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Abstract

Objective: Charcot-Marie-Tooth disease (CMT) is a clinically and genetically

heterogeneous group of inherited neuropathies. Mutations in more than 90

genes have been implicated in CMT; however, the mutational spectrum of

CMT in Chinese population remains obscure. This study aims to provide a

comprehensive overview of the frequency of mutations in Taiwanese patients

with CMT and look for genotype-phenotype correlations. Methods: Mutational

analyses were performed on 427 unrelated Taiwanese patients with CMT by

polymorphic microsatellite markers analysis or real-time fluorescent PCR for

PMP22 duplication, Sanger sequencing for GJB1 mutations, and targeted

sequencing covering 124 genes causing or relevant to inherited neuropathies.

We also correlated the genotypes with the phenotypic features, such as age at

disease onset and ulnar motor nerve conduction velocity. Results: Pathogenic

mutations were identified in 312 patients (73.1%; 312/427), including 208

patients with a PMP22 duplication, 40 patients with a GJB1 mutation, and 64

patients with a mutation in one of other 18 CMT genes. A confirmed molecular

diagnosis was achieved in 84.4% (266/315) of the patients with demyelinating

CMT and 41.1% (46/112) of the patients with axonal CMT. Mutations in MPZ,

MFN2, or NEFL are the most frequent disease causes in patients with infantile-

onset CMT (≤2 years), while PMP22 duplications and mutations in GJB1,

MFN2, or MPZ are the frequent causes among patients with childhood- or ado-

lescence-onset CMT (3–9 years). Interpretation: This study provides a geno-

type-phenotype landscape of CMT in Taiwan and highlights the unique

spectrum of CMT genes frequencies among patients of Chinese origin.
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Introduction

Charcot-Marie-Tooth disease (CMT), also known as

hereditary motor and sensory neuropathy, is a clinically

and genetically heterogeneous group of inherited neu-

ropathies characterized by progressive distal muscle atro-

phy and weakness, distal sensory loss, foot deformities,

and depressed tendon reflexes.1,2 It is one of the most

common inherited neurological disorders with a preva-

lence of approximately one in 2500 individuals.3,4 There

were several kinds of CMT classification from historical

perspectives.5 In clinical practice, one widely used classifi-

cation is dichotomizing CMT into demyelinating and

axonal forms using the median or ulnar motor nerve con-

duction velocity (MNCV) with a cut-off value of 38 m/

sec.6 Actually, most patients categorized into demyelinat-

ing CMT group have dysmyelination due to the genetic

defect.7,8 Sometimes, patients with CMT having an upper

limb MNCV between 25 and 45 m/sec are classified as

intermediate CMT.9 CMT can also be categorized by the

inheritance pattern and electrophysiological features.1

CMT patients mostly are inherited in autosomal domi-

nant manner (CMT1 for the demyelinating forms and

CMT2 for the axonal forms), in autosomal recessive man-

ner (CMT4) or in X-linked manner (CMTX).

To date, mutations in more than 90 genes have been

implicated in CMT,10,11 and only a few of the genes, such

as PMP22, GJB1, MFN2, and MPZ, account for a signifi-

cant percentage of CMT cases when mutated.12–15 It is

still not fully clear about the contributions of other

CMT-related genes, especially those in which mutations

have just identified in one or two families or sporadic

cases in past few years. Although a number of studies

have investigated the frequencies and spectrum of muta-

tions in one or some particular genes in CMT patients of

different ethnicities, only a few provided a comprehensive

landscape of the mutation spectrum and frequencies of

multiple genes. Most of the studies were performed in

Caucasian cohorts with CMT12–16 and two studies were

conducted in the Japanese population.17,18 Except for a

small-scale study investigating 82 Chinese patients with

CMT,19 no extensive mutational analysis has been per-

formed in CMT patients of Han Chinese populations yet.

