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Abstract

Background: Differential abundance analysis is widely used with high-throughput sequencing data to compare
gene abundance or expression between groups of samples. Many software packages exist for this purpose, but
each uses a unique set of statistical assumptions to solve problems on a case-by-case basis. These software
packages are typically difficult to use for researchers without command-line skills, and software that does offer a
graphical user interface do not use a compositionally valid method.

Results: omicplotR facilitates visual exploration of omic datasets for researchers with and without prior scripting
knowledge. Reproducible visualizations include principal component analysis, hierarchical clustering, MA plots and
effect plots. We demonstrate the functionality of omicplotR using a publicly available metatranscriptome dataset.

Conclusions: omicplotR provides a graphical user interface to explore sequence count data using generalizable
compositional methods, facilitating visualization for investigators without command-line experience.

Keywords: Differential abundance, Data visualization, Compositional data, Effect plots, Exploratory data analysis,
Differential expression

Background
High-throughput sequencing (HTS) technologies are
commonly used to detect differential expression, where
the expression of features (genes, operational taxonomic
units, transcripts, etc...) in one group of samples is com-
pared to another group. Microbiome, transcriptome and
metagenomic studies share many characteristics, for
example, in each case, a DNA (or cDNA) library is se-
quenced and reads are binned into features that repre-
sent a biological group in a given context [1].
Exploratory visualizations of the dataset enable identifi-
cation of potential differences between conditions as
well as outlier samples. Typical visualizations often in-
clude principal component analysis biplots [2], hierarch-
ical clustering of features, and other plots to explore
differential abundance [3].
Awareness of the compositional nature of HTS data

has increased in the recent literature [4]. Briefly, the
counts for sequencing reads obtained from an HTS ex-
periment represent the relative proportions of reads in a
sample, not the absolute abundance of DNA fragments.

This is because the sequencing instrument itself imposes
an arbitrary limit on the total number of reads collected
(e.g., 25 million reads per run on an Illumina MiSeq),
and therefore only collects data from a proportion of the
molecules present.
There are currently no tools that provide a graphical

user interface available to generate these visualizations
using a compositional approach. Other graphical user
interface tools have been proposed [5, 6], but do not offer
compositional methods. Furthermore, many statistical
models have been proposed to handle differential expres-
sion on a case-by-case basis, making it difficult to choose
a statistical model that performs well on a given dataset.
The compositional approach implemented for HTS data
is generalizable, with minimal adjustable parameters
needed for different experimental applications [1].
We have developed omicplotR as a graphical user

interface for compositional read count tables in the R
language. omicplotR incorporates ALDEx2 [7] to gener-
ate log-ratio transformed Bayesian posterior probabilities
that can be used for differential abundance analysis.
Since the compositional approach is generalizable, it can
be applied to metagenomics [8], 16S rRNA gene sequen-
cing [9, 10], metatranscriptomics [7, 11, 12], and any
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other relative count dataset. Here, we demonstrate usage
with a vaginal metatranscriptome dataset [13] down-
loaded from the European Nucleotide Archive (project
number PRJEB21446).

Implementation
omicplotR is implemented using the Shiny framework in
the R language, deployed on the Bioconductor repository
[14]. The user interface launches in the user’s default
browser, and the current version of omicplotR (1.4.3)
has been tested on macOS version 10.14.5, Windows 7,
and Ubuntu 18.04 with multiple browsers (Safaria for
macOS, Chrome and Firefox for macOS 10.14.5, Win-
dows 7 and Ubuntu 18.04). It is available for download
from the Bioconductor repository (http://bioconductor.
org). The development version is available at https://
github.com/dgiguer/omicplotR. omicplotR currently re-
quires R version > = 3.5.

Getting started
omicplotR launches from an R console with the com-
mand omicplotr.run(). The user-interface accepts a read
count table as input, with the option to include a col-
umn of per feature taxonomic identifiers. Users can also
input GO Slim annotated count tables that are obtained
from the MGNify pipeline [15]. Optionally, metadata de-
scribing each sample can be included for filtering or
visualizing sub-groups when plotting. Two example
datasets are provided which can be accessed under the
Example data tab, one from a vaginal microbiome [10]
and another from a selective growth experiment [16].
The general workflow of omicplotR is shown in Fig. 1.
The vignette provides a tutorial using the example data-
sets, and can be accessed by entering this command in
the R console: browseVignettes(“omicplotR”).

Data transformation
The count table can be transformed by zero-imputation
[17] and a log ratio. This transformation is a compos-
itionally appropriate alternative to many of the read-
depth normalizations used by other differential analysis
packages [8]. Optionally, pseudocounts can be used to
quickly remove zeros for the log ratio [18].

