precisely,

h(x) = cg(x) + (1 − c) f (x) = (cβ + (1 − c)α)h1(x) + (1 − cβ − (1 − c)α)h0(x), (10)

for all x ∈ 𝒳, where c = |L|
|L | + |U| . Thus,

π = cβ + (1 − c)α . (11)

To distinguish h from f and g, we refer to h as the true or the target distribution. We are 

primarily interested in a classifier’s performance on the true distribution, which is reflected 

in our goal to obtain unbiased estimates of the performance measures w.r.t. the true 

distribution.

2.3. Performance measure correction

The absence of negative examples in positive-unlabeled learning is tackled by treating the 

unlabeled set as a surrogate for negatives. This is referred to as the non-traditional approach.
20 A non-traditional classifier trained on such data learns to discriminate the labeled-as-

positive set from the unlabeled set. Surprisingly, an optimal non-traditional classifier has 

been shown to perform optimally in the traditional sense; i.e., as a discriminator between the 

positive and negative examples.21 However, measuring a classifier’s performance non-

traditionally does not reflect its performance in the traditional sense. Ref. 22 demonstrated 

the bias in the nontraditionally estimated γ, η and ρ and its implications towards the ROC 

and precision-recall analysis. They also provided techniques for bias correction using 

estimates of the class prior and the noise proportion.22 We take a similar approach in this 

work and show that the standard estimators of acc, bacc, F and mcc, when used in a non-

traditional framework, are biased. Then we give formulas to correct the bias by estimating 

the class prior and the noise proportion. To formalize the notion of a non-traditional labeled 

set, we introduce the pseudo class y, which is 1 for every example in L and 0 for those in U. 

The non-traditional labeled set ℒpu contains all examples from L and U along with their 

pseudo class labels. The standard approach (see Table 1) for estimating γ, η, π and θ 
presupposes that the examples in the labeled set are drawn randomly from h(x,y) and more 
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importantly, that tp, fn, tn and fp are counted w.r.t. the true class. However, when working 

with ℒpu, the counts are based on the pseudo class, which affects the quality of the standard 

estimates.

In particular, γ  and η give biased estimates of γ and η, respectively. Instead, they give 

unbiased estimates of γpu = 𝔼g[y(x)] and ηpu = 𝔼 f [y(x)]; this is because g and f correspond 

to the distributions of the pseudo positives and the pseudo negatives, respectively. Moreover, 

π represents the proportion of the pseudo positives c, instead of π; that is, π = c. However, θ
is still an unbiased estimator of θ, since θ only depends on the marginal distribution of x in 

ℒpu, which is the same as h(x) as per Eq. (10). To summarize, we have

γestimates
  

γpu ≠ γ, η estimates ηpu ≠ η, π = c ≠ π, θ  estimates θ .

The bias in γ , η and π is also reflected in the standard estimates of acc, bacc, F and mcc. 

They give unbiased estimates of the following quantities instead.

accPu = cγpu + (1 − c) 1 − ηpu

baccpu = 1 + γpu − ηpu
2

Fpu = 2cγpu
c + θ

mccpu = c(1 − c)
θ(1 − θ) ⋅ γpu − ηpu

Next, we give the relationship between γ, η, γpu and ηpu which are then used for bias 

correction.

γ = (1 − α)γpu − (1 − β)ηpu
β − α

obtained by solving

γpu = 𝔼g[y(x)] = βγ + (1 − β)η

η = βηpu − αγpu
β − α
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ηpu = 𝔼 f [y(x)] = αγ + (1 − α)η

We derive the bias-corrected estimates of acc, bacc, F and mcc by correcting for γ,η and π:

acccr = πcrγ cr + 1 − πcr 1 − ηcr (12)

bacccr =
1 + γ cr − ηcr

2 (13)

Fcr =
2πcrγ cr

πcr + θ
(14)

mcccr =
πcr 1 − πcr

θ (1 − θ )
γ cr − ηcr (15)

Where γcr, ηcr and πcr are estimated using estimates of α and β as follows:

γcr = (β − α)−1((1 − α)γ − (1 − β)η), ηcr = (β − α)−1(βη − αγ ), πcr = cβ + (1 − c)α .

