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Pan-urologic cancer genomic subtypes that
transcend tissue of origin
Fengju Chen1, Yiqun Zhang1, Dominick Bossé2, Aly-Khan A. Lalani 2, A. Ari Hakimi3, James J. Hsieh 4,

Toni K. Choueiri2, Don L. Gibbons5,6, Michael Ittmann7 & Chad J. Creighton1,8,9,10

Urologic cancers include cancers of the bladder, kidney, prostate, and testes, with common

molecular features spanning different types. Here, we show that 1954 urologic cancers can

be classified into nine major genomic subtypes, on the basis of multidimensional and

comprehensive molecular characterization (including DNA methylation and copy number,

and RNA and protein expression). Tissue dominant effects are first removed computationally

in order to define these subtypes, which reveal common processes—reflecting in part tumor

microenvironmental influences—driving cellular behavior across tumor lineages. Six of the

subtypes feature a mixture of represented cancer types as defined by tissue or cell of origin.

Differences in patient survival and in the manifestation of specific pathways—including

hypoxia, metabolism, NRF2-ARE, Hippo, and immune checkpoint—can further distinguish the

subtypes. Immune checkpoint markers and molecular signatures of macrophages and

T cell infiltrates are relatively high within distinct subsets of each cancer type studied.

The pan-urologic cancer genomic subtypes would facilitate information sharing involving

therapeutic implications between tissue-oriented domains.
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Cancers are typically classified based on the tissue site of
origin, coupled with observable histologic features,
with subsequent therapeutic decisions then following the

histologic classification. At the molecular level, cancers associated
with a given tissue type may represent a heterogeneous group of
diseases. Unsupervised approaches to subtyping human tumors
on the basis of molecular profiling data provide a tool in adding
to our understanding of the genomic landscape of cancer.
Genomic subtypes of cancer as defined by molecular analysis may
represent disease subsets being driven by distinct pathways
and processes. Data platforms for messenger RNA (mRNA)
expression in particular have been used extensively in the
molecular classification of cancers1, with other data platforms
representing other molecular features (e.g., DNA methylation,
DNA copy alteration) also being used as these became widely
available. Over the last few years, The Cancer Genome Atlas
(TCGA) carried out a number of genomic studies each focusing
on an individual cancer type2–6, where classification or subtyping
based on multiple molecular data platforms was typically
performed. Pan-cancer analysis by TCGA of an initial set of 12
different cancer types (including bladder, kidney clear cell, and
prostate) found cancers to segregate largely on the basis of cancer
type as defined by tissue of origin, with one notable exception
being the “squamous” genomic subtype that spanned multiple
cancer types, including lung squamous, head and neck squamous,
and a subset of bladder cancers7.

Urologic cancers include cancers of the bladder, kidney,
prostate and testes, all relatively common, with prostate cancer,
for example, being the most common cancer in American men8.
Urologic oncology is an established specialty within medical
practice, as urologic cancers arise within the urinary tract of men
and women and reproductive organs of men. Urologists have
a key role in the diagnosis and treatment of all of these
malignancies. However, in terms of treatment, it is well
understood that the different cancer types as defined by tissue of
origin would represent quite distinct diseases from each other on
the basis of several factors, including histologic appearance, the
presence of distinct driver mutations, varying clinical course,
and different responses to systemic therapy. Within kidney
cancers, the three major types—clear cell, papillary, and
chromophobe—are quite distinct from each other at the
histologic and molecular levels and are understood to represent
truly different cancer types that warrant individual study9, 10. At
the same time, common oncogenic processes are thought to
underlie cancers of different types11, 12.

TCGA genomic data sets—which include DNA, RNA, protein,
and epigenetic data—provide a major opportunity to develop an
integrated picture of commonalities, differences and emergent
themes across tumor lineages13. With the recent conclusion of the
data generation phase of TCGA, systematic analyses of the entire
TCGA urologic cancer cohort would allow for comparisons and
contrasts to be made between the different diseases represented.
Many of the molecular differences that exist among urologic
cancer types—including bladder, prostate, kidney clear cell,
kidney chromophobe, kidney papillary, and testicular—could
arise from their respective cells and tissues of origin7, 10.
Understanding the mechanisms driving cancer subtypes is
challenged by these lineage-specific molecular signals14, 15.
Although cancer sample profiles would tend to segregate by
associated tissue type, part of these tissue dominant effects can be
removed computationally to elucidate common processes driving
cellular behavior across tumor lineages.

In this study, we define nine pan-cancer molecular-based
subtypes, which would transcend tumor lineage across the nearly
2000 urologic cancer cases profiled by TCGA. Data involving
multiple molecular profiling platforms are used to both define

these subtypes, and to characterize them in terms of associated
pathways. Common processes and pathways shared across mul-
tiple cancer types include hypoxia, metabolism, NRF2-ARE,
Hippo, and immune checkpoint. Subtype-specific patterns as
initially observed in TCGA are also observable in an external and
independent expression data set of urologic cancers.

Results
TCGA cohort of urologic cancers. TCGA collected a total of
1954 primary urologic cancer specimens (Supplementary Data 1),
for which data were generated for at least one of the following
molecular platforms: whole exome sequencing, DNA copy by
SNP array, RNA-seq, microRNA-seq, DNA methylation array,
and Reverse Phase Protein Array (RPPA). These specimens were
divided between six TCGA-sponsored projects, each focusing on
a specific cancer type: BLCA, corresponding to the study
of bladder urothelial carcinoma (n= 412 cases); KICH,
corresponding to kidney chromophobe (n= 66); KIRC,
corresponding to kidney renal clear cell carcinoma (n= 537);
KIRP, corresponding to kidney renal papillary cell carcinoma
(n= 291); PRAD, corresponding to prostate adenocarcinoma
(n= 498); and TGCT, corresponding to testicular germ cell
tumors (n= 150).

As expected7, 10, 14, 16, molecular analysis of urologic cancers
revealed widespread differences associated with tissue-of-origin
and with histology, which suggested the need for an alternative
analytic approach to identify molecular patterns that would
transcend tumor lineage. Analysis of a single marker, e.g., PDCD1
mRNA (PD1, expressed in lymphocytes), across cancer types can
serve to illustrate our overall approach to molecular subtyping
(Fig. 1a). While absolute PDCD1 expression on average varies
considerably between cancer types (Fig. 1a, left), normalizing the
expression within each cancer type would serve to subtract out
such differences (Fig. 1a, right). Overall differences between
cancer types would include any differences that would be specific
to the cell- or tissue-of-origin or to the tissue microenvironment.
Molecular features that show interesting patterns of variation
within two or more cancer types can serve to identify cancer
subsets that would span tumor lineage. In an unsupervised
clustering analysis, based on the aggregated patterns of 2000
genes most variable across the cancer types, the urologic cancer
cases were separated almost exclusively on the basis of cancer
type when using mRNA data based on absolute expression
(Fig. 1b), but were separated into subtypes that were not defined
by cancer type when using expression data that were normalized
within cancer type (Fig. 1c).

