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Abstract 15 

Background: Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by 16 

diverse presentations and a strong genetic component. Environmental factors, such as prematurity, 17 

have also been linked to increased liability for ASD, though the interaction between genetic 18 

predisposition and prematurity remains unclear. This study aims to investigate the impact of genetic 19 

liability and preterm birth on ASD conditions. 20 

Methods: We analyzed phenotype and genetic data from two large ASD cohorts, the Simons 21 

Foundation Powering Autism Research for Knowledge (SPARK) and Simons Simplex Collection (SSC), 22 

encompassing 78,559 individuals for phenotype analysis, 12,519 individuals with genome 23 

sequencing data, and 8,104 individuals with exome sequencing data. Statistical significance of 24 

differences in clinical measures were evaluated between individuals with different ASD and preterm 25 

status. We assessed the rare variants burden using generalized estimating equations (GEE) models 26 

and polygenic load using ASD-associated polygenic risk score (PRS). Furthermore, we developed a 27 
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 2 

machine learning model to predict ASD in preterm children using phenotype and genetic features 28 

available at birth. 29 

Results: Individuals with both preterm birth and ASD exhibit more severe phenotypic outcomes 30 

despite similar levels of genetic liability for ASD across the term and preterm groups. Notable, 31 

preterm ASD individuals showed an elevated rate of de novo variants identified in exome sequencing 32 

(GEE model with Poisson family, p-value = 0.005) in comparison to the non-ASD preterm group. 33 

Additionally, a GEE model showed that a higher ASD PRS, preterm birth, and male sex were 34 

positively associated with a higher predicted probability for ASD, reaching a probability close to 90%. 35 

Lastly, we developed a machine learning model using phenotype and genetic features available at 36 

birth with limited predictive power (AUROC = 0.65). 37 

Conclusions: Preterm birth may exacerbate the multimorbidity present in ASD, which was not due to 38 

the ASD genetic factors. However, increased genetic factors may elevate the likelihood of a preterm 39 

child being diagnosed with ASD. Additionally, a polygenic load of ASD-associated variants had an 40 

additive role with preterm birth in the predicted probability for ASD, especially for boys. We propose 41 

that incorporating genetic assessment into neonatal care could benefit early ASD identification and 42 

intervention for preterm infants. 43 

 44 

Keywords: Prematurity, Autism Spectrum Disorder, Genetics, Polygenic risk score, Machine learning, 45 

Generalized estimating equations model. 46 

 47 

 48 

Introduction  49 

 50 

Aucsm Spectrum Disorder (ASD) is an early-onset neurodevelopmental condicon characterized by 51 

challenges in social interaccon, communicacon, and restriccve and repeccve behaviors and interests 52 
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[1]. In addicon to these core symptoms, individuals with ASD have mulcple co-occurring 53 

neurodevelopmental, psychiatric, and physical condicons, which contribute to clinical heterogeneity 54 

[2]. 55 

 56 

The ecology of ASD is mulcfaceted and not yet fully elucidated [3,4]. However, genecc factors 57 

account for up to 80-90% of the liability for ASD [4–6]. Rare de novo variants (DNV), especially those 58 

affeccng the gene funccon of constraint genes, are shown to be enriched in ASD [7,8]. Rare inherited 59 

variants in ASD-related genes are also shown to be overtransmijed from parents to their children 60 

with ASD [5,9]. In addicon to rare variants, genome-wide associacon studies (GWAS) have idencfied 61 

a few common variants associated with ASD, and the polygenic load calculated using polygenic risk 62 

score (PRS) has demonstrated prediccve ability for ASD and ASD traits [10,11]. Furthermore, ASD PRS 63 

can uniquely predict variability in cognicve performance [11]. 64 

 65 

In addicon to genecc factors, there are several environmental factors associated with ASD [3]. The 66 

most robustly associated environmental stressor is prematurity, with ASD likelihood in preterm about 67 

two to four folds higher than in term, and ASD likelihood increasing as gestaconal age at birth 68 

decreases [12,13]. Although preterm birth involves both genecc and environmental components 69 

[14], it is typically discussed as an environmental factor in ASD studies [3,15]. Preterm birth, defined 70 

as delivery with gestaconal age before 37 weeks, can be further categorized into four preterm sub-71 

categories: extremely preterm (<28 weeks), very preterm (28-31 weeks), moderate preterm (32-33 72 

weeks), and late preterm (34-36 weeks). Prematurity is not only associated with ASD but also with 73 

neurocognicve development and other health outcomes [16–18]. Earlier studies invescgacng 74 

phenotypes in children with ASD suggested that extremely or very preterm ASD children have more 75 

language deficits and developmental delays compared to term ASD children [19,20]. However, others 76 

reported that no significant differences in development were found when studying the encre 77 

preterm group [21]. Moreover, preterm birth as an exposure is associated with various comorbidices 78 
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in ASD, including ajencon and behavioral problems, neurological disorders, and growth deficiency. 79 

However, more invescgacons are needed to understand ASD phenotypic spectrum in preterm and 80 

term birth as well as how different sub-groups of prematurity contribute to specific medical 81 

outcomes and traits.  82 

 83 

Interescngly, preterm infants have been found to have increased DNV rates compared to term [22], 84 

and various de novo CNVs in preterm were found related to neurodevelopmental disorders genes 85 

(NDD genes) [23], but it remains uncertain whether DNV burden is further elevated when both ASD 86 

and preterm birth are present. Moreover, the relaconship between ASD polygenic load and 87 

prematurity has only been evaluated by Cullen et al based on cognicon, but no interaccon was found 88 

between ASD PRS and gestaconal age at birth [15]. Furthermore, there are indicacons that a small 89 

fraccon of preterm individuals would have recognizable genecc disorders [24]. However, there have 90 

not been specific studies focusing on genecc factors within preterm individuals and ASD.  91 

 92 

While genecc and phenotypic studies on the populacon level are informacve, these analyses may 93 

miss interaccons and non-linear relaconships within or between factors on an individual level. To 94 

address this complexity, machine learning (ML) has the potencal to idencfy pajerns in high-95 

dimensional data that tradiconal stacsccal methods may overlook, aiding in prediccon. To date, ML 96 

prediccon models have emerged to predict ASD using different data sources, such as roucne medical 97 

assessments and electronic records [25,26], genecc data [27], and integracve models [28]. However, 98 

none of the published ML models currently predict ASD in preterm children. In the exiscng ML 99 

models for ASD prediccon, included features are typically collected when the child is at least 1-2 100 

years of age or older [25,29]. It remains unclear whether integracng phenotype and genecc 101 

informacon available at birth could enable earlier ASD idencficacon in preterm infants.  102 