Theorem 2.1 shows that unbiased bacc and mcc estimates can also be directly recovered 

from baccpu and mccpu estimates, requiring only estimation of classifier-independent 

quantities π,α and β (the class proportions in D, U and L); i.e., γ and η do not need to be 

corrected as an intermediate step. Furthermore, the relationship between bacc (mcc) and its 

positive-unlabeled counterpart is monotonic, which is a desirable property when 

constructing a classifier by thresholding a score function. It ensures that the threshold 

obtained with the positive-unlabeled data by optimizing the non-traditional measure also 

maximizes the traditional measure. The inequalities derived in the theorem demonstrate that 

the nontraditionally evaluated bacc and mcc underestimate the traditional performance, 

provided the non-traditional classifier performs better than random.

Theorem 2.1. The following equations hold true.

bacc = 2baccpu − 1
2(β − α) + 1

2,

and
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mcc = 1
β − α

π(1 − π)
c(1 − c) ⋅ mccpu

Moreover,

sign(mcc) mcc − mccpu ≥ 0,

and

bacc − baccpu ≥ 0,  when bacc pu ≥ 1 2.

Proof. The proof of the two equalities follow by observing γpu −ηpu = (β−α)(γ−η) and 

using it in the expressions of baccpu and mccpu, thereby obtaining a conversion to bacc and 

mcc (Eqs. (5) and (8)). Now, mcc − mccpu = mccpu 1
β − α

π(1 − π)
c(1 − c) − 1 . The mcc inequality 

follows since π
c(β − α) ⋅ 1 − π

(1 − c)(β − α) ≥ 1 because π−c(β−α) = α ≥ 0 and 1−π−(1−c)(β

−α) = 1−β ≥ 0. The bacc inequality follows since β − α ≥ 0 and consequently, 

2bacc − 2baccPu = 2baccpu − 1
β − α − 2baccpu − 1 ≥ 0, provided baccpu ≥ 1/2. ◻

3. Experiments and Results

3.1. A case study

We first demonstrate the problem with non-traditional evaluation in a situation where the 

positive and negative conditional distributions, h1 and h0, are univariate Gaussians with 

𝔼h1
[x] > 𝔼h0

[x] and 𝕍h1
[x] = 𝕍h0

[x]. Knowing the underlying distributions allows us to make 

exact computations of performance measures, instead of estimating them from data. As per 

Section 2, let h(x) = πh1(x)+(1−π)h0(x), f(x) = αh1(x)+(1−α)h0(x) and g(x) = βh1(x)

+(1−β)h0(x) be the true, labeled and unlabeled data distributions, respectively. Values of α, 

β and c will be fixed, from which π = cβ+(1−c)α will be computed. We will consider a 

simple linear classifier y(x) = 1(x ≥ τ), where 1(·) is the indicator function and τ ∈ ℝ is the 

decision threshold. This thresholding function predicts a 0 for inputs below τ; otherwise, it 

predicts a 1.

In the traditional setting, the true positive rate (γ) and false positive rate (η) can be 

straightforwardly computed as γ = 1 − cd f h1
(τ) and η = 1 − cd f h0

(τ), where cdff is the 

cumulative distribution function corresponding to the density f. On the other hand, when 

evaluated in the non-traditional setting, these quantities can be expressed as γpu = 1 − 

cdfg(τ) and ηpu = 1 − cdff(τ). The probability of positive prediction θ is computed using Eq. 

(3). Of course, g = h1 when β = 1 and f = h0 when α = 0, but this case corresponds to the 

standard supervised learning problem and is not of interest.
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Let us now be concrete and consider that h0 = 𝒩( − 1, 1), h1 = 𝒩(1, 1), α = 1 2, β = 3 4 and 

c = 1 10; thus, π = 3 10. In Figure 1, we plot the values of the accuracy, balanced accuracy, F-

measure and Matthews correlation coefficient in the traditional and non-traditional setting 

for each value of τ ∈ (−5,5), where acc, accpu, bacc, baccpu, F, Fpu, mcc and mccpu are 

calculated from γ, η, θ, h, f, g, and c, as shown in Section 2. As a reminder, c represents the 

proportion of labeled examples in the training set consisting of all labeled and unlabeled 

examples; however, a data set is not generated here. It is important to point out the large 

differences between all traditional and non-traditional estimates, which provide evidence 

that the non-traditional estimates can be far from accurate, as in this example. As proved in 

Section 2, the maximum values for baccmax vs. baccmax
pu  and mccmax vs. mccmax

pu  are observed 

at the same score thresholds τ, respectively. This is desirable as one can establish the best 

decision threshold using positive-unlabeled data and secure the best predictor performance 

even without the precise knowledge of what that performance is. On the other hand, 

accmax vs. accmax
pu  as well as Fmax vs. Fmax

pu  do not occur at the same decision thresholds, 

which presents a problem for method benchmarking. The F-measure is further interesting as 

a simple predictor (τ = −5) that gives positive predictions on (almost) all inputs can achieve 

a high-scoring F, which may be misinterpreted in practice as good performance. Similarly, 

in terms of accuracy, an inability to “beat” a trivial classifier (the one always predicting the 

majority class) might be incorrectly interpreted as inability to develop a good classifier.