Multiplatform analysis uncovers nine major genomic subtypes.
Using established analytical approaches7, 10, 16, the 1954 TCGA
urologic cancer cases were subtyped according to each of the data
platforms for DNA methylation, DNA copy alteration, mRNA
expression, miRNA expression, and protein expression, with the
various subtype calls for each sample then being consolidated to
define multiplatform-based molecular subtypes (Table 1). For
methylation and expression data sets, values were first centered
within each cancer type, in order that tumor lineage-specific
markers would not drive the subtyping patterns. Each individual
platform was used to define seven different subtypes of urologic
cancer (Supplementary Fig. 1a and b), consistent with previous
analyses that indicated on the order of three to seven molecular
subtypes existed within a given cancer type5, 10, 17, and where
solutions greater than seven for any given platform showed no
appreciable increase in the levels of consensus (Supplementary
Fig. 1a). To provide an integrated level of assessment of urologic
cancer molecular-based subtypes, subtype calls made by the
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different molecular platforms were combined by a “cluster of
clusters analysis” (COCA)7, 10, 16 approach (Fig. 2a) to form nine
different integrated subtypes (Supplementary Fig. 1c–e), referred
to here as “c1” through “c9”.

The nine genomic subtypes of TCGA urologic cancers (Table 1)
included: a c1 subtype (n= 216 cases) of predominantly BLCA,
KICH, and KIRP cases (comprising 56%, 23%, and 19% of these
cases, respectively); a c2 subtype (n= 333) of predominantly
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Fig. 1 Alternative classification approach defines cancer subtypes that transcend tissue-of-origin. a Expression patterns of a representative marker (PDCD1)
that distinguishes between both cancer type and genomic subtype across TCGA BLCA, KICH, KIRC, KIRP, PRAD, and TGCT cancers. Left, PDCD1
expression, with values normalized using a “standard” approach (s.d. from the median across all cancers); right, PDCD1 expression, with values normalized
within each cancer type (giving the values within each cancer type shown a median of zero and s.d. of one). Box plots represent 5%, 25%, 50%, 75%, and
95%. b Unsupervised hierarchical clustering of TCGA urologic cancer cases (n= 1944), where expression values have standard normalization. The top
2000 most variable genes in the pan-urologic cancer data set were used in the clustering. TCGA project designation and pan-urologic cancer genomic
subtype are indicated (described in Fig. 2). c Similar to part b, but using expression values normalized within each cancer type. The same genes from part b
were used to carry out the clustering in part c. TCGA project designation: BLCA, Bladder Urothelial Carcinoma; KICH, Kidney Chromophobe; KIRC, Kidney
renal clear cell carcinoma; KIRP, Kidney renal papillary cell carcinoma; PRAD, Prostate adenocarcinoma; TGCT, Testicular Germ Cell Tumors
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PRAD and BLCA cases (59% and 28%, respectively); a c3 subtype
(n= 106) of predominantly KIRP cases (72%), with additional
KIRC, PRAD, and KICH cases (10%, 8%, and 6%, respectively); a
c4 subtype (n= 250) of predominantly PRAD and TGCT cases
(70% and 28%, respectively); a c5 subtype (n= 269)
of predominantly KIRC and KIRP cases (62% and 38%,
respectively); a c6 subtype (n= 268) of KIRC, KIRP, and
TGCT cases (52%, 18%, and 30%, respectively); a
c7 subtype (n= 202) of predominantly KIRC cases (98%);
a c8 subtype (n= 192) of predominantly BLCA cases (99%);
and a c9 subtype (n= 115) of PRAD cases (100%).

The above genomic subtypes were each characterized by
widespread molecular patterns. For each of the COCA-based
subtypes, the top 100 genes most differentially expressed in the
given subtype vs. the rest of the tumors were identified (Fig. 2b
and Supplementary Data 2), where the differential patterns
could be observed to span cancer type. Specific gene categories
were over-represented within the top differentially expressed
genes (Supplementary Fig. 2a), including extracellular- and
immune-related genes being highly expressed in c5, c8, and
c9 subtypes, cell cycle-related genes being highly expressed in
c5 subtype, and tight junction-related genes being highly
expressed in c6 and c9 subtypes. Specific proteins and

microRNAs could distinguish between the genomic subtypes
(Supplementary Fig. 2b and c, respectively). Differential DNA
methylation patterns could also distinguish between the subtypes
(Fig. 2a and c and Supplementary Data 3), where one DNA
methylation platform-specific subtype in particular spanned
subtypes c1, c2, and c3. Patterns of alteration involving p16,
including epigenetic silencing and copy loss—often associated
with DNA hypermethylation10—differed by subtype (Fig. 2c).
Significant anti-correlations between methylation and expression
for a subset of genes could be identified (Supplementary Data 4).
Within most cancer types, total DNA methylation differed
according to genomic subtype (Fig. 2c and d); TGCT tumors
of subtype c4 in particular showed widespread DNA hypomethy-
lation as compared to the other cancers. Subtypes associated with
high methylation included c5 (KIRC/KIRP), c8 (BLCA), and
PRAD.c4 (c4 cases of PRAD type). DNA copy alteration subtypes
were distinguishable on the basis of cancer type rather than
genomic subtype (Fig. 2a).

Associations with cancer type-specific subtypes. The nine
genomic subtypes made across the entire TCGA urologic cancer
cohort showed high concordance with other histologic or

Table 1 Pan-urologic cancer genomic subtypes

Subtype
(n cases)

Associated cancer
types (%)

Associated external subtypes Survival association Associated pathways

c1 (216) BLCA (56),
KICH (23),
KIRP (19)

BLCA:c1 luminal,
BLCA:papillary histology,
KIRP:type 1 histology

BLCA:better,
KIRP:worse

fatty acid synthesis

c2 (333) BLCA (28),
PRAD (59),
KIRP (6),
KIRC (5)

PRAD:ERG fusion,
PRAD:iCluster2,
PRAD:meth. cluster3,
BLCA:c2 lum. immune

BLCA:worse,
PRAD:worse

PTEN loss (PRAD), Hippo

c3 (106) KIRP (72),
KIRC (10),
PRAD (8),
KICH (6)

KIRP:type 1 histology,
RCC:P-e.1b

intermediate

c4 (253) PRAD (70),
TGCT (28)

PRAD:ETV fusion/high,
PRAD:iCluster1,
PRAD:meth. cluster2,
TGCT:seminoma

PRAD:worse SPOP and FOXA1 mutations (PRAD), KIT
and KRAS mutations (TGCT), Hippo,
immune checkpoint

c5 (269) KIRC (62),
KIRP (38)

RCC:CC-e.3,
RCC:P-e.2,
RCC:P.CIMP-e,
RCC:hypermeth.,
KIRP:type 2 histology

KIRC:worse,
KIRP:worse

fatty acid synthesis, pentose phosphate,
Hypoxia, EMT, NRF2-ARE, Hippo, immune
checkpoint

c6 (268) KIRC (52),
KIRP (18),
TGCT (30)