To fill this knowledge gap and increase the understand-

ing of rare CMT subtypes, we assessed 427 unrelated Tai-

wanese CMT patients of Han Chinese origin for known

CMT-related genes using traditional methods and next-

generation sequencing (NGS) techniques. Clinical and

neurophysiological features of these CMT patients were

also analyzed. The aim of this study is to provide a com-

prehensive overview of the spectrum and frequencies of

mutations in Taiwanese patients with CMT and look for

genotype-phenotype correlations.

Subjects and Methods

Patient cohort

Between 1996 and 2018, 427 index patients with CMT

were consecutively recruited from the Neurology Clinics

of Taipei Veterans General Hospital. The diagnosis and

classification of CMT were based on the clinical manifes-

tations, family history and the electrophysiological fea-

tures.1 During this period, there were 81 unrelated

patients with clinical presentations and genetic mutations

compatible with the diagnostic guideline of hereditary

neuropathy with liability to pressure palsies (HNPP).20

Eighty of them carried a PMP22 deletion and one patient

harbored the PMP22 p.C42R mutation that had been

reported previously.21 Although HNPP is traditionally

categorized as a subtype of CMT, we did not include the

81 patients in the present study because of the discrepant

phenotypes between HNPP and other CMT subtypes.

Nerve conduction studies were performed by standard

techniques utilizing a Medelec MS25 electromyograph

(Mistro, Surrey, U.K.) with surface electrode stimulations

and recordings. Distal and proximal motor latencies and

compound muscle action potential amplitudes were

recorded from the median, ulnar, peroneal, and tibial

nerves. Sensory nerve action potential amplitudes and dis-

tal latencies were recorded from median, ulnar, and sural

nerves. MNCV was calculated by standard techniques.

Forearm ulnar MNCV with a cutoff value of 38 m/sec

was used to distinguish between demyelinating and axo-

nal CMT.6

We further categorized the patients into four groups

according to the age at disease onset: infancy (≤2 years),

childhood/adolescence (3–19 years), early adulthood (20–
39 years) and late adulthood (≥40 years). All the patients

were of Han Chinese descent. To investigate the relation-

ship between genotype and electrophysiological features,

the patients were also divided into four groups according

to their forearm ulnar MNCV: (1) MNCV ≤15 m/sec, (2)

MNCV between 15 and 25 m/sec, (3) MNCV between 25

and 38 m/sec, and (4) MNCV >38 m/sec.

Written informed consent was obtained from all of the

participants or their parents on behalf of those who were

younger than 18 years. This study was approved by the

Institutional Review Board of Taipei Veterans General

Hospital.

Molecular genetic analysis

In patients with demyelinating CMT, we first investigated

PMP22 duplication by polymorphic microsatellite markers

analysis or real-time fluorescent PCR,22,23 and then

screened for mutations in GJB1 (RefSeq NM_000109764)
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by direct nucleotide sequencing. In patients with axonal

CMT, we first sequenced GJB1 because of its small size and

a proportion of patients with GJB1 mutations having a

forearm ulnar NCV above 38 m/sec. For most of the

patients without PMP22 duplication and GJB1 mutations,

further mutational analysis was performed by utilizing a

high-throughput targeted NGS panel for detecting muta-

tions in other CMT-related genes. For a minor group of the

patients recruited before 2014, the mutation analyses were

conducted by direct nucleotide sequencing of PMP22

(RefSeq NM_000304.3), MPZ (RefSeq NM_000530.5),

MFN2 (RefSeq NM_014874.3), NEFL (RefSeq

NM_006158.4), AARS (RefSeq NM_001605.2), HSPB1

(RefSeq NM_001540.5), and GDAP1 (RefSrq

NM_018972.3) as employed in our previous studies.21,24–26

The targeted NGS panel covering the coding exons of

124 genes associated with inherited neuropathies

(Table S1) was designed by using NimbleGen Design

website (http://www.nimblegen.com/products/nimblede

sign/). The NimbleGen SeqCap EZ Choice Library system

(Roche NimbleGen, Madison, WI) was used to enrich the

targeted regions. The enriched samples were sequenced

using the HiSeq2000 platform (Illumina, San Diego, CA)