Visualizations
A useful first step in exploring sequencing count data is
visualizing the data with a principal component analysis
(PCA) biplot [2, 19]. This technique can be used to
quickly estimate if there is a strong difference between
experimental conditions. The default PCA biplot is not
coloured, but can be coloured according to metadata
categories. This allows the investigator to explore the
differences within sub-groups to see which variable may
explain the most variance. Both discrete and continuous

variables are permitted as metadata, and the categorical
frequencies are plotted as a histogram. The metadata
can also be used to filter samples by group, allowing the
user to explore sub-groups in the dataset. Removed fea-
tures and samples can be visualized to examine how
many are removed.
If a column of taxonomic identifiers was provided in

the dataset (e.g., in 16S rRNA gene sequencing), the
relative abundance of counts per feature can be dis-
played under the Relative abundance plots tab. Several
options for hierarchical clustering and distance matrix
methods are available by a drop-down menu.
Effect plots are used to visualize differentially abun-

dant features by plotting the size of the difference be-
tween groups against the size of the difference within
groups [3]. The interactive plots allow you to identify
which features are differentially abundant and the uncer-
tainty associated with their relative abundance. omic-
plotR also allows users to input pre-computed ALDEx2
tables for large datasets because the calculations can be
time-consuming for large datasets.
For all visualizations, commented code to reproduce

the plots can be downloaded with the filtering parame-
ters chosen by the user, allowing the user to reproduce,
report and adjust their visualizations.

Results and discussion
To illustrate a use-case of omicplotR, we demonstrate its
utility with a publicly available metatranscriptome data-
set (European Nucleotide Archive project number:
PRJEB21446). The GO slim annotation counts table was
downloaded from MGNify [15], as well as the metadata
from the paper [13]. The sample metadata was parsed
into an acceptable format using code described in the
Additional file 1.
The counts table and metadata can be imported into

omicplotR by choosing “Select data” and “Select meta-
data” respectively. The investigator must check the box
indicating the GO slim format. Viewing the data on this
page by selecting “Check data” ensures that the data is
in the correct format.
A coloured PCA biplot can be generated according to

metadata (shown in Additional file 1: Figure S1). A
histogram is generated to indicate the number of each
variable present when metadata is present.
Exploring the data with exploratory PCA biplots shows a

large separation on the first component, driven by the state
of bacterial vaginosis (BV). This suggests that there is a
strong and consistent difference between samples positive
and negative for BV, and warrants further investigation. If
there was no strong separation between experimental con-
ditions when coloured by experimental condition, it would
likely indicate no real difference between the experimental
conditions. Using the PCA biplot function in omicplotR is
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a quick way to determine whether a difference exists be-
tween conditions, and can provide an estimate of how
strong the difference(s) may be.
Lastly, effect size plots were generated (Additional

file 1: Figure S2). omicplotR incorporates the ALDEx2
R package, and allows investigators to compare
groups for differential abundance (expression, usage,
etc...). In this case, an effect plot was generated to
compare samples that were positive or negative for
bacterial vaginosis. Investigators can interact with this
plot by hovering their mouse over a point to visualize
the distribution of effect sizes for a given feature.
This allows for quickly interpreting the difference
within groups, as well as the difference between
groups, useful for evaluating borderline cases of

differential expression. Differences driven by outliers
can be easily detected with this visualization. For ex-
ample, the GO:0051538 number corresponds to a re-
duction of the “iron-sulfur cluster binding” function
in the BV negative group. In future releases, we will
add statistical tests such as analysis of similarities and
permutational analysis of variance [20] for testing the
difference between groups in a statistical manner.
In the development version, we implemented an option

to download datasets from the EBI MGnify database using
an accession number, allowing the user to easily import
publicly available datasets. More visualizations are available
in omicplotR depending on the dataset, and use-cases are
described in detail in the vignette. For example, omicplotR
allows visualization of the relative abundance of taxa and

Fig. 1 Workflow of omicplotR. The data input requires samples as columns, features by rows, whereas the metadata input descriptors as columns
and samples by row. Count tables can be filtered to remove samples or features with low counts. After filtering, zero-imputation and a log-ratio
transform is applied to the counts. A principal component analysis (PCA) biplot is typically the first exploratory visualization used. Several other
plots are available to visualize differences between samples, features, and experimental conditions. Visualizing which features and samples have
been removed by filtering is also possible. Plots are stylized representations of plots that can be generated by omicplotR
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hierarchical clustering for 16S rRNA gene sequencing
datasets.
Using data downloaded directly from MGNify, the in-

vestigator can visualize the relative abundance of fea-
tures by GO Slim annotation. The functions are
separated into biological categories, and are plotted as a
stripchart. Similar to the PCA biplots, each sample can
be coloured according to metadata to explore the differ-
ences between groups, and experimental conditions.

Conclusions
There is growing awareness of the compositional nature
of high-throughput sequencing data. However, there is
currently no graphical-user interface available that en-
ables this approach for researchers without scripting
experience. omicplotR is available as a Bioconductor
package to facilitate analysis and exploration of omic
data using compositionally appropriate methods. No
scripting knowledge is required to use this tool. Repro-
ducibility and fine-tuning of visualizations is achieved
using commented downloadable scripts. omicplotR is
capable of visualizations typically used in exploratory
pipelines for differential abundance analysis. The
generalizability of the compositional approach allows
this tool to be applied to 16S rRNA gene sequencing,
metagenomics, metatranscriptomics, and most other
relative datasets in the format of count data.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-019-3174-x.

Additional file 1: Figure S1. Coloured principal components analysis
(PCA) biplot. Figure S2. Interactive effect plot.
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