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Abstract: Iron (Fe) and sulfur (S) are two essential elements for plants, whose interrelation is
indispensable for numerous physiological processes. In particular, Fe homeostasis in cereal species is
profoundly connected to S nutrition because phytosiderophores, which are the metal chelators required
for Fe uptake and translocation in cereals, are derived from a S-containing amino acid, methionine.
To date, various biotechnological cereal Fe biofortification strategies involving modulation of genes
underlying Fe homeostasis have been reported. Meanwhile, the resultant Fe-biofortified crops have
been minimally characterized from the perspective of interaction between Fe and S, in spite of the
significance of the crosstalk between the two elements in cereals. Here, we intend to highlight the
relevance of Fe and S interrelation in cereal Fe homeostasis and illustrate the potential implications it
has to offer for future cereal Fe biofortification studies.

Keywords: Fe and S interaction; Fe biofortification; cereals; phytosiderophores; nicotianamine;
Strategy II; Strategy I

1. Introduction

Iron (Fe) is an essential element for living organisms. Being a metal element with variable oxidization
states, Fe mediates a range of redox reactions, including electron transport in mitochondria or oxygen
transport by red blood cells in humans and mammals. Despite its critical biochemical functions, human
dietary Fe intake is often found to be suboptimal, posing a significant health risk to people worldwide [1].
Anemia, the most common outcome of human Fe deficiency, is estimated to affect a quarter of the global
population [1]. In developing regions, where anemia is particularly prevalent [2], the occurrence of
insufficient Fe intake is commonly associated with poverty—owing to economic disparities and food
distribution challenges, the diets are predominated by one or few foods, such as starch-rich cereals. Cereals
are relatively inexpensive and rich in calories, but poor in bioavailable Fe, as well as other nutrients [3].

As a countermeasure against Fe deficiency, intrinsic improvement of Fe content as well as
bioavailability in the cereal grains, known as cereal biofortification, is considered to be an effective and
sustainable strategy [4]. To date, various biotechnological cereal biofortification strategies involving
enhancement of Fe uptake, (re)translocation, and storage mechanisms have been reported [5–9].
However, although much attention has been paid to the biotechnological strategies and the resultant
increment in grain Fe concentration, only a limited extent of characterization has been made on other
physiological or agro-morphological aspects of Fe-biofortified crops [10,11].

In this review, we aim to propose potentially intriguing yet untapped aspects of Fe-biofortified
cereal crops in light of interaction between Fe and sulfur (S) in plants. We first illustrate the mechanisms
underlying Fe homeostasis in cereals, highlighting its commonality and diversity among graminaceous
species, as well as the latest insights. Secondly, we summarize the currently reported strategies for
cereal Fe biofortification, mainly in rice (Oryza sativa) but also in other cereal crops. Subsequently,
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we elaborate on the uptake, transport, metabolism, and biological functions of S in cereals, with a
focus on its roles related to the homeostasis of Fe and other metal species. Finally, we cover the
spheres of crosstalk between Fe and S in cereals crops that could offer particular implications for
future Fe biofortification efforts, namely, (1) effect of crop S status on Fe acquisition and translocation,
(2) hydrogen sulfide as a potential regulator of crop Fe homeostasis, (3) Fe as a buffer for sulfide
damage in the rice rhizosphere, and (4) roles of S-containing biomolecules in response to concomitant
increase in heavy metal uptake by Fe-biofortified crops.

2. Fe Uptake and Transport in Cereals

In this section, we provide a concise overview of the mechanisms underlying Fe homeostasis in
cereal crops, highlighting their diversity among cereal species and recent insights. Readers interested
in a detailed review on the mechanisms, especially with an extensive graphical illustration, are referred
to preceding articles [9,12–14].

2.1. Fe Uptake System and Phytosiderophore Synthesis

In aerobic soil conditions, Fe is mostly present as sparingly soluble ferric oxides, which cannot
be taken up by plants as such. So as to take up sufficient Fe from the soil, graminaceous species
employ a mode of Fe acquisition called Strategy II [15,16]. In Strategy-II Fe uptake, plants secrete
a group of Fe(III) chelators called mugineic-acid family phytosiderophores (PS) from the roots via
TRANSPORTER OF MUGENEIC ACID 1 (TOM1) [17]. The resultant Fe(III)–PS complex are taken up
by the cereal plants through YELLOW STRIPE 1 (YS1) or YS1-LIKE (YSL) transporters, such as maize
(Zea mays) YS1 (ZmYS1), barley (Hordeum vulgare) YS1 (HvYS1), or rice YSL15 (OsYSL15) [18–21].

PS are produced from S-adenosyl methionine (SAM; AdoMet), which originates from the methionine
cycle through a sequence of enzymatic reactions [22–24] (Figure 1), putatively in a intracellular vesicle
derived from rough endoplasmic reticulum (rER) [25–30]. Firstly, nicotianamine (NA) is synthesized via
trimerization of SAM by NA SYNTHASE (NAS) [31]. Then, deoxymugineic acid (DMA) is synthesized
from NA in the reactions mediated by NA AMINOTRANSFERASE (NAAT) and DMA SYNTHASE
(DMAS) [32,33] (Figure 1). DMA is the only type of PS produced by rice, wheat (Triticum aestivum), and
maize [34,35], whereas barley and some other graminaceous species can further convert DMA into other
members of PS, some of which have stronger Fe(III)-binding capability than DMA [36–39]. The amount of
PS secreted from roots also varies among graminaceous species, positively correlating with the crops’
tolerance to Fe deficiency—barley is the most tolerant crop with the largest PS secretion, whereas rice is
the least tolerant with the smallest PS secretion [40].