with a paired-end 100bp protocol. All sequenced reads

were mapped to the Human Genome version 19 (hg19/

GRCh37). The BaseSpace pipeline (https://basespace.illu

mina.com/) and the Illumina VariantStudio software

(http://variantstudio.software.illumina.com/) were used

for variant calling and annotation. After annotation, only

rare nonsynonymous variants with minor allele frequen-

cies lesser than 0.1% for dominant CMT and 1% for

recessive CMT disease genes in the Taiwan Biobank

(https://taiwanview.twbiobank.org.tw/index), which con-

tains whole genome sequences of 1517 Taiwanese healthy

controls, were taken for further analysis. Sanger sequenc-

ing was performed to confirm the potentially pathogenic

variants.

Bioinformatics analyses

Previously reported pathogenic mutations were confirmed

by literature reviews and querying the Inherited Neuropa-

thy Variant Browser (http://hihg.med.miami.edu/code/

http/cmt/public_html/index.html#/) and the Human Gene

Mutation Database Professional (https://portal.biobase-

international.com/hgmd/pro). To evaluate the pathogenic-

ity of the novel variants, we surveyed the variants in the

genome Aggregation Database (gnomAD; http://gnomad.b

roadinstitute.org).27 The novel and potential pathogenic

variants were further checked among another 500 neuro-

logically healthy individuals of Han Chinese origin. Segre-

gation analysis was also done in those patients whose

family members were available.

The pathogenicity of these variants were predicted in

silico by Mutation Taster (http://www.mutationtaster.

org),28 PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/

),29 combined annotation dependent depletion (CADD)

(http://cadd.gs.washington.edu),30 and SIFT (http://sift.jc

vi.org/).31 The UniProt website (http://www.uniprot.org)

was used to evaluate evolutionary conservation of the

mutated amino acid by aligning amino-acid sequences of

the orthologues from several species.32

Statistical analyses

Descriptive statistics were performed, and the data were

represented as mean � standard deviation (SD) for age

of disease onset and ulnar MNCV. The undetectable

nerve conduction parameters were excluded from mean

and SD analyses. Statistical analysis was performed with

the statistical software package SPSS for Windows (ver-

sion 19.0; SPSS, Inc., Chicago, IL). A P < 0.05 was

defined as statistically significant.

Results

Characteristics of study participants

Among the 427 unrelated CMT patients, 248 are male

and 179 are female. The average age of disease onset was

23.8 � 17.4 (range 1–72) years. Three hundred fifteen

patients (73.8%) had demyelinating CMT and 112

patients (26.2%) had an axonal polyneuropathy. Family

history of CMT was present in 58.6% of patients, in

whom 48.6%, 7.3%, and 2.7% of cases were inherited in

an autosomal dominant, X-linked, and autosomal reces-

sive manner, respectively.

Distribution of CMT subtypes

We identified the pathogenic mutations in 312 patients

(73.1%; 312/427), including 208 patients with a PMP22

duplication, 40 patients with a GJB1 mutation, and 64

patients with a mutation in one of other 18 CMT-related

genes (Table 1). Up to 84.4% (266/315) of the patients

with demyelinating CMT and 41.1% (46/112) of the

patients with axonal CMT were confirmed to harbor a

mutation responsible for their diseases. Among the 427

unrelated CMT patients, the most common genetic causes

for the CMT patients were PMP22 duplication (48.7%),

GJB1 mutations (9.4%), MPZ mutations (3.3%), MFN2

mutations (3.3%), and NEFL mutations (1.9%) (Fig. 1A

and Table 1). These five groups of mutations accounted

for 91.0% of all the CMT patients who had achieved a

molecular diagnosis and 66.5% of all the CMT patients in

the present cohort. Each of the remaining CMT-related
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genes (i.e. PMP22, SH3TC2, EGR2, GNB4, LITAF, GARS,

HSPB1, GDAP1, IGHMBP2, BSCL2, KIF5A, LRSAM1,

AARS, TFG, and MORC2) accounted for <1% of total

CMT patients each (Fig. 1B and Table 1).