RCC:CC-e.2,
RCC:mixed,
TGCT:non-seminoma

KIRC:better,
KIRP:better

c7 (202) KIRC (98) RCC:CC-e.1,
RCC:CC-e.2

intermediate

c8 (192) BLCA (99) PanCan12:squamous,
BLCA:c2 lum. immune
BLCA:c3 basal
BLCA:c4 immune undiff.

worse Hypoxia, EMT, NRF2-ARE, immune
checkpoint

c9 (115) PRAD (100) PRAD:ERG fusion,
PRAD:iCluster3,
PRAD:meth. cluster4

better Hypoxia, EMT, NRF2-ARE, immune
checkpoint

BLCA TCGA bladder project, KICH TCGA chromophobe renal project, KIRC TCGA clear cell renal project, KIRP TCGA papillary renal project PRAD TCGA prostate project, TGCT TCGA testicular project,
RCC, renal cell carcinoma (KICH, KIRC, KIRP). Associated external subtypes described in Fig. 3
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genomic subtype designations, which had been previously called
for a subset of these cases in studies focusing on a specific cancer
type5, 10, 17 (Fig. 3a). The TCGA KIRC (kidney clear cell) cases
were primarily subdivided between the c5, c6, and c7 subtypes,
which largely corresponded respectively to the “CC-e.3”,

“CC-e.2”, and “CC-e.1” genomic subtypes previously associated
with KIRC10. The TCGA KIRP (kidney papillary) cases were
primarily subdivided between the c1, c3, c5, and c6 subtypes, with
c5 associating with Type 2 histology and related “P-e.2” KIRP
genomic subtype, and the other subtypes associating with Type 1
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histology and related KIRP genomic subtypes. The TCGA BLCA
(bladder) cases were primarily subdivided between the c1, c2, and
c8 subtypes, with c1 associating with papillary histology and
“luminal” expression-based subtype and with c8 associating with
a “squamous” pan-cancer subtype7. The TCGA PRAD (prostate)
cases were primarily subdivided between the c2, c4, and
c9 subtypes, which largely corresponded respectively to the
“iCluster2/DNA methylation3”, “iCluster1/DNA methylation2”,
and “iCluster3/DNA methylation4” genomic subtypes previously
associated with PRAD5. TCGA TGCT (testicular) cases were
subdivided between c4 and c6, representing “seminoma” (69 out
of 70 TGCT.c4 cases) and “non-seminoma” (62 out of 80 TGCT.
c6 cases) histology, respectively.

For several cancer types, significant overall differences in
patient survival were associated with pan-urologic genomic
subtype (Fig. 3b–e). Within KIRC cases, c5, c7, and c6
were associated with worse, intermediate, and better survival,
respectively (Fig. 3b, P< 1E-10 by Log-rank test). Within KIRP
cases, c5 (associated with papillary type 2 histology) showed the
worst patient survival (similar to that observed for KIRC.c5
cases), c6 showed the best patient outcome (5-year survival
probability greater than 95%), and c3 and c1 showed intermediate
survival (Fig. 3c, overall P< 0.0001). Within BLCA cases, c1
(associated with bladder papillary histology) was associated with
better outcome, while c2 and c8 were associated with worse
outcome (Fig. 3d, overall P= 0.001). Prostate cancer cases in an
external gene expression profiling data set18 (for which long-term
follow-up and disease-specific survival data were available) were
assigned one of the three PRAD-associated subtypes, on the basis
of overall similarities in expression patterns; c9 cases showed
overall better survival as compared to the other cases (Fig. 3e,
overall P< 1E-6). In line with observations made in our previous
study10, widespread DNA hypermethylation patterns (as defined
using Fig. 2c) were associated with poor patient outcomes for
both KIRC and KIRP cohorts, but with no similar association
being observed for BLCA cohort (Supplementary Fig. 3, there
being insufficient data for evaluating the other cancer types).

Within cancer types, somatic mutation or copy alteration of
specific genes could be strongly associated with pan-urologic
cancer genomic subtype. For example, PRAD cases harboring
ERG fusion or PTEN loss were predominantly associated with
c2 subtype, and PRAD cases harboring SPOP or FOXA1 mutation
were associated with c4 subtype (Fig. 3a). TGCT.c4 cases were
associated with KIT and KRAS mutations (Supplementary Fig. 4),
while TGCT.c6 cases were associated with KRAS amplification.
MET mutations were primarily associated with KIRP.c6 cases
(Supplementary Fig. 4). Across the entire urologic cancer cohort,
assessment of genes within pathways demonstrated a high
number of alterations involving chromatin modification (41.6%
of cases), p53 (34.8%), SWI/SNF complex (33.0%), Receptor

Tyrosine Kinase (RTK, 24.0%), PI3K/AKT/mTOR (21.1%),
NRF2-ARE (7.3%), and Hippo signaling (3.4%) (Fig. 4a). The
above pathways were found to be altered in different ways
involving different genes in different cancer types (Fig. 4b and
Supplementary Fig. 4). Most of the individual gene-level
alterations surveyed were predominantly represented within a
single-cancer type, though for some genes, e.g., TP53 and NF2,
mutated cases spanned multiple-cancer types (Fig. 4b).

Distinctive biology and pathway differences across subtypes.
Analysis of gene expression data (with values normalized within
cancer type) indicated differential activation of specific pathways
between disease subsets. Previously, aggressive kidney clear cells
cancers (associated here with our c5 pan-urologic subtype)
demonstrated evidence of a metabolic shift, involving
downregulation of genes involved in the TCA cycle, decreased
AMPK protein levels, upregulation of the pentose phosphate
pathway, and increased acetyl-CoA carboxylase protein3.
Likewise, our c5 pan-urologic cancer genomic subtype—com-
prised of more aggressive cancers for both kidney clear cell
and kidney papillary—showed the above patterns (Fig. 5a and
Supplementary Fig. 4a, the kidney cancer cases of c6, representing
less aggressive disease, being used as a comparison). TGCT of
c6 subtype (associated with non-seminoma histology) also
showed evidence for metabolic-related differences as compared to
other TGCT, similar to those observed for c5 subtype (Fig. 5a
and Supplementary Fig. 4a). Other metabolic pathway-related
differences involved differences between c8 and c1—both
enriched for BLCA cases, with c1 showing evidence for higher
levels of fatty acid synthesis pathway (Fig. 5a and Supplementary
Fig. 5a).