Relatively modest level of PS secretion from rice may be associated with the environment to which
rice and its relatives have adapted [41,42]. Rice is commonly cultivated in water-logged paddy fields,
where anaerobic soil conditions prevail. In deoxygenated soil, Fe is reduced to soluble Fe(II) and is
fairly available for plant uptake [43]. Thus, in contrast to other cereal species [44], rice partially adopts
Strategy-I Fe uptake, in which Fe(II) ions are directly taken up by IRON-REGULATED TRANSPORTERs
(IRTs) [41,45]. Although a functional Strategy-II uptake system is present in rice, when Fe(II) ions are
abundant in the rhizosphere, Fe acquisition is mainly achieved through Strategy-I uptake, and genes
involved in Strategy-II Fe uptake are down-regulated [43,46].
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Figure 1. Overview of the connection between sulfur (S) nutrition and iron (Fe) nutrition in cereals 
plants. Black arrows indicate enzymatic synthetic reactions, unless otherwise indicated. Blue arrows 
signify promotional effects between biological processes, whereas red bars with flat ends indicate 
suppressive effects between biological agents and processes. Arrows and bars with dotted lines 
indicate relationships between biological processes/agents that are hypothetically pronounced in Fe-
biofortified crops. Hydrogen sulfide (H2S) is hypothesized to regulate nicotianamine 
(NA)/phytosiderophores (PS) synthesis via unknown biological mechanisms or agents. Abbreviations 
are as follows: APS: ADENOSINE PHOSPHOSULFATE; APSR: APS REDUCTASE; ATPS: ATP 
SULFURYLASE; CBL: CYSTATHIONINE β-LYASE; CGS: CYSTATHIONINE γ-SYNTHASE; Cys: 
cysteine; DMA: deoxymugineic acid; DMAS: DMA SYNTHASE; Glu: glutamate; Gly: glycine; GS: 
GLUTATHIONE SYNTHETASE; GSH: glutathione; Met: methionine; MS: Met synthase; MT: 
METALLOTHIONEIN; NAAT: NA AMINOTRANSFERASE; NAS: NA SYNTHASE; OAS: O-
acetylserine; OAS-TL: OAS (THIOL) LYASE; PC; phytochelatin; PCS: PC synthase; ROS: reactive 
oxygen species; S2-: sulfide; SAM: S-adenosyl methionine; SAMS: SAM SYNTHASE; Ser: serine; SO32-: 
sulfite; SO42-: sulfate; SULTR: SULFATE TRANSPORTER; Zn: zinc; γ-EC: glutamylcysteine; γ-ECS: γ-
EC SYNTHETASE. 

Figure 1. Overview of the connection between sulfur (S) nutrition and iron (Fe) nutrition in cereals
plants. Black arrows indicate enzymatic synthetic reactions, unless otherwise indicated. Blue arrows
signify promotional effects between biological processes, whereas red bars with flat ends indicate
suppressive effects between biological agents and processes. Arrows and bars with dotted lines indicate
relationships between biological processes/agents that are hypothetically pronounced in Fe-biofortified
crops. Hydrogen sulfide (H2S) is hypothesized to regulate nicotianamine (NA)/phytosiderophores (PS)
synthesis via unknown biological mechanisms or agents. Abbreviations are as follows: APS: ADENOSINE
PHOSPHOSULFATE; APSR: APS REDUCTASE; ATPS: ATP SULFURYLASE; CBL: CYSTATHIONINE
β-LYASE; CGS: CYSTATHIONINE γ-SYNTHASE; Cys: cysteine; DMA: deoxymugineic acid; DMAS:
DMA SYNTHASE; Glu: glutamate; Gly: glycine; GS: GLUTATHIONE SYNTHETASE; GSH: glutathione;
Met: methionine; MS: Met synthase; MT: METALLOTHIONEIN; NAAT: NA AMINOTRANSFERASE;
NAS: NA SYNTHASE; OAS: O-acetylserine; OAS-TL: OAS (THIOL) LYASE; PC; phytochelatin; PCS:
PC synthase; ROS: reactive oxygen species; S2−: sulfide; SAM: S-adenosyl methionine; SAMS: SAM
SYNTHASE; Ser: serine; SO3

2−: sulfite; SO4
2−: sulfate; SULTR: SULFATE TRANSPORTER; Zn: zinc;

γ-EC: glutamylcysteine; γ-ECS: γ-EC SYNTHETASE.
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2.2. Potential Diversity in the Manner of Fe Uptake and Radial Fe Transport in Roots

Among cereal species, there are also variations in root anatomy that possibly affect the site of Fe uptake
in roots, as well as the fashion of subsequent within-root radial Fe transport required for xylem Fe loading.

The number of Casparian strips, which block apoplastic flow of water and nutrients across the root cell
layers, is one of such anatomical variations. Almost all vascular plants have endodermis, a cell layer with
a Casparian strip surrounding the root stele [47]. Moreover, the majority of the plants investigated possess
exodermis, another cell layer with a Casparian strip beneath the epidermis [48]. Although rice and maize
are commonly found to possess both endodermal and exodermal Casparian strips (exodermal species),
wheat and barley tend to be void of exodermis (non-exodermal species), though these characteristics
may vary depending on the type of roots, genotype, and stress conditions [48–52]. In exodermal species,
nutrients should be taken up either by epidermal or exodermal cells because they are the only cell layers
contacting the soil solution [47]. In non-exodermal species, on the other hand, cortical and endodermal
cells can contribute to the uptake due to the absence of a barrier for the apoplastic flow of nutrients
into the cortex from the external environment [47]. In line with this notion, the expression of Fe(III)-PS
uptake transporter in maize, ZmYS1, is confined to epidermal cells [53]. Meanwhile, HvYS1 expression in
barley can be found not only in epidermal cells but also in the cortex [18]. Furthermore, a Fe(III)-DMA
transporter HvYSL2 is expressed in root endodermal cells [54]. These observations collectively suggest a
potential variation in Fe uptake site in roots among different cereal species.

Subsequent to uptake from the rhizosphere, Fe should be radially transported to the root stele
for xylem loading. The manner of such within-root Fe transport may also differ, especially between
rice and other cereal species, owing to the difference in root anatomy. As a species well adapted to
flooded conditions, rice has a highly developed aerenchyma between the endodermis and exodermis,
through which air is supplied for the root cells [55]. Because only a small number of cells are alive in
rice aerenchyma, there is little symplastic connection between the rice epi/exodermis and stele [56].
This distinct root internal structure in rice requires the nutrients to be apoplastically transported
across the cortex before entering the stele, which is putatively mediated by a pair of efflux and influx
transporters at the exodermis and endodermis, respectively [57,58]. Rice Fe transporters involved
in this transport are currently unknown, but the fact that OsYSL15 is induced not only in epidermis
but also in cortex upon Fe deficiency [21,59], even though rice is an exodermal species, suggests the
potential involvement of OsYSL15 in radial Fe transport in roots.

2.3. Fe Mobilization for Long-Distance and Intercellular Transport

Owing to its high redox activity and low solubility, Fe has to be chelated by organic ligands for
its solubilization and transport in plants [60]. The main chelators for Fe long-distance transport in
cereals are considered to be citrate, NA, and PS [61–68]. In xylem Fe transport, citrate seems to be the
major chelator [61,62,64,65], whereas DMA plays a supplementary role, especially under Fe deficiency
(Figure 2) [62,63]. As citrate is considered to be loaded onto xylem via FERRIC REDUCTASE DEFECTIVE
LIKE 1 (FRDL1) transporter in a form unbound to Fe, there can be a transporter that mediates unchelated
Fe loading onto xylem, which is yet to be identified [65]. The loading of DMA and NA onto xylem may
be undertaken by TOM2 and EFFLUX TRANSPORTER OF NA 1 (ENA1), respectively [69,70].