Among the demyelinating CMT patients, the most

common genetic causes are PMP22 duplication (66%),

GJB1 mutations (10.2%), and MPZ mutations (3.8%)

(Table 1). These three groups of mutations accounted for

94.7% (252/266) of the demyelinating CMT patients

whose mutations had been identified in the present study.

Among the axonal CMT patients, the most common

genetic causes are MFN2 mutations (12.5%), GJB1 muta-

tions (7.1%), and NEFL mutations (5.4%). These three

groups of mutations accounted for 60.9% (28/46) of the

axonal CMT patients with an identified mutation.

Among the 81 pathogenic mutations in CMT-related

genes identified in the present study, 12 mutations were

novel (Table 2). These novel mutations are p.F51C,

p.Y135D, p.R183F and p.T185Pfs*11 in GJB1,

p.[L139del];[L1048P] in SH3TC2, p.N98Y in NEFL,

p.E356K in EGR2, p.R280P in MFN2, p.[L40R];[R595W]

and p.[A786Pfs*45];[711+1G>C] in IGHMBP2, p.Q764*
in KIF5A, and p.E680* in LRSAM1. The following points

support the pathogenicity of these mutations (Table 3).

First, all the 12 novel mutations are absent in the 500

healthy Taiwanese controls. Among these mutations, the

nine dominant CMT mutations were also absent from

both gnomAD and Taiwan Biobank database containing

genome sequence of 1517 healthy Taiwanese. The three

recessively inherited CMT with compound heterozygous

Table 1. Distribution of CMT subtypes and associated clinical/neurophysiological features.

Genetic subtype N

% in patients with

demyelinating or axonal CMT

% in all patients

with CMT

Age of disease onset,

year (mean � SD)

Ulnar MNCV, m/sec

(mean � SD)

Demyelinating

CMT

315 100 73.8

PMP22

duplication

208 66.0 48.7 26.5 � 17.3 (3–64) 19.1 � 5.4 (5.7–36.8)

GJB1 32 10.2 7.5 19.8 � 8.5 (7–40) 32.8 � 2.9 (25.0–38.0)

Male 29 19.6 � 8.8 (7–40) 32.5 � 2.9 (25.0–38.0)

Female 3 21.7 � 5.7 (17–28) 35.5 � 0.4 (35.0–35.8)

MPZ 12 3.8 2.8 15.5 � 16.5 (1–42) 15.0 � 6.9 (5.1–33.3)

PMP221 4 1.3 0.9 13.5 � 8.7 (1–20) 11.3 � 8.0 (5.9–20.5)

SH3TC2 3 1.0 0.7 26.3 � 20.6 (5–46) 26.9 � 1.8 (25.5–28.9)

NEFL 2 0.6 0.5 1.5 � 0.7 (1–2) 21.1 � 1.5 (20.0–22.1)

EGR2 2 0.6 0.5 1.0 4.7

GNB4 2 0.6 0.5 25.0 � 28.3 (5–45) 25.6 � 9.5 (18.8–32.3)

LITAF 1 0.3 0.2 40.0 31.0

Unknown 49 15.6 11.5 23.2 � 16.7 (1–64) 25.9 � 8.8 (8.1–43.0)

Axonal CMT 112 100 26.2

MFN2 14 12.5 3.3 13.7 � 17.6 (1–72) 47.6 � 9.2 (30.0–61.4)

GJB1 8 7.1 1.9 25.9 � 15.1 (7–45) 45.3 � 6.4 (38.3–57.0)

Male 4 26.8 � 18.6 (7–45) 44.4 � 5.6 (38.3–51.4)

Female 4 24.7 � 12.9 (10–34) 46.2 � 7.8 (38.9–57.0)

NEFL 6 5.4 1.4 17.2 � 14.7 (1–40) 41.9 � 4.3 (36.8–48.7)

MPZ 2 1.8 0.5 53.0 � 11.3 (45–61) 51.0 � 1.4 (50.0–52.0)

GARS 2 1.8 0.5 1.5 � 0.7 (1–2) 43.5

HSPB1 2 1.8 0.5 33.5 � 19.1 (20–47) 39.5 � 7.1 (34.5–44.5)