 103 
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In this study, we aimed to enhance our understanding of ASD in preterm children by analyzing both 104 

clinical and genecc data in two large ASD cohorts, the Simons Foundacon Powering Aucsm Research 105 

for Knowledge (SPARK) [8,30], and the Simons Simplex Colleccon (SSC) [31]. Across individuals with 106 

different ASD and prematurity sub-groups, we first examined their phenotype severity through the 107 

prevalence and mulcmorbidity of other medical diagnoses. Thereamer, we assessed the burden of 108 

rare and common sequence-level variants. Finally, we built an ML model using both phenotype and 109 

genecc features that could be obtained at birth to predict ASD in preterm individuals.  110 

 111 

 112 

Methods 113 

 114 

Study cohorts 115 

 116 

The Simons Foundation Powering Autism Research for Knowledge (SPARK) database, initiated by the 117 

Simons Foundation Autism Research Initiative (SFARI), recruited families in the USA with one or 118 

more children diagnosed with autism spectrum disorder (ASD) [30]. We utilized demographic and 119 

phenotype data from the SPARK collection version 9 with a release date 2022-12-12. We considered 120 

medical and psychiatric diagnosis history from the basic medical screen dataset, grouping specific 121 

diagnoses into nine diagnostic categories: behavior, development, mood, growth, birth, eating 122 

habits (Eat), neurological conditions (Neuro), visual and auditory impairments (Visaud), and sleep. 123 

This dataset includes 9196 individuals with ASD and born preterm with gestational age less than 36 124 

weeks (ASD-preterm), 65021 individuals with ASD and born term (ASD-term), and 2706 individuals 125 

without ASD and born preterm (non-ASD-preterm). We also stratified preterm individuals into four 126 

sub-groups based on gestational age: extremely preterm (<28 weeks), very preterm (28-31 weeks), 127 

moderate preterm (32-33 weeks), and late preterm (34-36 weeks). Additionally, we compared 128 
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quantitative measures using the Child Behavior Checklist (CBCL) t-score for 1 to 5 and 6 to 18 years 129 

of age, Developmental Coordination Disorder Questionnaire (DCDQ) final score, Repetitive Behavior 130 

Scale-Revised (RBS-R) total final score, Social Communication Questionnaire (SCQ) final score and 131 

Full-Scale Intelligence quotient (FSIQ) score. Additional file 1: Tables S1 and S2 provide detailed 132 

specific diagnoses and quantitative measures descriptions. 133 

 134 

For the genetic part, variant calling dataset SPARK genome sequencing (GS) version 1.1 was used, 135 

including 12519 individuals from 3394 families, with 315 ASD-preterm, 2788 ASD-term, and 155 non-136 

ASD-preterm individuals. We also utilized earlier published DNV data from exome sequencing (ES) to 137 

calculate the event rate [8]. Among the 6444 ASD individuals with DNV information, 5747 were born 138 

full-term, and 697 were born preterm. Furthermore, DNV information was accessible for 210 139 

preterm children without ASD. 140 

 141 

We also used the Simons Simplex Collection (SSC) cohort. SSC recruited more than 10,000 individuals 142 

from 2,000 families [31]. Due to the absence of preterm information for non-ASD individuals 143 

(siblings of ASD probands), we only conducted studies for ASD-preterm and ASD-term groups. After 144 

excluding individuals with unreliable gestational age, unknown ASD diagnosis, births occurring post-145 

term (gestational age > 40 weeks), and missing outcomes information, we retained 1,637 probands 146 

diagnosed with ASD (157 preterm and 1479 term) for the diagnostic category analysis. Additionally, 147 

we analyzed available quantitative measures, including CBCL score, DCDQ score, SCQ score, and IQ 148 

score. Detailed descriptions of specific diagnoses and qualitative measures are provided in 149 

Additional file 1: Tables S3 and S4. We incorporated the de novo variants (DNV) dataset from Ng et 150 

al in our analysis, encompassing 1450 ASD individuals after excluding post-term births [32]. 151 

Additionally, the Polygenic Risk Score (PRS) dataset we used sourced from Weiner et al comprised 152 

1590 ASD individuals, excluding post-term births [33]. 153 

 154 
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De novo variant calling and analysis 155 

 156 

In SPARK, GS was conducted on the Illumina NovaSeq 6000 system. Variant calling was performed 157 

using GATK (version 3.5) with HaplotypeCaller, and all samples were jointly called by GLnexus 158 

(version 1.4.1). To find de novo variants (DNV) of children, we included all trios. For families with 159 

more than one child, each child forms a trio with their parents, resulting in multiple trios within the 160 

same family. There were 5,712 trios from 3,364 families. We used two tools to call the DNV from 161 

SPARK trios, and true DNV was selected when it was found in both tools. The DNV was called if it was 162 

labeled as “denovo” with allele balance (AB) in children higher than 0.25 in Slivar (version 0.2.8) and 163 

identified as high confidence DNV in GATK (version 4.1.4.1) [34,35]. For pseudo-autosomal regions 164 

on the sex chromosome, we separately considered the variant genotype as 1/0 in children. We did 165 

not find DNVs on chrY in pseudo-autosomal regions. Then, we did quality control to further filter the 166 

DNV by removing variants with GQ<20, DP<10, gnomAD population allele frequencies > 0.001, and 167 

variants of either 10 A's or T's in a row. We filtered out DNVs on genomic centromeres and low 168 

complex regions. Then we removed DNV if 1) it can be found in other family's parents, 2) it can be 169 

found in only children but more than three families, and 3) it on positions having more than 3 multi-170 

alleles. We identified 432,903 DNVs, including 16,155 exonic DNVs and 986 loss-of-function (LOF) 171 

variants. We filtered out 29 children with DNV counts beyond three times the standard deviation 172 

from the mean DNV count. Based on these criteria, the average number of rare DNVs per child was 173 

75.9. 174 

 175 

We annotated DNVs by ANNOVAR and SnpEff [36,37]. DNVs with Sequence Ontology (SO) terms as 176 

"frameshift", "splice_acceptor", "splice_donor", "start_lost", "stop_gained", and "stop_lost" in gene 177 

effect were considered as LOF DNV. Additionally, we identified variants on the neurodevelopmental 178 

disorder-related genes (NDD gene) using high-confidence ASD genes collected by the Simons 179 

Foundation Autism Research Initiative (SFARI) (2024-01-16 release) with gene scores of 1 or 2 and 180 
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labeled as syndromic and green gene list of Intellectual disability - microarray and sequencing 181 

(Version 5.497) on Genomics England PanelApp (2024-03-14 accessed) [38,39]. 182 

 183 

Inherited variants calling 184 

 185 

We extracted variants on the genomic protein coding NDD genes (as the NDD gene list we used for 186 