Clear cell kidney cancer is closely associated with VHL gene
mutations that lead to stabilization of hypoxia-inducible factors
such as HIF-1α3. We examined whether hypoxia-associated
expression patterns may be relevant across other cancer subsets in
addition to clear cell kidney. Analysis of relevant gene transcrip-
tion signatures19–22 suggested higher activation of hypoxia,
epithelial-mesenchymal transition (EMT), MAP Kinase,
NRF2-ARE, and cyclin D1 within the c5, c8, and c9 subtypes in
particular (Fig. 5b and Supplementary Figure 5b). The coordinate
manifestation of the above pathways and processes suggests
previously identified inter-relationships, e.g., that of hypoxia
regulating EMT23, 24, MAP Kinase pathway25, and NRF2-ARE
pathway26. As Hippo pathway was previously associated with
aggressive kidney papillary cancer10, we examined transcriptional
targets of Yap1, and found these to show elevated expression
across c2, c4, and c5 pan-urologic genomic subtypes (Fig. 5c and
Supplementary Fig. 5c).

Fig. 2 Genomic subtypes of urologic cancers in TCGA cohort by analysis of multiple data platforms. a Integration of subtype classifications from five “omic”
data platforms identified nine major groups of urologic cancers being represented in TCGA (n= 1954 cases, including bladder, renal clear cell, renal
chromophobe, renal papillary, prostate, and testicular cancers). The heat map displays the subtypes defined independently by DNA methylation (pink),
Chromosomal copy alteration (black), mRNA expression (red), microRNA expression (blue), and protein (RPPA) expression (green); each row in this heat
map denotes membership within a specific subtype defined by the indicated platform. Data points are colored according to pan-urologic subtype (Table 1).
b Differential gene expression patterns (values normalized within each main cancer type), representing a set of genes that help to distinguish between the
nine subtypes (for each subtype, showing the top 100 genes most differentially in the given subtype vs. the rest of the tumors). c DNA methylation
patterns, with heat map representing the top 2000 genomic loci with the highest variability in DNA methylation patterns across tumors (using a data set
with methylation values being normalized within each main cancer type), and with corresponding p16 silencing and CDKN2A copy loss indicated, along
with a plot of total DNA methylation index values (fraction of methylation probes with beta>0.3) for each sample. d By TCGA project and genomic subtype
(where projects were highly represented within a given subtype), total DNA methylation index values. Box plots represent 5%, 25%, 50%, 75%, and 95%.
P-values by Mann-Whitney U-test. See also Supplementary Fig. 2 and Supplementary Data 1 through 4
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Differential immune profiles across pan-urologic subtypes.
Analysis of gene expression data (with values normalized within
cancer type) indicated the presence of tumor-associated
macrophages and of immune response pathways within disease
subsets. In one approach, we examined the top 900 differential
mRNAs (from Fig. 2b) in normal tissues, using a public

expression data set from the Fantom consortium of 889 profiles
representing various human cell and tissue specimens27.
Inter-correlations between Fantom profiles and TCGA profiles
suggested the presence of immune response-related cells
and macrophages—along with mesenchymal-associated patterns
—within genomic subtypes c4, c5, c8, and c9 (Fig. 6a). In another
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Fig. 3 Pan-urologic cancer genomic subtypes have analogs of previously described cancer type-specific histological or molecular subtypes. a Significance of
overlap between the pan-urologic cancer subtype assignments made in the present study (rows), with histological- or molecular-based subtype
assignments (columns, also compiled in Supplementary Data 1) made previously 5, 6, 10 for a subset of cases. P-values by one-sided Fisher’s exact test. RCC,
renal cell carcinoma (KICH, KIRC, KIRP). “meth.” and “hypermeth.”, DNA methylation and DNA hyper-methylation, respectively. “lum. immune” and
“immune undiff.”, BLCA mRNA-based subtypes luminal immune and immune undifferentiated, respectively17. PanCan12:squamous associated with
“squamous” pan-cancer subtype by Hoadley et al.7 bWithin TCGA KIRC cases, differences in patient overall survival among the pan-urologic c5, c6, and c7
genomic subtypes. c Within TCGA KIRP cases, differences in patient overall survival among the pan-urologic c1, c3, c5, and c6 genomic subtypes. dWithin
TCGA BLCA cases, differences in patient overall survival among the pan-urologic c1, c2, and c8 genomic subtypes. e Within an independent cohort of
prostate cancer cases18, classified according to our pan-urologic genomic subtypes, differences in patient overall survival among the c2, c4, and
c9 subtypes. For parts b-e, P-values by log-rank test. See also Supplementary Fig. 3
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approach, we went on to survey the TCGA urologic cancer cases
for expression of genes involved in immune checkpoint pathways
(Fig. 6b). Pan-urologic c5, c8, and c9 subtypes all had relatively
higher expression of several genes representing potential targets
for immunotherapy10, 28–33, including PDCD1 (PD1), CD247
(CD3), CD274 (PDL1), PDCD1LG2 (PDL2), CTLA4 (CD152),
TNFRSF9 (CD137), TNFRSF4 (CD134), and TLR9. Analysis of
gene expression signatures from Bindea et al.34 suggested that
levels of immune cell infiltrates were also highest in c5, c8, and
c9 subtypes (Fig. 6b and Supplementary Fig. 6). TGCT.c4 cases
also showed high expression of immunotherapy target genes and
T-cell infiltration, consistent with lymphocytic infiltration being
associated with seminoma tumors, while PRAD.c4 cases showed

levels of immune response that were intermediate between those
of PRAD.c9 and of PRAD.c2 cases.

The above associations were consistent with a consensus model
of tumor-associated macrophage (TAM) roles in the tumor
microenvironment35, involving specific genes differentially
expressed within c5, c8, or c9 subtypes in particular (Fig. 6c).
In this model, monocytes are recruited to the tumor
microenvironment by, for example, CSF1 and CCL2. Cytokines
secreted by the tumor then have the potential to polarize
recruited monocytes into TAMs, which play vital roles in tissue
remodeling, invasion and metastasis, immune suppression, and
EMT. Immune suppression may involve the immune checkpoint
pathway (Fig. 6d), whereby c5, c8, and c9 subtypes tend to show
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high expression of ligands such as PDL1 and PDL2 (presumably
expressed by cancer cells), as well as high expression of the
corresponding receptors associated with T cells.

TCGA patterns observable in an external expression data set.
The pan-urologic genomic subtype associations, as observed in
TCGA data sets, were also examined in an external multi-cancer
expression data set. From the Expression Project for Oncology
(expO) data set (Gene Expression Omnibus accession number
GSE2109), mRNA expression profiles of bladder cancer (n= 31
cases), prostate cancer (n= 83), clear cell renal cell carcinoma
(n= 205), and papillary renal cell carcinoma (n= 22) were
obtained. Within each cancer type, genes in the expO data set
were first normalized, and then each expO tumor profile was
classified by pan-urologic genomic subtype as defined by TCGA
data (Fig. 7a), where the top set of 900 mRNAs distinguishing
between our nine COCA subtypes (Fig. 2b) was used as the
classifier (see Methods). In the same manner as carried out for
TCGA data sets (Figs. 5 and 6), expO expression profiles were
also scored for mRNA signatures related to immune cells,
metabolism, hypoxia, EMT, NRF2-ARE, and Yap1 (Fig. 7b),
where similar overall trends of pathway-level differences between
subtypes as originally observed in TCGA cohort could also be
observed in the expO cohort.