GDAP1 2 1.8 0.5 1.5 � 0.7 (1–2) 48.1

IGHMBP2 2 1.8 0.5 11.5 � 14.8 (1–22) 38.8 � 16.8 (26.9–50.6)

BSCL2 2 1.8 0.5 14.5 � 13.4 (5–24) 48.5 � 4.9 (45.0–52.0)

KIF5A 2 1.8 0.5 15.0 � 7.1 (10–20) 48.1 � 1.6 (47.0–49.2)

LRSAM1 1 0.9 0.2 65.0 63.2

AARS 1 0.9 0.2 30.0 42.1

TFG 1 0.9 0.2 32.0 63.5

MORC2 1 0.9 0.2 1.0 33.0

Unknown 66 58.9 15.5 26.5 � 19.4 (1–70) 47.7 � 7.6 (32.0–62.8)

CMT, Charcot-Marie-Tooth disease; SD, standard deviation; MNCV, motor nerve conduction velocities.
1PMP22 point mutation.
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mutations were absent or present in a very low allele fre-

quency in the both databases. Second, these mutations

alter the evolutionarily conserved amino acid residues of

the mutated proteins and their pathogenicity was sup-

ported by in silico prediction, using Mutation Taster,

PolyPhen-2, CADD score, and SIFT programs. Third, six

of the novel missense mutations change an amino acid

residue where a different missense change determined to

be pathogenic has been seen before, including GJB1

p.F51C,33 GJB1 p.Y135D,34 GJB1 p.R183F,35,36 NEFL

p.N98Y,37,38 MFN2 p.R280P,39 and IGHMBP2 p.R595W40.

Five of these novel mutations lead to protein length

changes, such as GJB1 p.T185Pfs*11, SH3TC2 L139del,

LRSAM1 p.E680*, IGHMBP2 p.A786Pfs*45, and KIF5A

p.Q764*.

Genotype-phenotype correlations

To investigate the genotype-phenotype relationship within

this CMT cohort, we analyzed the mutation spectrum in

patients with different age of disease onset and in patients

with different scopes of ulnar MNCV.

The age of disease onset was ascertained in 352 patients

by self-reporting the time when the parents noticed any

motor abnormalities in their children, or when the

patients themselves began to be aware of their motor or

sensory dysfunctions. Most of the CMT patients (43.8%)

have a childhood- or adolescence-onset disease (3–
19 years), around one-fourth (26.4%) with an early adult-

hood-onset disease (20–39 years), another one-fourth

(23.3%) with a late adulthood-onset disease (≥40 years),

and only 6.5% of them have disease onset at infancy

(≤2 years). In the patients with infantile-onset CMT,

mutations in MPZ, MFN2, or NEFL are the most frequent

disease causes and mutations in each gene account for

13.0% of the infantile-onset patients (Fig. 2). Among the

patients with childhood- or adolescence-onset CMT,

PMP22 duplications (42.2%) and mutations in GJB1

(12.3%), MFN2 (5.8%), or MPZ (3.2%) are the frequent

causes of diseases. In the early adulthood-onset CMT

group, PMP22 duplications (40.9%) and GJB1 mutations

(18.3%) are the major etiologies. For CMT patients whose

first symptom occurs during late adulthood, PMP22

duplication was the most common cause (51.2%), fol-

lowed by MPZ mutations (6.1%), and then GJB1 muta-

tions (3.7%).

When the CMT patients were grouped based on their

ulnar MNCV, 14.6% of the CMT patients have MNCV

≤15 m/sec, 36.2% have MNCV between 15 and 25 m/sec,

24.6% have MNCV between 25 and 38 m/sec, and 24.6%

have MNCV faster than 38 m/sec. In the CMT patients

with ulnar MNCV ≤15 m/sec, PMP22 duplications and

Figure 1. Genetic spectrum of CMT among the Han Chinese population in Taiwan. (A) The common genetic causes, and (B) rare genetic causes

in our CMT cohort. CMT, Charcot-Marie-Tooth disease; dup., duplication.
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MPZ mutations are the two major causes and account for

67.9% and 15.1% of the patients, respectively (Fig. 3).