DNV analysis) using VCFtools/0.1.16 [40]. Then we annotated the inheritance mode of NDD genes 187 

using the ID gene panel app, SysNDD database (v0.1.0) and DDgenes [39,41,42]. There were 80% 188 

(1625 genes) of NDD genes annotated, including 738 dominant genes coded as monoallelic or 189 

dominant, and 944 recessive genes coded as biallelic or recessive in databases. To restrict the 190 

analysis to rare inherited variants, we used the allele frequency filter threshold of 0.001 and 0.01 for 191 

dominant and recessive genes, respectively. Variants with GQ<20, DP<10, and genotypes conflicting 192 

with the inheritance mode of located genes were filtered out. We did not find compound variants 193 

(more than one heterozygous variant on the same recessive gene for one child). For variants on 194 

dominant genes, we identified LOF following the same process in the DNV part and found damage 195 

missenses variants met at least one of the following conditions: CADD>=20, SIFT labeled as D, 196 

POLYPHEN labeled as P and D, PHYLOP>=2.0 or REVEL>=0.5. From 5,712 trios in the SPARK GS 197 

database, we identified 245,671 and 4,346 inherited variants in dominant and recessive NDD genes, 198 

respectively. We identified 2,717 LOF and 39,136 damaging missense variants in genes with a 199 

dominant inheritance mode.  200 

  201 

Polygenic risk score 202 

 203 

Based on GS jointly called variants from 12,519 SPARK participants, we performed quality control for 204 

individuals and variants using PLINK1.9 with parameters listed in Additional file 1: Table S5, retaining 205 
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11,933 individuals and 9,558,997 variants with a total genotyping rate of 99.9% [43]. Then, genome 206 

coordinates of variants were converted from hg38 to hg19 using liftOver (Version 2017-03-14) [44], 207 

and 9,428,216 were mapped after removing duplicated variants. We calculated the posterior SNP 208 

effect size estimates using PRS-CS with ASD GWAS summary statistics from the Psychiatric Genomics 209 

Consortium (November 2017 release) (46351 individuals) and European LD reference data from 210 

1000 Genome phase III [10,45]. The default parameters used in PRS-CS also be listed in Additional 211 

file 1: Table S5. The final PRS was calculated using the score function in PLINK1.9 with the estimated 212 

posterior SNP effect size. To minimize the effects on different populations, we analyzed the ancestry 213 

of individuals using Principal component analysis (PCA) by pca command in PLINK1.9. The ten 214 

principal components (PC1-10) were included as covariates when we calculated the association 215 

between phenotype and PRS.  216 

 217 

Stacsccal analysis 218 

 219 

All analyses were performed using R programming language (version 4.2.2). Commencing with an 220 

exploration of phenotypes, we investigated two pairs of groups: preterm and term birth within 221 

individuals diagnosed with ASD (ASD-preterm versus ASD-term); and individuals diagnosed with ASD 222 

to those without ASD within preterm birth (ASD-preterm versus non-ASD-preterm). An individual 223 

was considered to possess the diagnosis feature if any specific diagnosis within that diagnostic 224 

category was exhibited, no matter how many specific diagnoses there were at the same time.  225 

 226 

In phenotypic analysis, the prevalence is reported by the frequency of individuals with the diagnosis. 227 

We examined the differences in prevalence between ASD-preterm and ASD-term, ASD-preterm and 228 

non-ASD-preterm using odds ratios with 95% confidence interval (CI) and statistical significance 229 

reported by FDR-adjusted p-values in χ² test. After stratifying preterm stages, we used χ² test to 230 

evaluate differences across preterm stages, post-hoc comparisons for each pair of preterm stages, 231 
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 10 

and Kendall’s tau test to examine rank correlation of preterm stages with prevalences. Then, 232 

prevalences of multimorbidity (one, two, three, four, or not less than five diagnoses) were estimated 233 

by ASD and preterm status, and differences were examined by χ². Additionally, we examined 234 

difference of quantitative measures in pairwise using the 2-sided Wilcoxon rank sum test and in 235 

multiple comparisons using the Kruskal Wallis rank sum test. To account for multiple testing, we 236 

applied false discovery rate correction to p-values. 237 

The burden of DNV and inherited variants was evaluated by comparing rates of such variants in each 238 

subgroup categorized by ASD and preterm status. We assessed the statistical differences between 239 

groups through a generalized estimating equation (GEE) model with Poisson family and sex as a 240 

covariate. GEE model is more robust to assumptions of data following a particular data distribution 241 

and adjusts for correlations between individuals, e.g. siblings and families [46]. PRSs were z-242 

standardized and statistical significance for PRS distribution was reported by the 2-sided Wilcoxon 243 

rank sum test. The association between targeted phenotype (y/n) and PRS in each subgroup was also 244 

evaluated in GEE logistic model with sex(m/f) and PC1-10 from ancestry checking as covariates. 245 

To examine the associations between ASD diagnosis and possible variables, we modeled the 246 

probability of ASD (y/n) by fitting GEE logistic model(s) with the equation as [ASD (y/n) ~ sex (m/f) + 247 

preterm (y/n) + standardized PRS] in European population to find the correlation between ASD 248 

diagnosis and possible variables. To visualize the predicted probabilities of ASD from the GEE logistic 249 

model, we utilized ggemmeans function in ggeffects R package (version 1.5.1) [47], showing the 250 

average predicted probabilities of the ASD for specific levels of variables adjusted for other 251 

covariates in the model. After that, the variable (preterm (y/n) * standardized PRS) was added to the 252 

GEE logistic model to check the correlation between ASD (y/n) and the interaction of preterm status 253 

and PRS. To detect the association between multimorbidity and DNV burden, GEE models (Table S4) 254 

and linear regression were used. 255 

 256 
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Machine learning model 257 

  258 

This part of the analysis was performed in R (version 4.2.2). Within preterm individuals, we utilized 259 

non-ASD and ASD diagnoses as two classification flags, incorporating features obtained from data 260 

that can be collected at birth. For phenotypical variables, we included birth complications, sex, and 261 

birth-related conditions. Genetic variables encompassed the count of several types of genetic 262 

variants, the CADD score of de novo variants (DNV), and the PRS of ASD. To remove redundant 263 

variables and identify informative features, we employed the Recursive Feature Elimination (RFE) 264 

algorithm [48]. RFE is a feature selection technique that iteratively removes the least important 265 

features based on model performance, refitting the model with the remaining features until the 266 

optimal subset of features is identified. In RFE, we utilized random forest function and 10-fold cross-267 

validation in the underlying model to assess feature importance throughout the process. For the 268 

features selected after RFE, we only retained the more general feature (e.g., retaining LOF over LOF 269 

on NDD genes) in any pair of features with a correlation coefficient above 0.7 to reduce 270 

multicollinearity. The details of selected features are listed in Additional file 1: Table S6. 271 