Discussion
Our results provide a framework by which we can relate disease
subsets of different urologic cancer types to each other. We
identified nine major genomic subtypes of urologic cancer present
in TCGA cohort (Table 1), including six subtypes which featured
a mixture of represented cancer types as defined by tissue or cell
of origin. Bladder cancer, clear cell kidney cancer, and prostate
cancer cases were each primarily subdivided among three
different subtypes (with bladder cases of papillary histology
separating out from other bladder cases); papillary kidney cancer
cases were subdivided among four subtypes (involving differences
between type 1 and type 2 histology, for example); and testicular
cancer cases were divided into two subtypes (on the basis of
seminoma vs. non-seminoma histology). Molecular differences
related to a number of pathways or processes—including
metabolism, hypoxia, EMT, NRF2-ARE, Hippo, tumor-associated
macrophages, and immune suppression—could further
distinguish the subtypes, with, for example, a genomic subtype
consisting of the most aggressive subsets of both clear cell and
papillary kidney cancers showing deregulation for all of the
above.

Molecular subtypes previously identified within each of the
individual tissue-based cancer types examined here are also found
within our pan-urologic cancer genomic subtypes, with, for
example, the three groups of kidney clear cell cases identified in
the present study corresponding to the three subtypes of more
aggressive, less aggressive, and intermediate diseases identified

previously3, 10. This would offer opportunities to apply what has
been previously learned about one subtype to another subtype,
where both subtypes may originate from different tissues or
cells of origin but yet associate with each other as part of a
pan-urologic subtype. By this approach, for example, the
aggressive subset of kidney papillary cancer was found here to
have similar pathway-level associations as those of aggressive
kidney clear cell cancer. For individual cancer types, specific
pathways may be most relevant and would not necessarily span
multiple tumor lineages, e.g., androgen signaling in prostate
cancer. At the same time, given the various analytical methods
and data platforms that might be used to classify cancers, the
strong overlaps between previous classifications and those made
by our study (Fig. 2a) would serve to better define the precise
number of biologically distinct, global molecular subtypes that
may be found within each cancer type.

Commonalities observed within a number of our pan-urologic
subtypes would appear to have more to do with microenviron-
mental influences (e.g., cancer-associated macrophages and
lymphocytes, altered metabolism, hypoxia, cellular stress), than
with somatic mutation patterns. While the six major cancer types
examined here share the same anatomic region, the tissues
and cells composing each organ would be quite different. The
different tissue-based cancer types would not necessarily share
common etiologic factors or mutational signatures36 (e.g., such as
lung and bladder cancers both involving cigarette smoking), nor
would a common “driver” mutation be found within the different
cancer types comprising a pan-urologic subtype. Somatic DNA
alterations may serve to help drive microenvironmental-
associated phenomenon, e.g., VHL mutations in clear cell kid-
ney promoting expression of hypoxia-inducible genes. However,
gene mutation information alone may be insufficient to predict
pathway-level alterations and microenvironmental influences as
identified through integrated molecular analysis. Across the c4,
c5, c8, and c9 pan-urologic subtype in particular, global
differences suggested the involvement of macrophages and
lymphocytes. Current understanding implicates macrophages in
complex and diverse tumor-promoting roles within the tumor
microenvironment, and tumor-associated macrophages would
represent a potential therapeutic target35. Our results would
suggest an intriguing hypothesis, whereby specific subtypes of
urologic cancers (including subsets of kidney, bladder, testicular,
and prostate cancers) would be most responsive to such a
therapeutic approach.

The molecular differences represented by our pan-urologic
genomic subtypes would point to pathways spanning tumor
lineage and having implications for targeted therapy, including
NRF2-ARE37, Hippo38, metabolism39, and immune
checkpoint40, 41. Reprogramming of energy metabolism and
evading immune destruction in particular have gained attention
in recent years as general hallmarks of cancer12. Interestingly,
when diverse cancer types are analyzed in terms of absolute levels

Fig. 5 Differentially active pathways across pan-urologic genomic subtypes. a Across the genomic subtypes, heat map represents differential aggregate
expression of mRNAs associated with metabolism pathways, along with expression of metabolism-related proteins (using values normalized within cancer
type; gray, no data; GNG, gluconeogenesis). Pathway diagram represents core metabolic pathways, with differential expression patterns comparing tumors
in groups c5, c8, or TGCT.c9 (subset c9 of TGCT type) with tumors in groups RCC.c6 (c6 of KIRC or KICH type), c1, or TGCT.c4, respectively (red,
significantly higher in c5/c8/TGCT.c9). b Across the genomic subtypes, heat map represents differential aggregate expression of mRNAs associated with
hypoxia, EMT, MAPK, NRF2-ARE, and cyclin D1 pathways, along with a proteomic MAPK signature (using values normalized within cancer type). Pathway
diagrams represent relationships between the above pathways23–26, 53, 54, with differential expression patterns comparing tumors in groups c5, c8, or c9
with tumors in groups c7, c1, or c2, respectively (red, significantly higher in c5/c8/c9). c Across the genomic subtypes, heat map represents differential
mRNA and protein features involved with Hippo pathway. Pathway diagrams represent differential expression patterns comparing tumors in groups c2, c4,
or c5 with tumors in groups c9, c9, or c6, respectively (red, significantly higher in c2/c4/c5). See also Supplementary Fig. 5

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00289-x

10 NATURE COMMUNICATIONS |8:  199 |DOI: 10.1038/s41467-017-00289-x |www.nature.com/naturecommunications

www.nature.com/naturecommunications


of gene expression, kidney clear cell cancers as a group score
among the highest in terms of immune cell infiltrates and
checkpoint pathway expression10, 16, 40. However, within several
other cancer types—including prostate, bladder, and kidney
papillary cancers—there is clearly a range in scores observable
across a set of cases40. In our study, the changes underlying the