Among the patients with ulnar MNCV between 15 and

25 m/sec, PMP22 duplication is the sole major etiology,

accounting for 84% of the cases. In the patients with

ulnar MNCV between 25 and 38 m/sec, the major etiolo-

gies are GJB1 mutations (32.6%) and PMP22 duplications

(23.6%). In patients with ulnar MNCV faster than 38 m/

sec, the major disease causes are mutations in MFN2

(12.4%), GJB1 (9.0%), and NEFL (4.5%).

Discussion

This study demonstrated the genotypic and phenotypic

profiles of CMT in a Han Chinese population by investi-

gating 427 unrelated CMT patients in Taiwan. Eighty-one

different pathogenic mutations were identified in 312

patients (73.1%; 312/427), including 208 patients with a

PMP22 duplication, 40 patients with a GJB1 mutation,

and 64 patients with a mutation in one of other 18 CMT

genes. Among the pathogenic mutations identified in the

present study, 12 were novel. This is the first large-scale

genetic research on CMT in the Chinese population. In

comparison with similar studies in Caucasian or Japanese

populations (Table 4), the present study revealed that

CMT in Taiwanese population had a higher proportion

of PMP22 duplication and relatively more common NEFL

mutations. The present study also showed the prioritiza-

tion of genetic testing for CMT patients of Han Chinese

descent by using the age of disease onset and ulnar

MNCV to separate the patients into specific subgroups.

In our CMT cohort, the most frequent genetic causes

are PMP22 duplication and mutations in GJB1, MPZ, and

MFN2. These genetic alterations comprised 88.5% of cases

with positive molecular diagnosis in our study, which is

in accordance with the findings in the U.S., U.K., and

Germany studies.12–14 The PMP22 duplication accounted

for 66.7% of the genetically confirmed CMT cases and

was responsible for 48.7% of all CMT patients in our

cohort. The proportion of PMP22 duplication among

Table 2. Pathogenic mutations identified in Taiwanese CMT patients.

Gene Ever reported in literatures or public database1 Novel

Demyelinating CMT

GJB1 p.M1I, p.L6S, p.I20F, p.S26L, p.S49Y, p.V91M, p.I101Rfs*8,

p.L144del, p.F153L, p.Y160C, p.R164Q, p.C173Y,

p.R183C, p.R183H, p.E186K p.A197V, p.R215P,

p.F51C, p.Y135D p.R183F, p.T185Pfs*11

MPZ p.V58D, p.S63F, p.T65I, p.R98C, p.R98H, p. G123S,

p.D128G, p.I135M, p.Q187Pfs*63, p.S233fs

–

PMP22 p.Q86*, p.I104Ffs*7, c.319+G>A –

SH3TC2 p.W245*, p.E657K p.[L139del];[L1048P]

NEFL p.N98S p.N98Y

EGR2 p.E412K p.E356K

GNB4 p.G53D, p.K89E –

LITAF p.G112S –

Axonal CMT

MFN2 p.R94Q, p.T159_Q162del, p.L218P, p.L233V,

p.R280H, p.R364W, p.R400P, p.L724P, p.W740C, p.E744M

p.R280P

GJB1 p.S138G, p.M162L, p.R220*, p.D278V, c.-459C>T, c.-529T>C

NEFL p.P8R, p.P22S, p.E396K –

MPZ p.T124M –

GARS p.D146Y, p.M238R –

HSPB1 p.R127L, p.T164A –

GDAP1 p.[H256R];[R282H], p.[H256R];[118-1G>C] –

IGHMBP2 – p.[L40R];[R595W], p.[A786Pfs*45];[711+1G>C],

BSCL2 p.N88S, p.S90L –

KIF5A p.R280C p.Q764*

LRSAM1 – p.E680*

AARS p.N71Y –

TFG p.G269V –

MORC2 p.S25L –

CMT, Charcot-Marie-Tooth disease.
1Previously reported pathogenic mutations were confirmed by literature reviews and querying the Inherited Neuropathy Variant Browser (http://

hihg.med.miami.edu/code/http/cmt/public_html/index.html#/) and the Human Gene Mutation Database Professional (https://portal.biobase-interna

tional.com/hgmd/pro).
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CMT patients in Taiwan was higher than that in U.S.,