  272 

We applied R package caret (version 6.0-94) [49] to train the ML models. Given the limited sample 273 

size and the higher proportion of ASD samples than non-ASD, we conducted nested cross-validation 274 

(NCV) and hyperparameter tuning with grid search to enhance model performance. In NCV, we 275 

partitioned the data into 10 folds in the outer loop, with nine folds used for training and the 276 

remaining fold for testing. Within the inner loop, we performed repeated 5*5-fold cross-validation, 277 

and the model with the best performance was applied to the outer loop. We employed three 278 

algorithms—Extreme Gradient Boosting (XGBoost), Random Forest (RF), and Linear Support Vector 279 

Machine (SVM)—to construct the models. The values of hyperparameter tuning for each model are 280 

detailed in Additional file 1: Table S7. We reported evaluation metrics, including accuracy with a 95% 281 

CI, area under the receiver operating characteristic curve (AUROC), specificity, sensitivity, and F1-282 
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score. Moreover, the SHapley Additive exPlanations (SHAP) values for features were computed and 283 

visualized using the R package SHAPforxgboost (version 0.1.3) [50], quantifying the contribution of 284 

each feature to individual model predictions in terms of direction and magnitude. 285 

 286 

 287 

Result 288 

 289 

Phenotype comparison across ASD and prematurity 290 

 291 

We uclized basic medical screening data from 181,248 individuals in the SPARK version 9 cohort 292 

(release date 2022-12-12). Among them, 74,217 (41%) were diagnosed with ASD, and 11,902 (7%) 293 

were born preterm. When performing phenotype comparison, we grouped individuals with 9,196 294 

individuals with ASD and being preterm (ASD-preterm), 65,021 individuals with ASD but being term 295 

(ASD-term), and 2,706 preterm individuals without ASD diagnosis (non-ASD-preterm) (Figure 1, Table 296 

1). In the SSC cohort, gestaconal age records were available only for probands with ASD, of which 297 

157 were preterm and 1,479 were term. We stracfied the preterm stage based on gestaconal age at 298 

birth (Table 1).  299 

 300 
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 301 
Figure 1. Overview design of the study. Firstly, we performed phenotype analysis on diagnosis 302 
prevalence, burden of mulcmorbidity and quanctacve measures in the SPARK cohort. The sample 303 
size of SPARK is shown in the Venn diagram, with blue indicacng ASD, pink indicacng preterm with 304 
unknown gestaconal age, and green indicacng preterm with known gestaconal age. Secondly, we 305 
analyzed the de novo variant and inherited variant burden, separately, focusing on loss-of-funccon 306 
variants and damaging missense and if these affected neurodevelopmental disorder (NDD) genes. 307 
Addiconally, we uclized polygenic risk scores for common variants associated with ASD. For 308 
validacon, we applied similar analyses in the SSC cohort. Thirdly, we integrated phenotype and 309 
genomic data to train the machine learning models with different algorithms to predict ASD 310 
diagnosis in the preterm group. Shapley addicve explanacons (SHAP) values assess the effect of each 311 
feature on the model performance. 312 
 313 

Table 1. Characteristics of the analyzed samples.  314 
    Cohort    SPARK (version 9)  SSC  
        ASD  Non-ASD  ASD  
Phenotyp
e analysis  

  Number of samples  74217  /  1636  
  Preterm    9196  2706  157  

    
Extremely preterm 
(GA <28 weeks)  

699 (8%)  109 (4%)  /  

    
Very preterm 
(GA 28-31weeks) 

987 (11%)  274 (10%)  2 (1%)  

    
Moderate preterm 
(GA 21-33 weeks)  

1274 (14%)  372 (14%)  11 (7%)  

    
Late preterm  
(GA 34-36 weeks) 

5659 (62%)  1754 (65%)  144 (92%)  
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    Unknown GA  577 (6%)  197 (7%)  /  
    Male:Female  6860:2336  1358:1348  139:18  
  Term    65021  /  1479  
    Male:Female  48069:16952  /  1270:209  

Genetic 
analysis  

De novo 
variant 
(WGS)  

Preterm    309  164  /  
  Male:Female  257:52  90:74  /  
Term    2728  /  /  
  Male:Female  2172:556  /  /  

De novo 
variant 
(WES)  

Preterm    697  210  137  
  Male:Female  563:134  119:91  121:16  
Term    5747  /  1313  
  Male:Female  4557:1190  /  1129:184  

Inherited 
variant  

Preterm    310  165  /  
  Male:Female  258:52  90:75  /  
Term    2742  /  /  
  Male:Female  2182:560  /  /  

PRS  Preterm    305  161  155  
  Male:Female  252:53  86:75  137:18  
Term    2702  6472  1435  
  Male:Female  2134:568  2817:3655  1236:199  

Machine 
learning  

  Preterm    279  150  /  
    Male:Female  230:49  81:69  /  

/ Mark as data were not analyzed. GA = Gestaconal age at birth. 315 
 316 

We performed analysis on nine available diagnoscc categories recorded in the basic medical 317 

screening dataset in SPARK phenotype database version 9, involving behavior, development, mood, 318 

growth, birth, eacng habits (eat), neurological condicons (neuro), visual and auditory impairments 319 

(visual), and sleep (details of diagnoscc categories are described in Addiconal file 1: Table S1). For 320 

each category, we assigned a binary variable indicacng the presence or absence of condicons within 321 

that category, rather than councng the number of specific diagnoses. The prevalence of all diagnoscc 322 

categories analyzed was higher in ASD-preterm compared to ASD-term (Figure 2A). Specifically, ASD-323 

preterm had higher odds raco (OR) for all diagnoscc categories, with the highest being for birth and 324 

growth diagnoses (OR=2.18 and 2.18, χ² tests with False Discovery Rate [FDR]-adjusted p-325 

value=5.6×10-55 and 9.2×10-158, respeccvely). Addiconally, preterm birth was associated with a 326 

modestly increased likelihood of other behavioral diagnoses compared to term in the ASD group 327 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 20, 2024. ; https://doi.org/10.1101/2024.11.20.24317613doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.20.24317613
http://creativecommons.org/licenses/by-nd/4.0/