In phloem, NA and/or DMA are likely to be the primary chelators for Fe (Figure 2) [61,66,71].
A Fe(II)-NA transporter YSL2, and possibly a Fe(III)-DMA transporter YSL18, contribute to Fe transport
via phloem in rice [71–73], which suggests that Fe is primarily loaded onto phloem in a chelated form.
It remains to be examined whether or not there is a phloem loading of chelator-free Fe.

Fe transferred from roots to shoots is once accumulated in stem nodes and distributed to various
aboveground tissues, probably via phloem [74]. This implies that there is a mechanism mediating
xylem-to-phloem Fe transfer in stem nodes (Figure 2), an organ that plays a central role in intervascular
nutrient transfer and nutrient delivery to various aboveground tissues in graminaceous species [75,76].
The transporters mediating this putative xylem-to-phloem Fe transfer at stem nodes are yet to be
identified. Besides being a hub for nutrient distribution, stem nodes pool nutrients in their apoplastic
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regions [77–79]. The role of citrate and citrate transporter FRDL1 in remobilizing Fe deposited in the
apoplastic regions of the nodes has been described [80].

Graminaceous plants can also accumulate Fe in apoplastic spaces in roots, which can serve as a
reservoir for Fe, especially under Fe-limiting conditions [81–85]. Phenolic compounds can contribute
to solubilizing Fe precipitated in the root apoplastic regions. In rice, PHENOLICS EFFLUX ZERO1
(PEZ1) is identified as a transporter responsible for mobilizing precipitated Fe in the root xylem by
pumping in protocatechuic acid (PCA) in the xylem sap [84]. In addition, PEZ2 provides phenolics to
solubilize Fe in the apoplasm in the roots [85].

Route for Fe loading onto the grains may differ among cereal species as well. In wheat and barley,
xylem is discontinued towards the grain [86,87]. On the other hand, there is no discontinuity of xylem
towards developing rice grains [88,89]. This implies that the relative contribution of phloem-mediated
source-to-sink Fe translocation to grain Fe concentration may differ among cereals.

In cereal species including rice, there is no symplastic connection between the maternal tissue and
the filial tissues in grains [86,90]. Therefore, Fe must be transported though a pair of unknown efflux
and influx transporters in order to be loaded onto the grain. After grain loading, Fe tends to accumulate
at a higher concentration in the aleurone layer than in the endosperm [91,92]. In aleurone layer, Fe is
often associated with phytic acids, which makes Fe unavailable for humans [91,93]. Fe transfer between
endosperm and embryo seems to be mediated by YSL9 transporter in rice [94].

2.4. Fe Intracellular Homeostasis

Given the reactive nature of Fe, surplus Fe has to be sequestered in vacuole in plant cells [95].
On the other hand, organelles such as mitochondria and chloroplasts should be supplied with ample
Fe to fulfill their physiological roles involving many redox reactions [96,97]. To meet these somewhat
dilemmatic needs, Fe transport and storage in these organelles are tightly controlled. In the last decade,
roles of transporters and Fe-binding agents in the regulation of intracellular Fe homeostasis have been
gradually revealed in cereals, especially in rice.

MITOCHONDRIAL IRON TRANSPORTER (MIT) assumes a critical role in providing Fe for
mitochondria [98]. As Fe importers for chloroplasts, Fe DEFICIENCY-RELATED 3 (FDR3) and FDR4
transporters were identified in maize [99,100]. Fe storage in plastids, particularly under sufficient or
excess Fe conditions, is likely to be mediated by Fe storage protein FERRITIN (FER), whose genes encode
transit peptides for plastid localization at its N-terminus [101–103]. In addition to FER, VACUOLAR
IRON TRANSPORTERs (VITs) on the tonoplast promote compartmentalization of surplus Fe into
vacuoles [104,105]. In rice, knockdown of a tonoplast-localized DMA influx transporter VACUOLAR
MUGINEIC ACID TRANSPORTER (VMT) leads to higher root cell sap Fe concentration as well as
lower xylem Fe concentration [106]. This implies that Fe once sequestered in vacuoles is stored as Fe(III)
and can be exported again as Fe(III)-DMA. Moreover, it has been postulated that FERRIC REDUCTASE
OXIDASE 1 (FRO1) localized on rice tonoplast can contribute to increasing the Fe availability for
cytoplasm by reducing Fe(III) to Fe(II) in vacuoles [107]. Therefore, there may also be an unknown
Fe(II) export mechanism from the vacuoles, in addition to the Fe(III)-DMA export machinery.

2.5. Fe Homeostasis Regulation

Genes involved in Fe uptake are up-regulated in response to Fe deficiency in graminaceous
species, whereas they are down-regulated under Fe sufficiency [43,108–111]. An elaborate network of
regulatory factors underlying such an adaptive response has been delineated recently in rice, which
may be transferrable to other cereal crops. The factors that assume a pivotal role in the regulatory
network in rice are IRON DEFICIENCY-RESPONSIVE ELEMENT-BINDING FACTOR 1 (IDEF1) and
HEMERYTHRIN MOTIF-CONTAINING REALLY INTERESTING NEW GENE- AND ZINC-FINGER
PROTEINs (HRZs), which are classified into Fe sensors by virtue of their putative capacity to alter
their function to regulate Fe homeostasis by directly sensing the Fe availability in the cells [112].
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IDEF1 is a positive regulator of Fe uptake-related genes, which can sense the Fe availability in cells
by binding to Fe and other metal ions (Figure 2) [113–115]. IDEF1 interacts with a cis-element
IDE1 in the promoter regions of Fe deficiency-responsive genes to up-regulate them [113,116].
As there is a diversity in amino acid sequence in the metal-binding region of IDEF1 among different
graminaceous species, there may also be an inter-species functional diversity for IDEF1 [115].
IDEF1 gene is expressed irrespective of the Fe status of the plant, but its protein is prone to 26S
proteasome-dependent degradation under Fe-sufficient conditions (Figure 2) [117,118]. In Fe-deficient
conditions, its degradation is prevented by IDEF1-BINDING PROTEINs (IBPs), and as a result, genes
involved in Fe deficiency response are induced (Figure 2) [117]. IBP genes have many IDE1 motifs
in their promoter regions and are positively regulated by IDEF1, thereby constituting a positive
feedback loop between IDEF1 and IBP1 for Fe deficiency response (Figure 2) [117]. In rice, IDEF1 is
known to positively regulate another transcription factor governing Fe deficiency response, called
IRON-RELATED TRANSCRIPTION FACTOR 2 (IRO2) (Figure 2) [113,119]. IRO2 can induce genes
involved in Strategy-II Fe uptake upon Fe deficiency by binding to their promoter regions [120]. It has
been recently revealed that IRO2 requires another transcription factor BASIC HELIX-LOOP-HELIX
156 (bHLH156) to localize in the nucleus and regulate gene expression (Figure 2) [121].