U.K., Germany, Spain and Japan (15–42%).12–18 This

phenomenon may come from ethnic differences. All

patients that carried PMP22 duplications had ulnar

MNCV <38 m/sec (Fig. 3E). The age of clinical onset var-

ied from 3 to 64 years, and sporadic cases accounted for

24.2% of them. Therefore, onset at late adulthood and

lack of family history did not exclude the possibility of

CMT1A.

Mutations in GJB1 were the second most frequent

cause of CMT and accounted for 12.8% of CMT patients

with a confirmed pathogenic mutation and 9.4% of over-

all CMT patients in the study. The majority of the

patients carrying a GJB1 mutation were male. The ulnar

MNCV of the patients with GJB1 mutations varied

widely, ranging from 25 to 57 m/sec and crossing the

usually used cutoff value 38 m/sec for distinguishing

between demyelinating and axonal CMT. Several muta-

tions in GJB1 affected more than two index patients,

including four cases with p.S26L, four with p.R164Q, and

three with p.V91M, suggesting the possibility of multiple

founders of GJB1 mutations in our cohort. Because GJB1

mutations are not rare in CMT and the coding region of

GJB1 is not large, in our lab, we do traditional GJB1

sequencing for CMT patients without PMP22 duplication

before considering the NGS targeted sequencing panel.

Among the patients with axonal CMT, we identified 37

distinct mutations in 14 genes. In Caucasian populations,

GJB1, MFN2, and MPZ were the most common mutated

genes in axonal CMT.12–14 However, our data suggested

that MFN2, GJB1, and NEFL genes are the three main

disease genes for axonal CMT in our population. The

Figure 2. The mutational distribution of CMT-related genes based on age at disease onset. The frequencies of genetic diagnoses in patients with

(A) infantile-onset CMT (≤2 years), (B) childhood- or adolescence-onset CMT (3–19 years), (C) early adulthood-onset CMT (20–39 years), and (D)

late adulthood-onset CMT (≥40 years). CMT, Charcot-Marie-Tooth disease; dup., duplication.
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Figure 3. The mutational distribution of CMT-related genes based on ulnar MNCV. The frequencies of genetic diagnoses in the CMT patients

with (A) ulnar MNCV ≤15 m/sec, (B) ulnar MNCV between 15 and 25 m/sec, (C) ulnar MNCV between 25 and 38 m/sec, and (D) ulnar MNCV

faster than 38 m/sec. (E) The distribution of ulnar MNCV in relation to each CMT-related genes. CMT, Charcot-Marie-Tooth disease; dup.,

duplication.
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relatively high percentage of NEFL mutations in our

CMT cohort (1.9%) with recurrent mutations of p.P8R

and p.E396K (two and three pedigrees, respectively) sug-

gested population-specific founder effects of the NEFL

mutations in Chinese population. NEFL mutations were

also relatively prevalent in Japan, accounting for 0.9%

and 2.3% of total CMT patients in two Japanese

cohorts.17,18

After a series of mutational analyses, including PMP22

dosage assay, Sanger sequencing, and targeted sequencing

with NGS technique, a causal mutation could be identi-

fied in 73.1% of the patients in our CMT cohort. The

diagnostic yield rate of demyelinating CMT was higher

than that of axonal CMT (84.4% vs. 41.1%). Moreover,

we identified 81 different mutations in 19 CMT-related

genes in our CMT cohort, and point mutations in 15

genes accounted for <1% of the patients each. The num-

ber of the mutated genes identified in this study was

higher than similar studies. Possible explanations include

the ethnic factor, different inclusion criteria, and different

mutation-detecting strategies.