 15 

(OR=1.2, p-value=5×10-15). We also observed significantly different prevalences of diagnoscc 328 

categories (χ² test with FDR-adjusted p value < 0.001 for all categories) when we considered different 329 

sub-groups of preterm birth (Addiconal file 1: Figure S1A). Furthermore, we idencfied linear trends 330 

across different preterm stages, with groups of lower gestaconal age showing a higher prevalence in 331 

growth, eacng, neuro, and visual diagnoscc categories (Kendall’s tau test, FDR-adjusted p-332 

value=0.04). Almost all the preterm sub-groups had a higher prevalence of diagnoscc categories 333 

compared to the term stage (FDR-adjusted p-values of the post-hoc comparisons of χ² test are in 334 

Addiconal file 1: Table S8) 335 

 336 

Then, we analyzed mulcmorbidity, indicated as the number of concurrent diagnoses among the ASD 337 

individuals, revealing that ASD-preterm exhibited a higher likelihood of the higher number of 338 

concurrent morbidices compared to ASD-term (Figure 2B, χ² test with p-value<2.2×10-16). In ASD, 339 

preterm sub-groups showed differences in the burden of mulcmorbidity (Addiconal file 1: Figure 340 

S1B, χ² test with p-value<2.2×10-16), in which extremely and moderate preterm subgroups exhibited a 341 

significantly higher burden of mulcmorbidity with >=5 diagnoses compared to late preterm 342 

(Addiconal file 1: Table S9, post-hoc test of χ² test with FDR-adjusted p-values=1.6×10-5, 0.02 343 

respeccvely). For diagnoscc categories with more than two specific diagnoses, we found a posicve 344 

linear correlacon between the number of specific diagnoses, i.e., mulcmorbidity, and the odds raco 345 

of preterm versus term, except for birth-related issues (Addiconal file 1: Figure S1C). This indicated 346 

that preterm ASD individuals tend to have more specific diagnoses within categories as well as across 347 

categories than term ASD individuals. 348 

 349 

Next, we analyzed quanctacve measures for overall behavioral challenges and specific symptom 350 

domains. We observed significant differences between ASD-preterm and ASD-term (2-sided 351 

Wilcoxon rank sum test with FDR adjustment), although the large sample size may amplify the 352 

differences (Figure 2C). ASD-preterm had increased severity of behavioral challenges (CBCL score for 353 
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1-5y, p-value=1.4×10-3; for 6-18y, p-value=0.0043), developmental coordinacon disorder (DCDQ final 354 

score, p-value=2.5×10-21), repeccve behaviors (RBS-R score, p-value=6.7×10-34), and social 355 

communicacon skills (SCQ score, p-value=1.4×10-20), as well as lower IQ scores  (p-value=0.02). 356 

Comparing different sub-groups of preterm birth, we found that extremely preterm has the lowest 357 

DCDQ final score compared to other stages (2-sided Wilcoxon rank sum test, FDR-adjusted p-values 358 

are 0.003, 0.002, and 2.7×10-5 when compared to very preterm, moderate preterm, and late 359 

preterm, respeccvely) (Addiconal file 1: Figure S2). 360 

 361 

 362 
Figure 2. The phenotype comparison between preterm and term with ASD in the SPARK version 9 363 
cohort. Color bars are the same across three panels and shown at the top of panel B. A. Prevalence 364 
and odds raco with 95% confidence interval (CI) of diagnosis. The exact prevalence values are labeled 365 
on the top of the bars. ORs are given among ASD individuals born preterm vs term. B. Distribucon of 366 
the number of mulcmorbidity. C. Differences in Child Behavior Checklist (CBCL) t-score for 1 to 5 and 367 
6 to 18 years of age, Developmental Coordinacon Disorder Quesconnaire (DCDQ), Repeccve 368 
Behavior Scale-Revised (RBS-R) score, Social Communicacon Quesconnaire (SCQ) and Full-Scale IQ 369 
(Fsiq) among ASD individuals born preterm and term. Significance was assessed using the 2-sided 370 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 20, 2024. ; https://doi.org/10.1101/2024.11.20.24317613doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.20.24317613
http://creativecommons.org/licenses/by-nd/4.0/


 17 

Wilcoxon rank sum test with the FDR-adjusted p-value marked in the plots as 0-0.001***, 0.001-371 
0.01**, 0.01-0.05* or NS (non-significant difference). 372 
 373 

To complement our analyses within the ASD individuals, we analyzed if there were any differences 374 

within preterm birth for the same phenotype measures. The ASD-preterm had more severe 375 

outcomes in comparison to non-ASD-preterm with increased severity with lower gestaconal age 376 

(Addiconal file 1: Figure S3A-B, S4). The developmental diagnoscc category had the highest 377 

prevalence (72%) in the ASD group resulcng in 8.8 OR (95% CI 7.9-9.7) when compared to non-ASD. 378 

For quanctacve measures, the ASD group had stacsccally significantly higher SCQ final scores 379 

compared to the non-ASD group (2-sided Wilcoxon rank sum test, p-value<2.2×10-16) (Addiconal file 380 

1: Figure S3C). 381 

 382 

ASD-preterm and term comparisons within the SSC cohort also showed a stacsccally significantly 383 

higher prevalence of eacng problems (χ² test with FDR-adjusted p-value=1.4×10-6) and a similar trend 384 

towards having more mulcmorbidity compared to ASD-term (Addiconal file 1: Figure S5A-B, χ² test p-385 

value=0.045). No stacsccally significant differences were observed in the quanctacve measures 386 

(Addiconal file 1: Figure S5C).  387 

 388 

Genetic variants comparison across ASD and prematurity 389 

 390 

To invescgate the burden of de novo variants, we analyzed available genome sequencing (GS) and 391 

exome sequencing (ES) data from SPARK and SSC. The populacon analyzed for GS included 310 ASD-392 

preterm, 2,742 ASD-term, and 165 non-ASD-preterm individuals. The ES dataset contained 697 ASD-393 

preterm, 5,747 ASD-term, and 210 non-ASD-preterm individuals. We did not observe any significant 394 

difference in DNV event rate or distribucon of DNV numbers between ASD-preterm and ASD-term 395 

(Figure 3A, Addiconal file 1: Figure S6A), or between ASD-preterm and non-ASD-preterm derived 396 
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from GS (Figure 3D, Addiconal file 1: Figure S6B), even when analyzing only the exonic region 397 

(Addiconal file 1: Figure S7A-B). Similarly, no stacsccally significant differences were found 398 

comparing de novo burden from GS in 137 ASD-preterm and 1313 ASD-term in the SSC (Addiconal 399 

file 1: Figure S7C). 400 

 401 

When analyzing DNV event rates obtained from ES data [8] from SPARK, no stacsccally significant 402 

differences were found between ASD-preterm and ASD-term (Figure 3B, Addiconal file 1: Figure 403 