In contrast to IDEF1, HRZ1 and HRZ2 are identified as negative regulators of Strategy-II Fe
uptake in rice, especially when there is sufficient external Fe available [122]. Supposedly, HRZs sense
Fe availability also by binding with Fe and other metal ions (Figure 2) [122]. Like IDEF1, HRZs are as
well susceptible to 26S proteasome-dependent degradation in roots, but contrary to IDEF1, they are so
regardless of the Fe status (Figure 2) [122]. HRZs negatively regulate Fe uptake and translocation by
contributing to the proteasomic degradation of POSITIVE REGULATORS OF IRON HOMEOSTASIS
(PRIs) through their ubiquitination (Figure 2) [123,124]. PRIs positively regulate the expression of IRO2
and also YSL2, which is not regulated by IRO2 [124,125].

Interestingly, HRZs are positively regulated by IDEF1 (Figure 2) [122]. Moreover, PRIs, which are
deemed overall as positive regulators of Fe uptake and translocation, induce the expression of IRO3,
which codes for a negative transcription factor for Fe deficiency response in rice (Figure 2) [123,124,126].
These interrelations between antagonistic regulatory factors could be part of a sophisticated machinery
to prevent excessive Fe deficiency response.

There are several other characterized regulatory factors involved in Fe homeostasis regulation
in rice, whose association with the abovementioned regulation network, with IDEF1 and HRZs at
its core, is absent or unknown. In parallel to IDE1 and IDEF1, a pair of cis-element and trans-factor,
namely, IDE2 and IDEF2, were found to positively regulate Fe deficiency response [116,127]. Moreover,
rice bHLH133 is a transcription factor that contributes to Fe retention in roots under Fe-deficient
conditions [128]. Rice homologues of IRON MANs (IMAs), which are regulatory factors identified in
Arabidopsis (Arabidopsis thaliana) as a positive regulator of systemic Fe deficiency signaling, are also
likely to have similar roles in rice [129].

One rare exception of a transcription factor related to Fe transport identified first in wheat
is NO APICAL MERISTEM B-1 (NAM B-1) [130]. Wheat NAM B-1 promotes the senescence of
vegetative tissues, which leads to increased translocation of Fe from leaves to grains along with other
nutrients [130]. Although NAM B-1 homologue is identified in rice, it does not have an identical role
as the wheat counterpart [131].

In addition to transcription factors, signal transduction through phytohormones such as auxin or
jasmonates are suggested as being important components of Fe deficiency response [132,133]. NA is also
speculated as being a possible Fe deficiency signaling molecule [29,112,134], given that the genes involved
in Fe acquisition and translocation are up-regulated in rice lines accumulating increased NA [11,28,135].

3. Biotechnological Strategies for Cereal Fe Biofortification

Since some preceding reviews already provide a comprehensive summary of biotechnological
Fe biofortification in cereals [5–9], we do not extensively describe different cereal Fe biofortification
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strategies in this section. Rather, we review below the key achievements by some promising strategies,
in association to the mechanism for Fe homeostasis illustrated in the previous section.

3.1. Target Fe Increase in Biofortification

Target Fe concentrations for Fe biofortification are 7.5-fold increase from the baseline Fe
concentration of around 2 mg/kg in polished rice and twofold increase from the baseline concentration
of around 30 mg/kg in whole wheat and maize grains [4].
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Figure 2. Graphical summary of important cereal iron (Fe) biofortification strategies. Proteins
surrounded with blue squares are those whose modulation leads to increase in grain Fe concentration.
Blue underlines indicate the molecules whose genes are up-regulated in rice lines overaccumulating
nicotianamine (NA) or overexpressing NA SYNTHASE (NAS). Red underscores refer to the complexes
whose amount is putatively increased in NAS-overexpressing lines. Black arrows indicate the movement
of molecules unless otherwise noted, whereas green arrows signify synthetic enzymatic reactions.
In the inset for Fe homeostasis regulation, blue arrows and red bars with flat ends indicate promotional
and suppressive effects between molecular agents and/or processes, respectively. In the same inset,
black arrows pointing to the bin indicate proteasomic degradation of proteins. Abbreviations are
as follows: AtNRAMP3: NATURAL RESISTANCE-ASSOCIATED MACROPHAGE PROTEIN 3
from Arabidopsis thaliana; bHLH156: BASIC HELIX-LOOP-HELIX 156; DMA: deoxymugineic acid;
DMAS: DMA SYNTHASE; FER: FERRITIN; HRZ: HEMERYTHRIN MOTIF-CONTAINING REALLY
INTERESTING NEW GENE- AND ZINC-FINGER PROTEIN; IBP1: IDEF1-BINDING PROTEIN 1;
IDEF1: IRON DEFICIENCY-RESPONSIVE ELEMENT-BINDING FACTOR 1; IRO2/3: IRON-RELATED
TRANSCRIPTION FACTOR 2/3; IRT1: IRON-REGULATED TRANSPORTER 1; PRI: POSITIVE
REGULATOR OF IRON DEFICIENCY RESPONSE; TOM1: TRANSPORTER OF MUGENEIC ACID 1;
VIT: VACUOLAR IRON TRANSPORTER; YSL2/15: YELLOW STRIPE-1 LIKE 2/15.
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3.2. Fe Biofortification Strategies Involving NAS Overexpression

Overexpression of NAS is by far the most common approach in cereal Fe biofortification [91,93,136–141].
The reason behind its popularity is the versatile functions of NA in Fe homeostasis in cereal crops (Figure 2).
Constitutive NAS expression hypothetically affects grain Fe concentration via combination of the following
three mechanisms: increased Fe(III)-PS uptake due to enhanced PS synthesis and secretion, increased
NA-Fe(II) or PS-Fe(III) translocation from source tissues to grains, and up-regulation of other genes involved
in Fe deficiency response (Figure 2). Fe in the grains of NAS-overexpressing lines is likely to be chelated by
NA (Figure 2), which is a highly bioavailable form [137,142]. Furthermore, NAS overexpression allows the
inner endosperm to be enriched with Fe [91,93]. This is advantageous for biofortification because outer
grain layers are often removed in post-harvest processing. To date, up to 4.5-fold and 2.1-fold increases
have been reported in polished rice and whole wheat grains, respectively, in plants overexpressing NAS
alone [140,141].