Forearm MNCV is a popular parameter to categorize

CMT into demyelinating or axonal subtype. Moreover,

Saporta et al.12 analyzed data from 787 CMT patients and

proposed a genetic testing strategy for CMT based on differ-

ent ranges of ulnar MNCV. In this study, we utilized ulnar

MNCV and age of disease onset to separate the patients with

identified mutations into 16 subgroups (Table S2). This

information can help predict the genotype according to the

MNCV and age of onset and provide a guide for the prioriti-

zation of genetic testing for CMT patients of Han Chinese

origin. We acknowledged that clinical assessment scales like

Charcot-Marie-Tooth neuropathy score41 and Charcot-

Marie-Tooth disease Pediatric Scale42 could provide pre-

cious information toward phenotype-genotype correlations;

unfortunately, we have just started to use them to evaluate

our CMT patients and only a limited number of our patients

had such data. We also acknowledged that additional func-

tional experiments are needed to confirm the causal roles of

the 12 novel mutations observed in the present CMT cohort.

Although their pathogenicity can be partially supported by

in silico analysis and population data, there are still some

degrees of uncertainty.

In conclusion, this study presents the mutational spec-

trum and genotype-phenotype correlations of 427 patients

of Han Chinese descent in Taiwan. There is substantial

difference in the frequencies of PMP22 duplication and

NEFL mutations between Taiwanese population and Cau-

casian populations. These findings broaden the spectrum

of mutations causing CMT and are useful for optimal

strategies of mutational analysis and genetic counseling of

CMT for patients of Han Chinese origin.

Table 4. Comparison of genetic distribution of CMT subtypes in diverse populations.

Gene

This study U.S.A.12 U.K.13 Germany14 Spain16 Japan17 International (INC)15

N = 427 N = 787 (48 HNPP) N = 425 N = 589 (83 HNPP) N = 438 N = 354 N = 1652 (36 HNPP)

PMP22 dup 48.7% 36.9% 39.5% 35.6% 42.0% 15.0% 37.2%

GJB1 9.4% 10.2% 10.8% 9.3% 12.8% 7.1% 6.5%

MPZ 3.3% 5.7% 3.1% 4.2% 4.3% 7.1% 4.1%

MFN2 3.3% 2.7% 2.8% 2.4% 1.4% 4.0% 4.2%

NEFL 1.9% 0.5% 0.5% 0.0% 0.9% 2.3% 0.66%

PMP221 0.9% 0.6% 1.4% 0.8% 0.5% 2.8% 1.0%

SH3TC2 0.7% 0.4% 1.2% 0.0% 6.2% n.t. 0.85%

EGR2 0.5% 0.1% 0.0% 0.0% 0.0% 0.3% 0.06%

GARS 0.5% 0.4% n.t. 0.4% 0.9% 0.3% 0.12%

HSPB1 0.5% n.t. 0.5% 0.0% 1.6% n.t. 0.42%

GDAP1 0.5% 0.6% 0.5% 0.0% 9.6% 0.3% 0.54%

IGHMBP2 0.5% n.t. n.t. n.t. n.t. n.t. n.t.

BSCL2 0.5% n.t. 0.2% n.t. 0.0% n.t. 0.30%

KIF5A 0.5% n.t. n.t. n.t. n.t. n.t. n.t.

GNB4 0.5% n.t. n.t. n.t. n.t. n.t. n.t.

LITAF 0.2% 0.6% 0.9% 0.0% 0.0% 0.0% 0.12%

LRSAM1 0.2% n.t. n.t. n.t. 0.0% n.t. n.t.

AARS 0.2% n.t. n.t. n.t. 0.0% n.t. n.t.

TFG 0.2% n.t. n.t. n.t. n.t. n.t. n.t.

MORC2 0.2% n.t. n.t. n.t. n.t. n.t. n.t.

Unknown 26.9% 33.0% 37.4% 42.4% 16.7% 59.6% 39.6%

CMT, Charcot-Marie-Tooth disease; HNPP, Hereditary neuropathy with liability to pressure palsy; dup, duplication; n.t., not tested.
1PMP22 point mutation.
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