immune infiltrates and related pathways involve coordinate
expression of large numbers of genes, indicative of the associated
processes being systematically at work within distinct subsets of
each cancer type analyzed. At what levels would the relative
differential patterns observed denote real therapeutic responses in
the clinical setting remains to be determined, though previous
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Fig. 6 Macrophage- and immune checkpoint-related differences across pan-urologic genomic subtypes. a Average expression similarity correlation
(Pearson’s t-statistic, based on genes in Fig. 1b; pink, positive or similar; blue, negative or dissimilar) between TCGA urologic cancer subtypes (columns)
and fantom27 cell types or tissues in selected categories (rows): “immune,” immune cell types or blood or related tissues; “CNS,” related to central nervous
system including brain; “macrophage,” “mesenchymal,” “epithelial,” denoting fantom profiles for samples including one of these keywords. Results shown
for both fantom human and fantom mouse data sets. For “immune,” “macrophage”, and “mesenchymal” correlations, differences are significant with P< 1E-
10 (t-test), when comparing c5 with c6 cases, comparing c8 with c1 cases, and comparing c9 with c2 cases. b Heat maps of differential expression, for
genes encoding immunotherapeutic targets (top panels) and for gene expression-based signatures34 of immune cell infiltrates (bottom panels), across
TCGA urologic cancer subtypes (expression values normalized within cancer type). TREG cells regulatory T cells, TGD cells T gamma delta cells, Tcm cells T
central memory cells, Tem cells T effector memory cells, Tfh cells T follicular helper cells, NK cells natural killer cells, DC dendritic cells, iDC immature DCs,
aDC activated DCs, P-DC plasmacytoid DCs, APM1/APM2 antigen presentation on MHC class I/class II, respectively. c Diagram of tumor-associated
macrophage roles in the tumor microenvironment35, with differential expression patterns represented, comparing tumors in groups c5, c8, or c9 with
tumors in groups c6, c1, or c2, respectively (red, significantly higher in c5/c8/c9). P-values by t-test. d Diagram of immune checkpoint pathway (featuring
interactions between T cells and antigen-presenting cells, including tumor cells), with differential expression patterns represented, comparing tumors in
groups c5, c8, or c9 with tumors in groups c6, c1, or c2, respectively (red, significantly higher in c5/c8/c9). P-values by t-test. See also Supplementary
Fig. 6
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studies indicate that immunogenicity of tumors cannot be
explained by mutation load or neo-antigen load, and that
expression-based markers should also be considered in the clin-
ical setting16, 40, 42. The metabolic shift identified here as being
associated with poor prognosis kidney cancers represents a
Warburg-like metabolic phenotype (increased glycolysis,
decreased AMPK, glutamine-dependent lipogenesis)3; such
aspects of cancer cell metabolism are critical for tumor main-
tenance in this disease subset, yet are less likely to be relevant in

normal cells, representing yet another potential therapeutic
target39.

Methods
TCGA data sets. Multiplatform genomics data sets were generated by TCGA
Research Network (http://cancergenome.nih.gov/). Cancer molecular profiling
data were generated through informed consent as part of previously published
studies2–6 and analyzed in accordance with each original study’s data use guidelines
and restrictions. In total, 1954 urologic cancer cases assayed on at least one
molecular profiling platform (RNA sequencing, DNA methylation arrays, miRNA

TCGA
pan-UC

External GSE2109 expression dataset (n=341)a

H
igher

Low
er

c2 c3 c8 c9c5c4 c6 c7
G

ene expression
(norm

. w
ithin cancer type)S

ub
ty

pe
-s

pe
ci

fic
 g

en
es

c1

BLCA KIRC
KIRP PRAD

B cells (Bindea)

Pentose phosphate

HYPOXIA

YAP1 targets

†

‡

‡

‡

†

*

*

*
*

*

*

*

**

**‡
*

Significant for
c5/c8/c9 vs

c1/c2/c6

Significant for
c5 vs c6

Significant for
c5/c8/c9 vs

c1/c2/c7

Significant for
c2/c4/c5 vs

c6/c9

b

c1

c2

c3

c4

c5

c6

c7

c8

c9

CD274 - PDL1
PDCD1 - PD1
CD247 - CD3

PDCD1LG2 - PDL2
CTLA4 - CD152

TNFRSF9 - CD137
TNFRSF4 - CD134

TLR9

T cells (Bindea)

TCA CYCLE

EMT
NRF2/KEAP1

†

Fig. 7 Observation of patterns associated with TCGA pan-urologic genomic subtypes in an external multi-cancer expression profiling data set. a Gene
expression profiles of 341 urologic cancer cases (bladder, prostate, clear cell renal, papillary renal), represented in the Expression Project for Oncology
(expO) (GSE2109) data set, were classified according to TCGA pan-urologic genomic subtype. Expression patterns for the top set of 900 mRNAs
distinguishing between the nine COCA-based TCGA genomic subtypes (from Fig. 2b) are shown for both TCGA and GSE2109 data sets. Genes in the
GSE2109 sample profiles sharing similarity with TCGA pan-urologic subtype-specific signature pattern are highlighted. b In the same manner as carried out
for TCGA data sets (Figs. 5 and 6), expO expression profiles were scored for gene signatures related to immune cells, metabolism, hypoxia, EMT, NRF2-
ARE, and Yap1. As indicated, sample profiles highlighted in red were compared with the sample profiles highlighted in blue (the comparisons being based on
those carried on in Figs. 5 and 6 for TCGA data). P-values by t-test, with P< 0.05 considered as statistically significant. Parts a and b have the same
ordering of expO expression profiles

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00289-x

12 NATURE COMMUNICATIONS |8:  199 |DOI: 10.1038/s41467-017-00289-x |www.nature.com/naturecommunications

http://cancergenome.nih.gov/
www.nature.com/naturecommunications


sequencing, Affymetrix SNP arrays, whole exome sequencing, Reverse Phase
Protein Arrays) were included in the analysis. Somatic mutation calls were
obtained from the publicly available “MC3” TCGA MAF file (https://www.synapse.
org/#!Synapse:syn7214402). All other molecular, clinical and pathological data
are available through the TCGA Data Commons (https://gdc.nci.nih.gov/). For
purposes of unsupervised clustering and downstream correlative analyses, with the
three expression platforms (mRNA, miRNA, protein), values for each gene were
centered to s.d. from the median within each cancer type (BLCA, KICH, KIRC,
KIRP, PRAD, TGCT); for DNA methylation platform, beta values were centered to
the median within each cancer type.

SNP array-based copy number analysis. DNA from each tumor or
germline-derived sample had been previously hybridized by TCGA to Affymetrix
SNP 6.0 arrays3, 43. Significant focal copy number alterations were identified
from segmented data using GISTIC 2.0.22. The Broad Institute’s Firehose
pipeline (http://gdac.broadinstitute.org/) first filtered out normal samples from the
segmented copy-number data by inspecting the TCGA barcodes and then executed
GISTIC (Firehose task version: 140). We calculated copy number-based clusters
for the combined pan-urologic cancer cohorts, using ConsensusClusterPlus
R-package44 to identify clusters in the data using 1000 iterations, 80% sample
resampling from 2 to 15 clusters (k2 to k15) using hierarchical clustering with
Ward as the linkage algorithm and Pearson correlation as the similarity metric,
with an input log2 tumor:normal data set (from Firehose’s “copy by gene”
results table, collapsing values into cytobands). Consistent with what was carried
out for the other platforms, the k= 7 clustering solution was selected for further
investigation. High-level copy gain or copy loss events for individual genes were
inferred using Firehose’s “thresholded by genes” results table (+2 values being
indicative of gains greater than 1–2 copies, −2 values being indicative of near total
copy loss).