3.2. Data sets

The empirical evaluation was carried out on 14 data sets from the UCI Machine Learning 

repository. The selected data sets span various biomedical problems, such as recognizing 

splice-junction boundaries from the DNA sequence,23 predicting the physical activity of an 

individual based on their smartphone24 or sensor25 data, and predicting hospital re-

admissions by using a patient’s demographics, medical diagnoses and lab test results.26 

Where necessary, the data sets were converted to binary classification problems by 

considering one of the classes as positive and the other(s) as negative or by converting 

regression problems to classification by introducing appropriate thresholds on the target 

variable. The following data sets were used: Covertype, Activity recognition with healthy 

older people using a batteryless wearable sensor (two experiments), Epileptic Seizure 

Recognition, Smartphone-Based Recognition of Human Activities and Postural Transitions, 

Mushroom, Thyroid Disease, Anuran Calls, Wilt, Abalone, HIV-1 protease cleavage, Splice-

junction Gene Sequences, Parkinsons Telemonitoring, and Physicochemical Properties of 

Protein Tertiary Structure.

3.3. Experimental protocols

The experiments were designed to simulate the construction of non-traditional classifiers in 

the positive-unlabeled setting and assess the quality of performance estimation both in the 

non-traditional and traditional mode. Labeled and unlabeled data sets, with nl and nu 

examples, respectively, were first created by sampling an appropriate number of positive/

negative examples as follows. After fixing the value of β from {1, 0.9, 0.8, 0.7}, β ·nl points 

were sampled from the positive set and (1 − β) · nl from the negative set to make the labeled 
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data set. This process determined the true value of α as the ratio of the remaining positive 

points and the remaining negative points from the original data set. Unlabeled data set was 

then formed by selecting α · nu points from the remaining positive points and (1 − α) · nu 

points from the remaining negative points. The number of unlabeled examples nu was set to 

10,000 in all data sets with sufficient size. Otherwise, it was set to 5000, 2000 or 1000. The 

size of the labeled data set nl was picked so as to fix the ratio of labeled vs. unlabeled data to 

1:10. That is, if nu = 1000, nl would be set to 100. This ratio mimics a typical situation in 

which one is presented with larger unlabeled data compared to the labeled data. A non-linear 

classification model was trained on each non-traditional data set. Its performance was 

evaluated in both non-traditional and traditional setting. This experiment was repeated 50 

times for different random selections of labeled and unlabeled data sets, each of which was 

considered for four different values of β.

One-hundred bagged two-layer neural networks, each with 7 hidden neurons, were used as a 

non-traditional classifier in all experiments. The networks were trained using the RPROP 

algorithm27 with a validation (25% of the training set) stop or at most 5,000 epochs. Out-of-

bag performance evaluation was carried out in all experiments. At the end of each run, we 

calculated four performance measures: the maximum classification accuracy (accmax), the 

maximum balanced accuracy (baccmax), the maximum F-measure (Fmax) and the maximum 

MCC (mccmax), in four different scenarios: (1) the non-traditional (PU) estimates, where the 

labeled data was considered to be positive and unlabeled data negative; (2) the traditional 

(true) performance estimates, where the actual class labels instead of the PU labels were 

used; (3) the recovery setting proposed in Section 2 with actual (α, β) values; and (4) the 

recovery setting proposed in Section 2 with estimated (α, β) values, referred to as (α, β). The 

non-traditional estimates provide the performance that a practitioner would report by 

ignoring noise and assuming that the unlabeled set was negative. The traditional 

performance estimates represent the estimated true performance of these models that a 

practitioner would not be aware of. The third and fourth scenario represent the traditional 

estimates after the correction. They were designed to explore the effects of incorrectly 

estimating (α, β), instead of knowing their true values. The AlphaMax algorithm21,28 was 

used to obtain (α, β).