S6C). However, ASD-preterm individuals had more exonic DNVs (p-value=0.005), exonic DNVs on NDD 404 

genes (p-value=0.024), and LOF affeccng NDD genes (p-value=0.018) than non-ASD-preterm (Figure 405 

3E, Addiconal file 1: Figure S6D). We stracfied the ASD-preterm and non-ASD-preterm by gestaconal 406 

age preterm subgroups and observed a similar trend in both the moderate and late preterm groups. 407 

However, due to the limited sample size, a stacsccally significant difference between ASD-preterm 408 

and non-ASD-preterm was only detected in the event rate of DNVs in NDD genes in the moderate 409 

preterm group (p-value=0.02) and in both overall DNV and DNV in NDD genes in the late preterm 410 

group (p-value=0.002 and 0.04 respeccvely). Interescngly, for extremely to very preterm stages, the 411 

event rates of DNV were numerically lower in ASD compared to non-ASD individuals, even though 412 

this difference was not stacsccally significant (Addiconal file 1: Figure S8).  413 

 414 

We also invescgated the rates of inherited variants, focusing on those affeccng NDD genes and 415 

protein-coding regions. From 4,974 individuals with phenotype informacon, we did not observe 416 

stacsccally significant differences between ASD-preterm and ASD-term nor between ASD-preterm 417 

and non-ASD-preterm, although ASD-preterm tend to have a numerically higher rate of rare 418 

inherited variants (Figure 3C, 3F, Addiconal file 1: Figure S6E, S6F).  419 

 420 
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 421 
Figure 3. AssociaMon between geneMc variant burden and subgroups with varying preterm birth 422 
and ASD status in the SPARK cohort. In ASD individuals, event rates of de novo variants (DNV) 423 
idencfied through genome sequencing (A) and exome sequencing (B), and inherited variants on 424 
dominant and recessive NDD genes idencfied through genome sequencing (C) were calculated. In 425 
preterm individuals, event rates of de novo variants idencfied through genome sequencing (D) and 426 
exome sequencing (E), and inherited variants in dominant and recessive NDD genes idencfied 427 
through genome sequencing (F) were calculated. Data are presented as mean values ± standard 428 
errors as error bars. The GEE model with Poisson family and sex covariate was used to compute the 429 
p-value to assess the differences in DNV count between groups. 430 
 431 

To further test whether the mulcmorbidity would be a modifying factor for the differences in the 432 

DNV burden, we computed GEE models (Addiconal file 1: Table S10) and found that mulcmorbidity 433 

is posicvely correlated with GS LOF (p-value=0.037), GS LOF on NDD genes (p-value=5.3×10-06) and all 434 

types of ES DNV burden (p-value=1.1×10-05, 1.9×10-09, 6.6×10-14 and <2.2×10-6 for DNV, LOF, DNV on 435 

NDD genes and LOF on NDD genes respeccvely) across all individuals. Stracfied by preterm and ASD 436 

status, we observed this posicve correlacon pajern in ASD-term group for ES DNV (p-value=0.009), 437 

ES DNV on NDD genes (p-value=0.013) and LOF on NDD genes (p-value=0.004), as well as in ASD-438 

preterm group for ES LOF on NDD genes (p-value=0.013) (Addiconal file 1: Figure S9). However, 439 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 20, 2024. ; https://doi.org/10.1101/2024.11.20.24317613doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.20.24317613
http://creativecommons.org/licenses/by-nd/4.0/


 20 

except for GS DNV on NDD genes, there is no interaccon between DNV burden and mulcmorbidity 440 

performing on ASD or preterm outcomes. 441 

 442 

ASD Polygenic risk score and associacon with preterm status 443 

 444 

We calculated ASD PRS for individuals in the SPARK cohort using the most comprehensive GWAS on 445 

ASD as source data [10]. There was no significant difference in the distribucon of PRS between the 446 

ASD-preterm and ASD-term groups nor between ASD-preterm and non-ASD-preterm (Figure 4A). As 447 

expected, ASD individuals had higher PRS compared to non-ASD individuals in the whole cohort 448 

displaying the usability of the PRS (2-sided Wilcoxon rank sum test, p-value=6.7×10-13) (Figure 4A). 449 

Addiconally, amer adjuscng for sex and populacon ancestry (as indicated by principal components 450 

[PC]) in a GEE logiscc model, we confirmed that there was no independent associacon between 451 

preterm birth and PRS (in ASD populacon), or between ASD diagnosis and PRS (in preterm 452 

populacon). The stacsccally non-significant associacon between preterm birth and PRS (in ASD 453 

populacon) was replicated in the SSC cohort (Addiconal file 1: Figure S10). Furthermore, we 454 

computed a full GEE logiscc model for ASD diagnosis within European populacons, showing that 455 

male sex, preterm birth, and higher PRS were all posicvely associated with ASD diagnosis (p-456 

value<2×10-16, <2×10-16 and 2.2×10-12, respeccvely) (Figure 4B). In this model, the predicted 457 

probability of an ASD diagnosis was almost 90% for preterm-born males, with the highest PRS (Figure 458 

4C). Then, we included the interaccon between preterm status and PRS in the full GEE logiscc model, 459 

observing a significant associacon between this interaccon and ASD diagnosis (p = 0.017). 460 

 461 
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 462 
Figure 4. The associaMon of polygenic risk score (PRS) with delivery term and ASD condiMon in 463 
SPARK cohort. A. The distribucon of standardized PRS in groups with different delivery terms and 464 
ASD diagnosis. Stacsccal significance was assessed using the 2-sided Wilcoxon rank sum test with the 465 
p-value marked in the plots as 0-0.001*** or NS (stacsccally non-significant difference). B. 466 
Coefficient plot for the GEE logiscc model [ASD(y/n) ~ sex(m/f) + Preterm status(y/n) + Standardized 467 
PRS], displaying the escmated coefficients for each variable. Posicve coefficients suggest an increase 468 
in the likelihood of ASD associated with the variable, while negacve coefficients indicate a 469 
decrease. Error bars represent 95% CI. C. Visualized effect plot of GEE model, which shows average 470 
predicted probabilices of ASD diagnosis for specific levels of variables, with color region around the 471 
line showing 95% CI.  472 
 473 

Prediccve model for ASD within preterm births 474 

 475 

Lastly, we invescgated the potencal of ML models to idencfy those preterm infants with a high 476 

likelihood of ASD from informacon present at birth by combining clinical and available genecc data. 477 
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The model was developed and tested using a study populacon with preterm individuals classified 478 

into ASD (n=279) and non-ASD (n=150). For features used in prediccon model, we also considered 479 