Whole exome analysis. Somatic mutation calls were obtained from the
publicly-available “MC3” TCGA MAF file (representing 1769 of the 1954 patients
included in this study, https://www.synapse.org/#!Synapse:syn7214402). This
MC3 set is a re-calling of uniform files from all TCGA projects, with variant calling
using a standardized set of mutation callers. The BAM files used underwent a
standardized local re-alignment to hg19 (Genome Reference Consortium
GRCh37), six calling algorithms were applied, and a number of automated filters
were applied. Variants called by two or more algorithms were used in the study.
For an additional 150 cases not represented in MC3 data set but with exome data
featured in Chen et al.10, variants calls from the Chen study were included in the
present study. Silent mutations (point mutations that would not result in a change
in the amino acid) were not included in the results. Except for FGFR, KIT, and
MET genes, mutations in oncogenes (e.g., KRAS) were represented in figures, if
the mutations occurred in “hotspot” residues as reported by Chang et al.45;
all nonsilent mutations in putative tumor suppressor genes (e.g., TP53) were
represented in figures.

Array-based DNA methylation assay. DNA methylation profiles had been
previously generated by TCGA using either the Illumina Infinium Human-
Methylation450 (HM450) or HumanMethylation27 (HM27) BeadChips (Illumina,
San Diego, CA)3 (n= 1952 urologic cases having methylation data). To correct for
batch effects between data platforms (HM450 vs. HM27), we used the combat
software46.

For the unsupervised clustering analysis, we removed from consideration DNA
methylation probes located on X or Y chromosomes and probes not included on
the HM27 platform. For unsupervised clustering, we selected the top 2000 probes
having the higher average variability (by s.d.) across the six projects (for projects
with both HM450 and HM27 platforms, the centroid mean of the s.d. computed
for each of the two platforms was used), and centered the methylation beta values
to the median within each cancer type (BLCA, KICH, KIRC, KIRP, PRAD, TGCT).
ConsensusClusterPlus R-package44 was used to identify clusters in the data using
1000 iterations, 80% sample resampling from 2 to 15 clusters (k2 to k15) using
hierarchical clustering with Ward as the linkage algorithm and Pearson correlation
as the similarity metric. Consistent with what was carried out for the other
platforms, the k= 7 clustering solution was selected for further investigation.

The DNA methylation level as interrogated by cg13601799 was used for
CDKN2A; as done previously 2–4, 10, a beta value of 0.2 or above was considered
evidence for epigenetic silencing. For each sample, a total DNA methylation index
value was computed as the fraction of methylation probes (out of all HM27 probes)
having beta value>0.3.

Analysis of tumor features by mRNA platform. RNA sequencing data had been
previously generated by TCGA3. Expression of coding genes was quantified for
20,531 features based on the gene models defined in the TCGA Gene Annotation
File (GAF) (https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/
anonymous/other/GAF/GAF_bundle/outputs/). Expression values within each
cancer type (BLCA, KICH, KIRC, KIRP, PRAD, TGCT) were normalized to s.d.
from the median across tumors; other than the analysis in main Fig. 1b, all
downstream analyses using the mRNA expression data were based on the data set

with values normalized within each cancer type. For unsupervised clustering
analysis, we selected the top 2000 most variable genes, according to average s.d.
(using log-transformed expression values) across the six projects. Consensus ward
linkage hierarchical clustering identified k= 2 to k= 15 subtypes, with the stability
of the clustering increasing with increasing k. Consistent with what was carried out
for the other platforms, the k= 7 clustering solution was selected for further
investigation.

We examined an external gene expression profiling data set of prostate cancer
from Nakagawa et al. (GSE10645)18, classifying each external tumor profile by
genomic subtype as defined by TCGA data. As a classifier, the top set of 900
mRNAs distinguishing between the nine COCA subtypes in TCGA was used. For
the three COCA subtypes with high representation of PRAD cases (namely, c2, c4,
and c9), the average centroid for each gene was computed, based on the centered
TCGA expression data matrix (represented in Fig. 2b). Expression values for the
GSE10645 data set, corresponding to the above 900 genes were centered to s.d.
from the median across sample profiles. The correlation between each GSE10645
profile and each TCGA subtype centroid was computed, with the centroid showing
the highest correlation (c2, c4, or c9) used to assign a TCGA-based subtype to the
GSE10645 profile.

MicroRNA analysis. MiRNA sequencing data had been previously generated by
TCGA3, using either the Illumina GAIIx or HiSeq 2000 platforms. To help correct
for batch effects between data platforms (GAIIx vs. HiSeq), we used the combat
software46. Expression values within each cancer type (BLCA, KICH, KIRC, KIRP,
PRAD, TGCT) were normalized to s.d. from the median across tumors. For
unsupervised clustering analysis, we selected the top 500 most variable genes,
according to average s.d. (using log-transformed expression values) across the six
projects (for projects with both HM450 and HM27 platforms, the centroid mean of
the s.d. computed for each of the two platforms was used). ConsensusClusterPlus
R-package44 was used to identify clusters in the data using 1000 iterations, 80%
sample resampling from 2 to 15 clusters (k2 to k15) using hierarchical clustering
with Ward as the linkage algorithm and Pearson correlation as the similarity
metric. Consistent with what was carried out for the other platforms, the k= 7
clustering solution was selected for further investigation.

Reverse phase protein array analysis. RPPA data were previously generated by
TCGA3. Raw data (level 1), SuperCurve nonparameteric model fitting on a single
array (level 2), and loading corrected data (level 3) were deposited at the DCC.
RPPA data were obtained from The Broad Institute’s Firehose pipeline, which
included data for 1570 urologic cancer cases. Expression values within each cancer
type (BLCA, KICH, KIRC, KIRP, PRAD, TGCT) were normalized to s.d. from the
median across tumors. For unsupervised clustering (using all 185 protein features
represented in the data set), ConsensusClusterPlus R-package44 was used to
identify clusters in the data using 1000 iterations, 80% sample resampling from 2 to
15 clusters (k2 to k15) using hierarchical clustering with average linkage algorithm
and Pearson correlation as the similarity metric. Consistent with what was carried
out for the other platforms, the k= 7 clustering solution was selected for further
investigation.

RPPA profiles were also scored for a previously defined47 MAPK signature
(average of phospho-SHC or pSHC, pRAF, pMEK, pERK, pSRK, pYB1, pP38,
pJNK, and pJUN). For computing RPPA-based pathway score, all proteins levels
were first normalized to s.d. from the median within each cancer type.

Multiplatform-based subtype discovery. As described above, urologic cancer
cases were subtyped according to each of the individual data platforms for DNA
methylation, DNA copy alteration, mRNA expression, miRNA expression, and
protein expression. Subtypes defined from each platform were coded into a series of
indicator variables for each subtype, with the matrix of 1 and 0 s then clustered by
a Cluster of Cluster Analysis (COCA)7, 10, 16 to define integrated subtypes. For the
k= 9 COCA subtype solution, we defined the top differential genes associated with
each subtype; we first computed the two-sided t-test for each gene, comparing each
subtype with the rest of the tumors, then selected the top 100 genes with the lowest
P-value for each subtype.