3.4. Results

We measured the difference between non-traditional and corrected performance against the 

traditional performance in each run. The traditional performance was considered to be 

“true”; it could be estimated because the positive-unlabeled setting was simulated on data 

sets where both positives and negatives were available. The corrected performance was 

presented twice: first with known (α, β) that were used to construct positive-unlabeled data 

sets and, second, with (α, β) themselves estimated from the positive-unlabeled data. The 

experimental results, summarized in a single box plot over all 14 data sets and all 50 runs, 

are shown in Figure 2. Non-traditionally estimated (without correction) baccmax, Fmax and 

mccmax significantly underestimate the traditional performance, whereasd accmax 

significantly overestimates it. The errors generally deteriorate with the increasing level of 

noise (1 − β).
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The corrected estimates attained much smaller error. While using the true values of α and β 
provided a near perfect recovery of the traditional performance, the estimated values 

generally resulted in a slightly overestimated traditional performance. We note however that 

we did not perform any model selection and parameter optimization during class prior and 

noise level estimation and, therefore, one could expect to observe an improved recovery after 

these steps. Manual inspection of the likelihood curves outputted by AlphaMax would also 

be recommended to increase confidence in the recovered performance estimates.

4. Conclusions

Estimating the performance of machine learning models is one of the critical yet 

understudied research directions in the biomedical sciences. Incorrect evaluation might have 

severe negative effects upon the deployment of machine learning tools and the perception of 

their usefulness in the nearby future, including in genetic counseling, precision medicine, 

clinical decision support, etc.3–6 This work therefore investigated the quality of performance 

evaluation in binary classification when training data best fits the positive-unlabeled setting.
18 However, the generality of our methods is provided by the equivalence between training 

from noisy positive vs. unlabeled data and the so-called corrupt binary classification model, 

where it is assumed that both positive and negative examples are given, but that each data set 

is corrupted by a (potentially) different amount of label noise.

To characterize performance evaluation problems, we built on the previous work in machine 

learning22,29 to evaluate the quality of four estimated measures: accuracy, balanced 

accuracy, F-measure, and Matthews correlation coefficient. We found that the balanced 

accuracy and Matthews correlation coefficient are well-behaved, meaning that they provide 

certain important guarantees to the practitioner even when applied in the positive-unlabeled 

setting. For example, the optimal decision threshold for maximizing the performance does 

not change when the evaluation is shifted from the non-traditional to the traditional setting; 

furthermore, the performance in the traditional setting is always better than non-traditionally 

estimated. On the other hand, classification accuracy and F-measure provide fewer 

guarantees and require sophisticated understanding when deployed in practice.

To mitigate the problems associated with any of the above-mentioned performance 

estimation strategies, we first showed that the true (traditional) classification performance 

can be recovered with the knowledge of (1) the class priors in the unlabeled data and (2) the 

proportion of noise in the labeled data. We then used the AlphaMax algorithm21,28 to 

estimate both of these quantities in a nonparametric fashion and showed that the 

performance estimation process is significantly improved. As a practical guideline, we 

suggest that the deployment of machine learning models should be accompanied with both 

non-traditional and recovered traditional performance estimates along with the estimated 

values of α and β.

Acknowledgements

The authors acknowledge the support by the NIH grant R01 MH105524, NSF grant DBI-1458477 and the Precision 
Health Initiative of Indiana University where the study started.

Ramola et al. Page 12

Pac Symp Biocomput. Author manuscript; available in PMC 2019 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Rentzsch R and Orengo CA, Trends Biotechnology 27, 210 (2009).