3.3. Fe Biofortification Strategies Involving Endosperm-Specific FER or VIT Expression

Another classic approach for cereal biofortification is to increase the Fe storage capacity in cereal
endosperms. As Fe tends to localize to subcellular organelles for its biochemical function or sequestration
in plant cells, increasing the plastid-localized Fe-storage protein FER [143–146] or tonoplast-localized
Fe importer VITs [105] in the endosperm is considered effective for increasing the Fe storage in grains
(Figure 2). Fe bound to FER is known to be fairly available for human absorption [147]. Endosperm-specific
expression of FER alone has led to up to 3.4-fold and around two-fold increase in polished rice and wheat
grains, respectively [146,148]. Meanwhile, VIT expression in the endosperm resulted in around a twofold
increase in wheat and barley whole meal [105].

3.4. Combinatory Strategies Lead to Further Increase in Grain Fe Concentration

In rice, combination of different approaches, especially coupling constitutive NAS expression
and/or endosperm-specific FER expression with other approaches, often leads to higher increase in
grain Fe concentration than individual approaches. Enhanced expression of Fe(II)-NA transporter
gene YSL2, which alone already leads to increased source-to-grain Fe translocation [72], resulted in
an up to sixfold increase in combination with NAS and FER expression (Figure 2) [149]. Moreover,
co-expression of NAS and FER with vacuole Fe exporter gene NATURAL RESISTANCE-ASSOCIATED
MACROPHAGE PROTEIN 3 (NRAMP3) from Arabidopsis in aleurone and embryo increased the white
rice Fe concentration up to sixfold (Figure 2) [150]. An endosperm Fe concentration increase of 7.5-fold
was attained by simply expressing NAS and FER in an Indica rice mega-variety IR64 [151]. By contrast,
in wheat, combined expression of NAS and FER expression did not lead to marked increase in grain Fe
concentration, compared to constitutive NAS expression alone [140].

4. Uptake, Transport, and Metabolism of S and Its Biological Functions Related to Metal
Homeostasis in Plants

Below, we summarize the mechanisms involved in S homeostasis in plants, deduced mainly from
studies on Arabidopsis. Though it is proposed that knowledge obtained through fundamental research
on S metabolism in Arabidopsis is directly applicable to crop species [152], it awaits clarification
because inter-species variation has been witnessed [153].

4.1. Sulfate Uptake

Like Fe, S is also a redox-active element [154]. In aerated soil, the bulk of inorganic S is present as
sulfate ions (SO4

2−) at a wide range of soil pH [155]. Under anaerobic soil conditions, on the other
hand, sulfate is reduced to sulfide forms because microorganisms utilize sulfate as a terminal electron
acceptor along with nitrate, manganese (IV), and ferric iron [156,157]. However, in the submerged
paddy soil with planted rice, especially in the plant rhizosphere, the concentration of sulfate and/or
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thiosulfate (which is ultimately oxidized to sulfate) ions is higher than in the flooded soil without rice
cultivation [158–160]. This relative abundance of oxidized S species in paddy soil with growing plants is
ascribed to the oxygen release from the plant roots (radial oxygen loss; ROL) into the rhizosphere [158].

The wide availability of sulfate ions across different soil conditions with vegetation allows the
higher plants, including rice and other cereal crops, to take up S in the form of sulfate ions through
proton-coupled symporter SULFATE TRANSPORTER (SULTR) family [161–163]. The SULTR family in
plants is comprised of four distinct subfamilies (SULTR 1–4 subfamilies; Takahashi et al. 2012), among
which SULTR1 high-affinity sulfate transporter subfamily plays a central role in sulfate uptake [164,165].
In rice, 3 out of 14 SULTR genes are classified as SULTR1 subfamily genes designated as OsSULTR
1;1–1;3 [166]. In line with its putative function as a sulfate uptake transporter, OsSULTR1;1 is expressed
strongly in the roots [167]. In barley, a high-affinity sulfate transporter SULFATE TRASNPORTER 1
(HvST1), which belongs to the same phylogenic group as SULTR1 in other plant species [167], mediates
sulfate uptake from the roots [168–170]. Similarly, maize ST1 (ZmST1) has been identified as a sulfate
uptake transporter [171,172]. Sulfate transporters expressed in the roots of wheat species under S
deficiency are also considered to assume a similar role as SULTR1 transporters in other species, on the
basis of the phylogenic similarity to them [173].

4.2. Sulfate Long-Distance Transport Via Xylem

Upon its uptake from roots, a large portion of sulfate is delivered to different above-ground organs
via xylem [174,175]. Not much is known about the transporters that contribute to the within-root radial
sulfate transport and sulfate loading onto the xylem in the roots of cereal species. In Arabidopsis,
low-affinity SULTR2;1 and SULTR3;5 transporters are postulated to play a role in optimizing the
amount of sulfate loaded onto xylem in root stele [164,176]. In cereals, therefore, SULTR2 and SULTR3
transporters may also have functions analogous to those of Arabidopsis homologues. Consistently,
OsSULTR2 genes (OsSULTR2;1 and 2;2) and some OsSULTR3 (OsSULTR3;5 and 3;6) genes are expressed
at relatively high levels in rice roots [166]. Moreover, both OsSULTR1;1 and HvST1 may as well be
involved in xylem sulfate loading in roots because they are expressed in root stele of rice and barley,
respectively [167,169].

4.3. S Assimilation and Synthesis of S-Containing Biomolecules Related to Metal Homeostasis

Sulfate is biochemically inert as such [177]. Hence, after its delivery to various tissues in plants,
but before its reduction and assimilation, it has to be chemically activated by ATP SULFURYLASE
(ATPS) to form adenosine phosphosulfate (APS) [178] (Figure 1). In plants, APS is then reduced by APS
REDUCTASE (APSR) to sulfite (SO3

2−), which is further reduced to sulfide (S2−) via reaction mediated
by SULFITE REDUCTASE (SIR) [179,180] (Figure 1). These sulfate reduction steps are supposed to take
place in plastids because the transcripts for the enzymes mediating these reactions harbor sequences
coding for plastid transit peptide [178,179,181].

Subsequent to sulfate reduction, sulfide is assimilated into cysteine (Cys) by O-ACETYLSERINE (THIOL)
LYASE (OAS-TL) in cytosol, plastid, and mitochondria [162,182,183] (Figure 1). In this reaction, sulfide is
incorporated into OAS, which is formed through the activation of serine by SERINE ACETYLTRANSFERASE
(SAT) [184] (Figure 1). SAT and OAS-TL are known to form a complex referred to as cysteine synthase
complex [185]. Cys assumes indispensable biological roles. For example, Cys serves as a ligand for Fe in FeS
clusters, which play crucial roles in a range of redox reactions [186,187]. Furthermore, internal Cys level
negatively regulates the expression of sulfate uptake transporter genes in cereals [168,170,171].