Pathway and immune cell signature analysis. Tumor expression profiles were
scored for gene signatures associated with pathway deregulation essentially as
previously described10, 16, as well as outlined here. To computationally infer the
infiltration level of specific immune cell types using RNA-seq data (Fig. 6b), we
used a set of genes specifically overexpressed in one of 24 immune cell types from
Bindea et al.34. Elsewhere, the Bindea signature scoring has been found to yield
results consistent with those derived from immunohistochemistry (IHC) methods
examining lymphocyte-specific expression patterns within cancer vs. non-cancer
cellular compartments16, 40. For scoring TCGA cancer samples for each of these
immune cell signatures, the average of the gene expression values (transformed
within each cancer type to s.d. from the median) was used. In addition, samples
were scored for expression of Antigen Presentation MHC class I (APM1) genes
(HLA-A/B/C, B2M, TAP1/2, TAPBP) and for Antigen Presentation MHC class II
(APM2) genes.
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The Fantom data sets of gene expression by cell type27 were analyzed using a
previously utilized approach16, also outlined here. Gene expression profiles from
various normal human and mouse tissues27 were obtained from the FANTOM5
data repository (http://fantom.gsc.riken.jp/5/data/); for our study, profiles from
fetal or embryonic human specimens were removed from the analysis. The top 900
differential mRNAs by COCA subtype (Fig. 2b) were examined in both fantom
human and fantom mouse expression data sets. Logged expression values for each
gene in the fantom data set were centered on the median of sample profiles. For
each fantom differential expression profile (genes centered within the fantom data
set), the inter-profile correlation (Pearson’s) was taken with that of each TCGA
urologic cancer differential expression profile (with genes centered within each
TCGA project as described above); for a given set of fantom profiles (e.g., profiles
of the immune group) and a given TCGA pan-urologic genomic subtype (e.g., c1),
the average correlation (represented as a t-statistic) between the fantom and
TCGA profiles was used to represent a summary measure of overall similarity
between the two groups (Fig. 6a). Fantom data set categories for immune-related
or CNS-related profiles were previously defined16; categories for “macrophage”,
“mesenchymal” and “epithelial” were defined based on the name of the sample
profile containing one of the above keywords.

Gene transcription signature scores associated with pathway (e.g., scores for cell
cycle, p53, EMT, NRF2-ARE, hypoxia, KEGG: Glycolysis/Gluconeogenesis, KEGG:
Pentose Phosphate pathway, KEGG: Fatty Acid metabolism, KEGG: TCA Cycle,
and KEGG: Oxidative Phosphorylation) were computed as follows. For each gene
in the TCGA pan-urologic cancer data set (combined BLCA, KICH, KIRC, KIRP,
PRAD, TGCT), expression values within each cancer type were centered on the
median of tumor sample profiles and divided by the s.d. across tumors. For cell
cycle, p53, EMT, NRF2-ARE, hypoxia, and KEGG signatures, the average
expression of the set of genes within a given signature were computed. For cyclin
D1, MAP Kinase, and Yap1 signatures, urologic cancer expression profiles (with
values centered to s.d. within each cancer type) were scored for the above
signatures using our previously described “t-score” metric3 (within each profile, the
t-score was the two-sided t-statistic between the average of the normalized values
for the “up” genes vs. the average of the normalized values for the “down” genes).
Cell cycle genes were from Whitfield et al.48. Gene targets of p53 were from ref49.
Gene transcription signature scores of NRF2-ARE pathway where generated as
described22, on the basis of four different signatures: “Malhotra” signatures50,
which combined expression profiling and Chip-seq of mouse embryonic fibroblasts
(MEFs) with either constitutive nuclear accumulation (Keap1−/−) or depletion
(Nrf2−/−) of Nrf2, including genes downregulated in Nrf2−/− vs. wild-type and Nrf2
bound, and genes upregulated in Keap1−/− vs. wild-type and Nrf2 bound;
“GSE28230,” from Gene Expression Omnibus data set of A549 adenocarcinoma
lung cancer cells with siRNA knockdown of NRF2 (using P< 0.01, fold> 1.5);
“Osburn,” from GSE11287 data set of mouse liver with or without Keap1 knockout
used (P< 0.01, fold >1.5); across the urologic cancer profiles, we normalized the
individual gene signature scores to s.d. from the median across samples, and a
“summary score” for NRF2-ARE pathway was computed as the average of the four
individual normalized signature scores. EMT signature scores were computed as
previously described20, 51 (sum of the normalized values for ZEB1, CDH2, FN1,
FOXC2, GSC, ITGB6,MMP2, MMP3, MMP9, SNAI1, SNAI2, SOX10, TWIST1, and
VIM, minus the sum of the normalized values for CDH1, DSP, OCLN). Hypoxia
signature was based on the set of canonical HIF1A targets from Harris19. Cyclin D1
and MAPK signatures were from Creighton21. Gene transcription signature scores
of Yap1 pathway where generated as described here, on the basis of three different
signatures: from GSE32567, genes differentially expressed (P< 0.01, fold> 1.4)
with knockdown of Yap1 in hepatocellular carcinoma cell line (SK-Hep1); from
GSE49406, genes differentially expressed (P< 0.01, fold > 1.4) with knockdown of
Yap1 in HEK293 cells; from GSE7700, genes differentially expressed (P< 0.01, fold
> 1.4) with knockdown of Yap1 in normal breast luminal cell; across the urologic
cancer profiles, we normalized the individual Yap1 gene signature scores to s.d.
from the median across samples, and a “summary score” for Yap1 targets was
computed as the average of the three individual normalized signature scores.

Analysis of external multi-cancer data set. We examined an external gene
expression profiling data set of multiple cancer types from the Expression Project
for Oncology (expO) (GSE2109), classifying each external tumor profile by
genomic subtype as defined by TCGA data. Within each cancer type, genes in the
expO data set were normalized to s.d. from the median. As a classifier, the top set
of 900 mRNAs distinguishing between the nine COCA subtypes in TCGA (from
Fig. 2b and Supplementary Data 2) was used. For each COCA subtype the average
value for each gene was computed, based on the centered TCGA expression data
matrix (represented in Fig. 2b). The correlation between each expO profile and
each TCGA subtype averaged profile was computed. Each of the expO bladder
cases were assigned to TCGA pan-urologic subtypes c1, c2, or c8 (which were the
subtypes with high representation of TCGA BLCA cases), based on which subtype
profile showed the highest correlation with the given expo profile. In a similar
manner, the expO prostate cases, clear cell renal cases, and papillary renal cases
were also assigned to TCGA pan-urologic subtypes

Statistical analysis. Statistical methods regarding specific computational
approaches are described above or noted in the Results. All P-values reported were
two-sided unless otherwise noted.

Data availability. All data used in this study are publicly available. TCGA data are
available through the Genome Data Commons (https://gdc.cancer.gov/) and the
Broad Instititute’s Firehose data portal (https://gdac.broadinstitute.org). Somatic
mutation calls made from TCGA whole exome sequencing data are available from
synapse (https://www.synapse.org/#!Synapse:syn7214402). Additional molecular
profiling data sets utilized as described above are available via the Gene Expression
Omnibus.
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