Combined Annotacon Dependent Deplecon (CADD) scores which assess the potencal impact (i.e. 480 

deleterious or benign) of genecc variants on the funccon of genes and available for most of the 481 

DNVs. We applied Recursive Feature Eliminacon (RFE) and a correlacon threshold of 0.7 to select 13 482 

features, including clinical features (sex, condicon of birth complicacons, gestaconal age, insufficient 483 

oxygen at birth) and genomic features (number of several types of variants, CADD scores and 484 

standardized ASD-PRS) (Addiconal file 1: Figure S11A, Table S6). We used three algorithms to train 485 

the models (Table 2), of which the XGBoost model exhibited the highest area under the receiver 486 

operacng characteriscc curve (AUROC), at 0.65. The model accurately idencfied 69% (95% CI 0.644-487 

0.733) ASD diagnosis in the preterm, with a sensicvity of 0.81, specificity of 0.47, and F1-score of 488 

0.77. 489 

 490 

The first three XGBoost models within the 10-fold training (Addiconal file 1: Figure S11B) were 491 

selected to visualize feature effects for this best-performing model. The feature importance varied 492 

slightly across the training XGBoost models with sex, PRS, and CADD score being the most important 493 

features (Addiconal file 1: Figure S11C, S11E, S11G). Using SHAP values to characterize the impact of 494 

each feature on the model's output for specific individuals, we found that sex had the highest 495 

significant impact on the model's prediccons, whereas being male had a posicve impact on the 496 

model's prediccon. Furthermore, we demonstrate that lower gestaconal age, more autosomal 497 

exonic DNVs, more dominant inherited variants, more LOF variants, the presence of birth 498 

complicacons, and insufficient oxygen at birth drove the model towards ASD prediccon result 499 

(Addiconal file 1: Figure S11D, S11F, S11H). 500 

 501 

Table 2. Performance metrics of machine learning model used to predict ASD diagnosis in preterm 502 
individuals. 503 
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Algorithm Accuracy 95% CI AUC Sensitivity Specificity F1-score 

XGBoost 0.69 (0.64, 0.73) 0.65 0.81 0.47 0.77 

Random forest 0.67 (0.63, 0.72) 0.63 0.86 0.33 0.77 

SVM 0.70 (0.66, 0.75) 0.62 0.84 0.46 0.79 

 504 

 505 

Discussion 506 

 507 

Here, we conducted a comprehensive analysis of phenotypic differences using larger cohorts, as well 508 

as genotypic differences which have been explored in only a few studies among preterm and term-509 

birth ASD individuals. We conclude that preterm-born ASD individuals have more diagnoses across 510 

different categories and a number of co-occurring diagnoses but similar genetic landscapes when 511 

investigating sequence-level rare DNVs and inherited variants as well as a polygenic load for ASD 512 

compared with ASD-term. Our analysis of preterm individuals with and without ASD showed similar 513 

results for the phenotype comparisons but inconsistent findings for the genetic burden. The largest 514 

de novo dataset derived from ES showed that the ASD-preterm had a higher exonic DNV event rate 515 

than the non-ASD-preterm; however, we did not validate this finding in the de novo dataset from 516 

GS. Additionally, the male with preterm status and higher polygenic load faces a higher likelihood of 517 

ASD when considering these features together. Furthermore, our ML model demonstrated potential 518 

for predicting ASD diagnosis in preterm children by integrating phenotype and genetic information. 519 

Our results provide evidence that genetic factors play a role in emerging ASD in preterm birth, but 520 

the environmental stressor of being preterm most likely contributes to the severity and 521 

multimorbidity.  522 

 523 

Previous research has reported numerous but inconsistent findings regarding phenotypic disparities 524 

between ASD preterm and term individuals [19,21], while limited research has focused on 525 
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investigating the genetic link of ASD in prematurity. Unlike most phenotypic comparisons that 526 

concentrate on specific diagnostic outcomes [20,21], we first grouped the various conditions into 527 

nine broader diagnostic categories. Our results indicate that children with both preterm birth and 528 

ASD exhibit a higher prevalence of diagnoses within these categories and a higher rate of 529 

multimorbidity across different diagnostic categories. Previous studies have found that both preterm 530 

birth and ASD are associated with adverse symptoms. For instance, preterm infants are 531 

independently inherently prone to multimorbidity and severe health complications affecting 532 

multiple organs and systems [16,51,52], such as visual and auditory impairments [53], epilepsy [54], 533 

ADHD [17], and other psychiatric disorders [18]. This supports the hypothesis that environmental 534 

liability factors like preterm may influence some of the heterogeneity and higher comorbidity rates 535 

observed in ASD [55].  536 

 537 

After stratifying preterm based on gestational age, we observed that those born with lower 538 

gestational age tend to have more severe outcomes, which is in line with the dose-effect reported in 539 

prematurity, where the likelihood of developmental issues increases with decreasing gestational age 540 

[52]. This effect is also reflected in the potentially increasing complexity of multimorbidity among 541 

groups with lower gestational age [16]. Additionally, we showed significantly more severe symptom 542 

levels, as measured by different standardized questionnaires and cognitive tests, in ASD-preterm, 543 

consistent with previous studies as well as general research comparing preterm and term birth 544 

[17,56–58]. It is important to note that with large sample sizes, even very small differences can 545 

become statistically significant. Therefore, the results of the quantitative measures should be 546 

interpreted with caution. 547 

 548 

In idiopathic ASD, heritability is estimated to be approximately 80% [6], but in preterm born, 549 

environmental factors account for 60% of the variation in gestational age [59]. Our findings suggest 550 

that genetic factors underly, at least partly, the ASD diagnosis even in preterm but that the complex 551 
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phenotypic presentation, including multimorbidity, could be due to the environmental stressor of 552 

being preterm. Specifically, we did not observe significant differences in DNV numbers between 553 

preterm and term ASD individuals. We did observe suggestive evidence that DNV burden could be 554 

higher in ASD-preterm compared with non-ASD-preterm, but the finding was inconsistent, which 555 

could be due to sample size overall and within each gestational age sub-group. After stratifying by 556 

preterm stages, we observed higher point estimates for DNV event rates in ASD compared to non-557 

ASD within the moderate to late preterm birth, while lower point estimates in ASD compared to 558 

non-ASD within extremely to very preterm birth, but most of them did not reach statistical 559 

significance. If proven statistically significant in a future study, one can speculate that this may be 560 

indicative of distinct underlying genetic mechanisms for ASD across different preterm sub-groups. 561 