In addition to its own biological functions, Cys is a common precursor for a variety of S-containing
biomolecules in plants, including those involved in metal homeostasis [188]. Methionine (Met) is an
important molecule synthesized from Cys via a series of reactions catalyzed by CYSTATHIONINE
γ-SYNTHASE (CGS), CYSTATHIONINE β-LYASE (CBL), and Met SYNTHASE (MS) [189] (Figure 1).
All three reactions occur in chloroplasts, whereas the final step mediated by MS may occur in the
cytoplasm as well [189,190]. Met not only has a basic structural component in plant cells as an amino
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acid, but also is a biochemical precursor of SAM. SAM plays diverse roles encompassing ethylene
biosynthesis, biological methylation, as well as NA synthesis [191] (Figure 1). Though NA itself does
not contain S, it is essential for plant metal homeostasis, including Fe homeostasis [192].

Furthermore, Cys is required for the synthesis of glutathione (GSH;γ-GluCysGly), which takes part
in reactive oxygen species (ROS) scavenging [193,194]. In cereals, GSH can positively affect Cd tolerance
via alleviation of ROS damage [195–197] (Figure 1). GSH is synthesized from Cys along with glutamate
(Glu) and glycine (Gly) by γ-GLUTAMYLCYSTEINE SYNTHETASE (γ-ECS) and GLUTATHIONE
SYNTHETASE (GS) [198,199] (Figure 1). The first step of GSH synthesis mediated by γ-ECS is likely to
be in plastids, whereas the second reaction owing to GS probably takes place in the cytoplasm [194].
Like Cys, GSH can also negatively regulate S uptake and assimilation processes [168,170,194].

At the same time, GSH is also a substrate for the synthesis of phytochelatin (PC), Cys-rich peptide
chelators for heavy metals [200], which is mediated by PC SYNTHASE (PCS) [201,202] (Figure 1).
In cereals, the role of PCs in Cd detoxification has been reported [202–204]. PCs bind to Cd in the
cytosol, and the resultant Cd–PC complex is sequestered into vacuoles via ABCC ATP-BINDING
CASSETTE TRANSPORTERs (ABCCs) [203]. PCs may also contribute to Zn tolerance in cereals, as Zn
can be sequestered into vacuole in a similar manner as Cd [203].

Similar to PCs, METALLOTHIONEINs (MTs) are also Cys-rich polypeptides involved in heavy
metal detoxification and homeostasis [200,205]. However, MTs differ from PCs in that they are directly
encoded by genes, as opposed to enzymatically synthesized PCs [200] (Figure 1). MTs are found
in cytosol and are associated with Zn and Cd tolerance in cereals owing to their capacity to chelate
the metals through their thiols [206–209] (Figure 1). In rice, co-localization of S and Cd in stem
nodes have been revealed [77]. At the same time, expression of one of the rice MT genes was found
to be particularly high in stem nodes [210], coinciding with the notion that MT plays a role in Cd
sequestration by binding to it. MTs are also implicated as being involved in the scavenging of ROS
caused by excessive Zn and Cd exposure [207,211,212].

Cys enzymatic degradation, for example by L-CYSTEINE DESULFHYDRASE, can lead to the
production of hydrogen sulfide (H2S) [213]. Though H2S has long been recognized as a simply toxic
compound, its involvement in stress adaptation, including that to heavy metal stress, has been recently
proposed [214].

4.4. S Intracellular Homeostasis and Long-Distance Transport Via Phloem

Given that chloroplasts are the main venue for S assimilation in plant cells, transporters to load
sulfate to chloroplast are essential for plant S homeostasis. In Arabidopsis, SULTR3 transporters
(SULTR3;1–3;4) have been found to be responsible for sulfate uptake by the chloroplast [215].
Furthermore, vacuoles serve as a reservoir for sulfate in plants. In Arabidopsis root cells, SULTR4;1
and SULTR4;2 are identified as sulfate exporters from vacuoles, thereby controlling the amount of
sulfate that is stored in roots [216]. Given the general conservation of SULTR genes among higher
plants [163], cereal homologues of these genes may play similar roles in intracellular sulfate transport.
In contrast to sulfate transporters, the identity of transporters mediating intracellular transport of Cys
or GSH is not well known [217].

In plants, it is considered that S is transported via phloem primarily in organic forms [218].
S-methylmethionine (SMM), derived from Met, has found to be a major form of S in the phloem sap of
various plants, including cereals [219]. Besides SMM, GSH is also a form of organic sulfur transported
via phloem in cereals [220]. How SMM is loaded onto phloem is yet to be known [217]. As for phloem
GSH loading, involvement of OLIGOPEPTIDE TRANSPORTER (OPT) can be expected because OPT6
in Arabidopsis has been identified as a GSH transporter expressed in vasculature [221]. In addition
to organic S, sulfate has been also detected in rice phloem sap [222]. As SULTR1;3 in Arabidopsis is
characterized as a sulfate transporter likely to be responsible for sulfate loading onto phloem [223],
its homologue in cereals may play a similar role.
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5. Aspects of Fe and S Interaction with Particular Implications for Cereal Fe Biofortification

5.1. Effect of Crop S Status on Fe Acquisition and Translocation

Because NA and PS, both of which play a central role in Fe homeostasis in cereal plants, are
synthesized from Met, a S-containing amino acid, Fe uptake and translocation in cereal plants are
inevitably linked to S metabolism in plants.

It has been shown that Fe concentration in roots, shoots, or grains of graminaceous species tend to
be lower under low external S availability compared to sufficient S availability [224–230]. The low Fe
concentration under little external S availability co-occurs with decreased Fe uptake and/or PS release
rates from the roots [225,226]. Moreover, PS synthesis is down-regulated under S deficiency [231]. On the
other hand, under Fe-deficient conditions, genes involved in sulfate transport, sulfur assimilation, and
methionine metabolism are up-regulated together with the genes in the PS synthesis pathway [26,108,111].
Taken together, sufficient S supply is necessary for the synthesis of PS in cereal crops.