2. Xin F and Radivojac P, Curr Protein Pept Sci 12, 456 (2011). [PubMed: 21787297] 

3. Peterson TA et al., J Mol Biol 425, 4047 (2013). [PubMed: 23962656] 

4. Fernald GH et al., Bioinformatics 27, 1741 (2011). [PubMed: 21596790] 

5. Rost B et al., FEBS Lett 590, 2327 (2016). [PubMed: 27423136] 

6. Middleton B et al., Yearb Med Inform 25, S103 (2016).

7. Hastie T et al., The elements of statistical learning (Springer Verlag, New York, NY, 2001).

8. Rifkin R and Klautau A, J Mach Learn Res 5, 101 (2004).

9. Matthews BW, Biochim Biophys Acta 405, 442 (1975). [PubMed: 1180967] 

10. Radivojac P et al., Nat Methods 10, 221 (2013). [PubMed: 23353650] 

11. Whalen AD, Detection of signals in noise (Academic Press, New York, NY, 1971).

12. Elkan C, The foundations of cost-sensitive learning, in IJCAI, 2001.

13. Clark WT and Radivojac P, Bioinformatics 29, i53 (2013). [PubMed: 23813009] 

14. Jiang Y et al., Bioinformatics 30, i609 (2014). [PubMed: 25161254] 

15. Dessimoz C et al., Trends Genet 29, 609 (2013). [PubMed: 24138813] 

16. Fields S and Song O, Nature 340, 245 (1989). [PubMed: 2547163] 

17. Mohan A et al., PLoS Comput Biol 5, p. e1000497 (2009). [PubMed: 19730682] 

18. Denis F et al., Theor Comput Sci 348, 70 (2005).

19. Reid MD and Williamson RC, J Mach Learn Res 11, 2387 (2010).

20. Elkan C and Noto K, Learning classifiers from only positive and unlabeled data, in KDD, 2008.

21. Jain S et al., Estimating the class prior and posterior from noisy positives and unlabeled data, in 
NIPS, 2016.

22. Jain S et al., Recovering true classifier performance in positive-unlabeled learning, in AAAI, 2017.

23. Noordewier MO et al., Training knowledge-based neural networks to recognize genes in DNA 
sequences, in NIPS, 1990.

24. Reyes-Ortiz JL et al., Neurocomputing 171, 754 (2016).

25. Torres RLS et al., Sensor enabled wearable RFID technology for mitigating the risk of falls near 
beds, in IEEE RFID, 2013.

26. Strack B et al., Biomed Res Int 2014, p. 781670 (2014).

27. Riedmiller M and Braun H, A direct adaptive method for faster backpropagation learning: 
theRPROP algorithm, in IEEE ICNN, 1993.

28. Jain S et al., arXiv:1601.01944 (2016).

29. Menon AK et al., Learning from corrupted binary labels via class-probability estimation, in ICML, 
2015.

Ramola et al. Page 13

Pac Symp Biocomput. Author manuscript; available in PMC 2019 March 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1: 
Traditional vs. non-traditional performance accuracy as a function of decision threshold τ. 

The circles and vertical lines in all four panels indicate the threshold values and the 

corresponding best performances in both traditional and non-traditional setting. (Upper left) 

Classification accuracy: top traditional performance accmax = 0.86 is reached at the 

threshold value τ = 0.42, whereas the top non-traditional performance accmax
pu = 0.90 is 

reached at τ = 5; (Upper right) Balanced accuracy: top traditional performance baccmax = 

0.84 and non-traditional performance baccmax
pu = 0.67 are both reached at τ = 0; (Lower left) 

F-measure: top traditional performance Fmax = 0.77 is reached at τ = 0.19, whereas the top 

non-traditional performance Fmax
pu = 0.30 is reached at τ = 0.50; (Lower right) Matthews 

Correlation Coefficient: top traditional performance mccmax = 0.66 and non-traditional 

performance mccmax
pu = 0.22 are both reached at τ = 0.29.
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Fig. 2: 
Error in the non-traditionally evaluated performance measures before and after correction for 

14 biomedical data sets. PU represents the estimates on the Positive Unlabeled data without 

bias-correction. CR and CE represent the bias-Corrected estimates with the Real and 

Estimated values of α and β. In each run, the optimal decision threshold was selected first, 

to maximize the performance, and then the resulting performance was compared with the 

true performance at that same threshold. (Upper left) Classification accuracy: Eq. (12) was 

used for correction. All estimates were clipped between 0 and 1; (Upper right) Balanced 

accuracy: Eq. (13) was used for correction. All estimates were clipped between 1 2 and 1; 

(Lower left) F-measure: Eq. (14) was used for correction. All estimates were clipped 

between 0 and 1; (Lower right) Matthews Correlation Coefficient: the formula from 

Theorem 2.1 was used for a direct correction from the mccpu estimate. All estimates were 

clipped between −1 and 1. The x-axis is the true value of β, according to which the box plots 

were grouped.
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Table 1:

(a) Confusion matrix of y(x) on a labeled data set. (b) Standard estimation of γ, η, π and θ.

Predicted
positive

Predicted
negative

Positive tp fn
Negative fp tn

γ = tp
tp+fn π = tp+fn

tp+fn+tn + fp

η = fp
tn+fp θ = tp+fp

tp+fn + tn + fp
a b
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