Limited research indicated a higher DNV burden in overall preterm newborn genomes and primarily 562 

in genes related to embryonic brain development; however, the study did not consider ASD or 563 

another behavioral diagnosis in preterm infants [22]. The increased DNV burden could be thus due 564 

to the higher prevalence of ASD within the preterm infant group as similar findings are repeatedly 565 

shown for ASD [60].  566 

 567 

Although GWAS studies of prematurity have identified variations in maternal and fetal genes 568 

separately [61,62], few have examined the impact of rare inherited variants. Our study did not find a 569 

difference in the burden of rare inherited variants between ASD-preterm and ASD-term individuals. 570 

This can be partially explained by the fact that the maternal genome influences prematurity more 571 

than the fetal genome [14]. Although we did not find an overall association between ASD PRS and 572 

prematurity, we show intriguing findings that those with the highest PRS could have a higher 573 

likelihood of ASD, especially in preterm infants and boys. Even after including the interaction 574 

between preterm status and PRS, these features maintained a significant association with ASD 575 

likelihood, and the interaction itself was significantly associated with ASD diagnosis. Again, these 576 

findings need validation, especially as a prior study by Cullen et al. found no evidence of an 577 
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interaction effect between ASD polygenic score and gestational age at birth on cognition [15]. 578 

However, it is important to note that the cognitive difficulty they measured is only one of the 579 

outcomes that do not imply an ASD diagnosis, and the model they used also included socio-580 

economic status as a covariate. 581 

 582 

Variants at AGTR2 and ADCY5 genes were identified as associated with gestational duration and 583 

preterm birth in the GWAS study of Zhang et al [63]. Notably, these two genes are also known as 584 

ASD-associated genes [38]. This overlap suggests that certain genetic factors may influence both 585 

preterm birth and neurodevelopment. Given that our study subjects include individuals with either 586 

preterm or ASD conditions, some of these shared genetic factors may be overlooked. In the future, 587 

the understanding of the role of these genes in both preterm birth and ASD may reveal mechanisms 588 

by which genetic susceptibility to preterm birth contributes to the increased likelihood of ASD and 589 

other NDDs observed in preterm children. 590 

 591 

In addition to genetic factors, widespread alterations in brain development associated with preterm 592 

infants may contribute to the increase in ASD likelihood. Previous studies have indicated that 593 

reduced structural brain asymmetry and poor brain development during neonatal life may increase 594 

the liability of ASD in preterm infants [64,65]. Even in preterm children exhibiting similar ASD traits 595 

during childhood, distinct etiological trajectories have been observed involving variations in neonatal 596 

cerebellar volume and developmental delay [66]. 597 

 598 

Not all preterm infants develop ASD [67]. but we demonstrate that when genetic factors are 599 

combined with the environmental risk of preterm birth, preterm children face an elevated likelihood 600 

of ASD diagnosis. Recognizing the limitations of traditional statistical models in capturing nonlinear 601 

interactions between features, we developed an ML model to predict ASD diagnosis in preterm 602 

children at birth. Unlike previous ASD prediction models that rely on developmental trajectories or 603 
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typical characteristics collected as children grow [25,29,68], our ML model utilized only information 604 

available at birth, integrating phenotype and genetic information. Moreover, most previous models 605 

are based on the general population [25,68], limiting their applicability to preterm infants. However, 606 

it is necessary to build prediction models tailored specifically for preterm infants due to the 607 

heterogeneity of ASD phenotypes [1], and preterm ASD children may exhibit specific phenotypes 608 

compared to term ASD children [18]. Although our ML model did not achieve significantly higher 609 

performance, achieving 69% accuracy with a small sample size and few features demonstrates the 610 

feasibility and efficacy of integrating phenotype and genetic information for ASD prediction. There is 611 

still substantial room for improvement in model performance. Increasing the sample size would 612 

provide the model with more learning opportunities and could enhance prediction accuracy. 613 

Additionally, adding more features associated with preterm birth and ASD would benefit the 614 

prediction, such as maternal age, prenatal exposure, and fetal birth weight. Other features like 615 

intubation in the delivery room, family language, parental education, other treatment, Infection, and 616 

ventilation have also been found to have predictive ability for cognitive outcomes in very preterm 617 

infants [29]. It is important to note that we cannot identify the causal relationships between features 618 

selected by the model and ASD diagnosis. Still, we suggest that these features could potentially 619 

enhance prediction models in the future. 620 

 621 

Our study has several limitations. Firstly, the cohorts we used are specifically focused on ASD, and 622 

the control group without ASD were still siblings and parents of ASD probands, potentially 623 

underestimating genetic differences between the groups. Given the high heritability estimation in 624 

ASD, siblings with a closer relationship with ASD have a higher relative risk ratio for ASD [4]. We 625 

cannot eliminate these potential genetic influences, which may introduce biases in results and affect 626 

the prediction ability of the ML model. Secondly, we did not stratify analyses by sex due to the 627 

limited sample size, potentially overlooking sex-specific differences in ASD phenotypes and variant 628 

event rates. Thirdly, we focused here only on the sequence level variation; thus, the next step would 629 
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be to include more types of genetic variations. Finally, our exploration of genetic factors primarily 630 

focused on average population-level associations and NDD genes, potentially overlooking genetic 631 

effects beyond the currently known ASD-associated genes and variants that may contribute to the 632 

elevated likelihood of ASD in preterm children. Previous studies have pointed out the genetic 633 

association between preterm and ASD, such as common genetic variants linking abnormalities in the 634 

gut-brain axis with both conditions [69]. We believe that combining genetic features and more 635 

detailed phenotypic information will help to explain further why some preterm children have ASD 636 

while others do not. 637 

  638 

 639 

Conclusion 640 

In conclusion, we demonstrate that ASD genetic liability is similar in ASD-term and ASD-preterm, 641 

suggesting that even within preterm, genetic factors play an important role in etiology. Our study did 642 

not find evidence of a link between genetic factors and preterm birth in ASD. However, our findings 643 

suggest that preterm birth would exacerbate the severity of outcomes in ASD individuals, and this 644 

difference may be driven more by environmental factors. As we observed some differences in the 645 

rate of ES DNV in preterm individuals compared between ASD and non-ASD, we only suggest that 646 

genetic factors may increase the likelihood of a preterm child getting an ASD diagnosis and the 647 

diagnosis is not modified by the interaction between multimorbidity and DNV burden. Through the 648 

development of our ML model, we demonstrate that integrating phenotype and genetic information 649 

is feasible and holds promise for the early prediction of ASD in preterm children at birth. Our study 650 

provides insights into the phenotypic characteristics of ASD preterm individuals. We suggest that 651 

health screening for preterm birth infants should incorporate the collection of genetic data, as it 652 

better supports early clinical identification of ASD and can aid in the guidance of early intervention 653 

strategies. 654 
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