S status of the plant also seems to affect the NA synthesis and Fe distribution in cereal plants. In rice,
low external S availability led to a higher amount of NA in roots but lower amount of NA in leaves and
stems, in comparison to higher external S conditions [224]. At the same time, Fe concentration in roots
and leaves was lower, whereas that in stems was higher in plants exposed to low S environments [224].
In graminaceous species, Fe transferred from roots to shoots first accumulates in stems, and then is
delivered to different parts of the shoots, presumably via phloem [74]. Moreover, NA is likely to be at
least one of the ligands that chelates Fe in cereal phloem [61,64,71,72]. Therefore, the accumulation
of Fe in stems as well as the decrease in leaf Fe concentration can be a result of reduced export of
Fe-NA from stems to leaves via phloem, due to less NA availability in shoots in plants under S
limitation [224]. Furthermore, increased amount of NA specifically in roots of low-S plants could be a
part of the Fe-deficiency response triggered by the reduction in Fe concentration in the leaves. As rice
endogenous NAS genes are induced particularly strongly in roots but less in shoots under Fe deficiency,
the internally available S might have been preferentially allocated to roots for NA synthesis [108,232].
Recently, it was also reported that S limitation leads to decreased level of NA and Fe in rice leaves [229].
All in all, it is likely that insufficient S availability leads to limitation in NA synthesis, thereby disrupting
the optimal internal Fe allocation in graminaceous species.

As reviewed above, enhancement of NAS expression has been the most popular approach in
cereal biofortification studies. Augmented expression of NAS in cereals often leads to increased NA
and/or PS accumulation in plants or PS secretion from plants [91,93,137,139,141,233–236]. Given the
requirement of S for NA and PS synthesis, it is inferable that cereal lines with increased NAS expression
demand a larger amount of S than non-transgenic (NT) lines.

Since the 1980s, occurrence of crop S deficiency has increased, resulting from the decreased input
of S from the atmosphere and fertilizers into agricultural soils [237–239]. Therefore, it would be of
realistic interest to assess the grain Fe concentration and S homeostasis in NAS-overexpressing lines
under varying S availability. If it turns out that S limitation could negatively affect the performance
of NAS-overexpressing lines, combining NAS-overexpression with biotechnological strategies to
enhance S uptake, for instance, via overexpression of SULTR1 transporter genes as has been already
demonstrated in Arabidopsis [240], would be a measure that could be attempted.

5.2. H2S as a Potential Regulator of Crop Fe Homeostasis

Recent evidence shows that H2S supply can up-regulate a broad range of Fe acquisition and
translocation mechanisms in graminaceous species [241,242] (Figure 1). Although H2S has started to be
understood as a possible general signaling molecule rather than merely as a phytotoxin [214,243], how
it regulates the Fe homeostasis-related machinery is unknown. It is hypothesized that H2S affects Fe
nutrition though its role as a signaling factor on the biosynthesis of S-containing molecules [241,244].

Modulation of factors that affect a wide range of genes involved in Fe acquisition and translocation
has been proven to be useful for increasing grain Fe concentration. For instance, knockdown of HRZ2
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gene, coding for a negative regulatory factor for Fe deficiency response in rice, led to a 2.9-fold increase
in polished rice Fe concentration (Figure 2) [122]. Moreover, more than double the concentration of Fe
accumulated in unpolished grains in rice overexpressing IRO2, which encodes a positive transcription
factor for Fe uptake and translocation in rice (Figure 2) [245]. Overexpression of PRI2 or knockdown
of PRI3 can also lead to increase in brown rice Fe concentration (Figure 2) [125]. Therefore, further
investigation into the machinery behind the positive regulation of Fe nutrition by H2S may lead to the
identification of a regulation factor whose modulation is advantageous for cereal Fe biofortification.

5.3. Fe as a Buffer for Sulfide Damage in the Rice Rhizosphere

Typically, S is reduced to sulfide species including H2S in anaerobic rice paddy field soils [155,156]
(Figure 3). H2S in the rhizosphere can pose toxicity to rice plants, manifested as “Akiochi” (autumn decline)
or “Straighthead” disorders [174,246,247]. H2S exhibits toxicity by inhibiting cellular respiration, which
results in disruption in root growth and nutrient uptake, ultimately leading to yield loss [174,248,249]
(Figure 3).
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Figure 3. Schematic representation of the occurrence of rice sulfide toxicity as affected by water
management practice and soil sulfur (S) availability. (A) In upland conditions, the majority of S in soil
exists in oxidized forms (SO4

2−) due to high availability of oxygen in the soil. (B) Prolonged submergence
leads to S reduction in deep soil, where anerobic condition prevails. (C) S abundance in the soil can further
promote sulfide (S2−) occurrence, leading to higher risk of sulfide toxicity in rice, ultimately resulting in
yield loss.

Tolerance to H2S toxicity is associated with the plant’s capacity to release oxygen into the
rhizosphere [250]. Rhizosphere oxygenation due to ROL can oxidize sulfide to sulfate [174]. Moreover, ROL
leads to the formation of ferric (hydr)oxide deposition, called Fe plaque, on the root surface of hydrophyte
species, which can buffer H2S toxicity by reacting with H2S to form insoluble FeS (Figure 4) [174,247,251,252].
In agreement, H2S damage often becomes evident towards the grain maturity [246,249], during which
the rice rhizosphere oxidization capacity due to ROL goes down and Fe plaque on the roots becomes less
prominent [253]. Moreover, Fe plaque on the rice roots decreases under excessive S application to the soil,
which probably resulted in increased sulfide level in the rhizosphere [230,254], further advocating the role of
Fe plaque to soften the potential sulfide damage to the roots.



Int. J. Mol. Sci. 2020, 21, 2827 13 of 27Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 13 of 27 

 

 

Figure 4. Proposed hypothetical effect of NICOTIANAMINE SYNTHASE (NAS) overexpression on Fe 
plaque accumulation and susceptibility to sulfide toxicity. (A) In non-transgenic (NT) rice plants, a 
portion of the oxygen (O2) supplied for the roots via aerenchyma diffuses to oxidize the rhizosphere 
(radial oxygen loss; ROL), where iron (Fe) accumulates as ferric oxides as Fe plaque. Protocatechuic 
acid (PCA) secreted from PHENOLICS EFFLUX ZERO2 (PEZ2) and possibly deoxymugineic acid 
(DMA) secreted from TRANSPORTER OF MUGENEIC ACID 1 (TOM1) contribute to solubilization 
of Fe plaque. Sulfide (S2-) can also react with Fe to form FeS. (B) PEZ1-overexpressing plants reported 
by Ishimaru et al. (2011) accumulated less Fe on their roots. This was likely due to increased secretion 
of phenolics to the rhizosphere through PEZ1. (C) NAS overexpression leads to increased DMA 
synthesis as well as upregulation of TOM1, leading to enhanced secretion of DMA into the 
rhizosphere. If DMA contributes to Fe plaque solubilization and forms stronger complex with Fe(III) 
than phenolics do, NAS overexpression might result in significant reduction of Fe plaque. This might 
have implications for buffering sulfide toxicity; however, this needs further research. 

Figure 4. Proposed hypothetical effect of NICOTIANAMINE SYNTHASE (NAS) overexpression on
Fe plaque accumulation and susceptibility to sulfide toxicity. (A) In non-transgenic (NT) rice plants,
a portion of the oxygen (O2) supplied for the roots via aerenchyma diffuses to oxidize the rhizosphere
(radial oxygen loss; ROL), where iron (Fe) accumulates as ferric oxides as Fe plaque. Protocatechuic
acid (PCA) secreted from PHENOLICS EFFLUX ZERO2 (PEZ2) and possibly deoxymugineic acid
(DMA) secreted from TRANSPORTER OF MUGENEIC ACID 1 (TOM1) contribute to solubilization of
Fe plaque. Sulfide (S2−) can also react with Fe to form FeS. (B) PEZ1-overexpressing plants reported by
Ishimaru et al. (2011) accumulated less Fe on their roots. This was likely due to increased secretion of
phenolics to the rhizosphere through PEZ1. (C) NAS overexpression leads to increased DMA synthesis
as well as upregulation of TOM1, leading to enhanced secretion of DMA into the rhizosphere. If DMA
contributes to Fe plaque solubilization and forms stronger complex with Fe(III) than phenolics do, NAS
overexpression might result in significant reduction of Fe plaque. This might have implications for
buffering sulfide toxicity; however, this needs further research.
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It is unclear whether and to what degree increased PS release from biotechnologically Fe-biofortified
rice lines affect the formation and accumulation of Fe plaque on their roots. Some studies have compared
the amount or integrity of root Fe plaque on NT plants with contrasting Fe status and PS release;
however, the insights they offer are rather dividing. Zhang et al. (1999) reported that the amount of
root Fe plaque did not change between rice plants with different Fe status and PS secretion rates [255].
In contrast, other studies have shown that the rice plants with high PS release can take up larger
amount of elements adsorbed on Fe plaque than those with low PS secretion, which implies that
increased PS release at least negatively affects the integrity of root Fe plaque [256,257]. Nonetheless,
these observations may not necessarily help us understand the effect of PS on Fe plaque accumulation
on Fe-biofortified rice lines to be grown in actual rice field soils, because these studies employed not
soil but nutrient solutions as the substrate for plant growth, which must have allowed constant supply
of Fe from the surrounding solution into the rhizosphere solution to form Fe plaque. Moreover, it has
been demonstrated that NT rice plants regulate PS secretion and the expression of genes underlying PS
synthesis in a diurnal manner, even under Fe deficiency [28,258]. On the contrary, some Fe-biofortified
rice lines, such as those with constitutive NAS expression, synthesize and release increased PS [28,138],
putatively in a constant manner without circadian oscillation. Therefore, it remains an open question
as to whether Fe-biofortified rice lines would follow the same pattern of Fe plaque accumulation as the
NT plants with low Fe status.

Though also being a study utilizing a nutrient solution for plant husbandry, a report by
Ishimaru et al. (2011) provides a rough idea as to what extent constitutively increased secretion of
an Fe-solubilizing agent from rice roots can impact the formation of Fe plaque. In this research, they
overexpressed PEZ1, which encodes a transporter that exports PCA into the apoplastic region to solubilize
the precipitated Fe [84]. As a result, Fe deposition on the root surface of PEZ1-overexpressing line
decreased notably compared to that of NT plants, when grown in an Fe-rich nutrient solution [84]
(Figure 4). The stability constant of Fe(III)-PCA is reportedly lower than that of Fe(III)-DMA [259,260].
Thus, it is not surprising if abundant PS secretion by NAS-overexpression lines results in significantly
reduced amount of Fe plaque in some growth conditions, potentially rendering them more prone to H2S
toxicity in the roots than NT plants (Figure 4). In conclusion, studies have to be made in the future to
assess the susceptibility to H2S damage of the Fe-biofortified rice lines, performed in an experimental
system with soils with different S input as well as Fe content, given that one of the major factors that
contribute to rice H2S toxicity is the presence of a high amount of S in the soil [247] (Figure 3) and that soil
Fe content can also affect the occurrence of H2S toxicity, as seen in acid sulfate soils often found in rice
cultivation systems in the tropics [261,262].

5.4. Roles of S-Containing Biomolecules in Response to Concomitant Increase in Heavy Metal Uptake by
Fe-Biofortified Crops

Very frequently, biotechnological Fe biofortification of cereal crops results in concomitant
accumulation of Zn in grains and other organs [91,137,139,150,263], due to partially shared molecular
mechanisms underlying the homeostasis of these two metal elements [12] (Figure 1). Like Fe, Zn is toxic
when present in excess [264,265]. In barley seed transfer cells, increased Zn loading alone or combined
with Fe loading to the grain triggers a major alternation in transcriptome [266]. It is postulated that the
metabolic cost associated with such a transcriptomic re-organization may limit the metal translocation
to the grains or compromise yield [266]. In agreement, some NAS-overexpressing rice lines exhibit
grain yield loss, which is associated with high grain Zn concentration, suggesting the link between the
yield decrease and the Zn homeostasis disruption in Fe-biofortified plants [10].

Rice is sometimes grown in fields contaminated with Cd [267]. Moreover, rice can take up Cd via
IRT transporters [268], and a rice line overexpressing IRT1 gene indeed exhibits increased sensitivity to
Cd, as well as to Zn [269]. Considering the fact that endogenous IRT1 expression is up-regulated in
shoots and/or roots in rice lines overexpressing NAS or overaccumulating NA (Figure 2) [11,135,150],
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there remains a possibility that NAS-overexpressing rice lines are more susceptible to Cd and/or Zn
stress. However, this aspect remains underexplored in the iron-biofortified crops developed so far.

In the seed transfer cells of barley plants with foliar Zn application, a wide range of stress-related
genes, including MT genes and genes involved in GSH synthesis (and probably the downstream PC
synthesis), are notably up-regulated [266,270]. This implies a major role of thiol-containing molecules
in response to potentially increased heavy metal stress in Fe-biofortified crops (Figure 1). Clarification
of the extent of heavy metal stress in Fe-biofortified crops, in tandem with the further understanding
of the exact role of S-containing biomolecules in coping with such a stress, may provide an insight that
is useful for future cereal Fe biofortification efforts.

Together, there are various aspects of interaction between Fe and S in cereals that are relevant and
potentially important for cereal Fe biofortification studies. We propose that future characterization
of Fe-biofortified cereal lines, especially that in the field, take into account the aspects of Fe and S
interaction reviewed above in order to advance our understanding of Fe-biofortified crops.
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