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Non-invasive imaging through 
strongly scattering media based 
on speckle pattern estimation and 
deconvolution
Zhouping Wang, Xin Jin    & Qionghai Dai

Imaging through scattering media is still a formidable challenge with widespread applications ranging 
from biomedical imaging to remote sensing. Recent research progresses provide several feasible 
solutions, which are hampered by limited complexity of targets, invasiveness of data collection process 
and lack of robustness for reconstruction. In this paper, we show that the complex to-be-observed 
targets can be non-invasively reconstructed with fine details. Training targets, which can be directly 
reconstructed by speckle correlation and phase retrieval, are utilized as the input of the proposed 
speckle pattern estimation model, in which speckle modeling and constrained least square optimization 
are applied to estimate the distribution of the speckle pattern. Reconstructions for to-be-observed 
targets are realized by deconvoluting the estimated speckle pattern from the acquired integrated 
intensity matrices (IIMs). The qualities of reconstructed results are ensured by the stable statistical 
property and memory effect of laser speckle patterns. Experimental results show that the proposed 
method can reconstruct complex targets in high quality and the reconstruction performance is robust 
even much less data are acquired.

Light scattering, caused by inhomogeneous refractive index presented in the transmission media, limits the res-
olution and the signal-to-noise ratio of optical imaging1. Random refraction in the scattering media encodes the 
spatial information of imaging targets into scrambled images and causes the speckle noise. Ballistic light based 
methods, such as optical coherent tomography2–4 and two-photon microscopy5,6, extend the imaging depth by 
extracting photons that have not been scattered. Adaptive optics7 can correct the low-order deformations using 
deformable mirrors. However, when the scattering media diffuses nearly all the light going through it1,8, the 
approaches mentioned above will be out of action. Target localization inside the scattering media can be realized 
by diffuse optical tomography9,10, whose imaging resolution is limited by scattering depth. Some recent works11–20  
based on memory effect21–23 provide novel imaging solutions, including wavefront-shaping11–14, speckle cor-
relation15–17, bispectrum analysis18 and deconvolution19,20, for strongly scattering situations. Controlled 
wavefront-shaping allows imaging and focusing through scattering media by modulating the degrees of freedom 
in the scattered waves24–37. Furthermore, up-to-date ‘guidestar’ mechanisms38–42 provide non-invasive feedback 
for intra-tissue focusing. Nevertheless, the imaging resolution is limited by the size of illumination speckle grain, 
and the field of view (FoV) for high light-transmission enhancement is limited in the vicinity of the focusing spot. 
Speckle correlation based approaches, which include speckle scanning15,16 and single-shot17 techniques, collect 
the convolution of the target and the point-spread speckle pattern43,44. The autocorrelation computation and 
Fourier transform are utilized to get the amplitude spectrum of targets, and phase-retrieval algorithms45,46 to real-
ize reconstruction. However, the methods require high-resolution angular sampling to weaken the effect caused 
by speckle noise. Also, the reconstruction quality is limited by the size of the illumination speckle grain, and the 
stability of phase-retrieval algorithm is restricted by the structural complexity of imaging targets. Bispectrum 
analysis based method18, which can deterministically and unambiguously extract the Fourier phase of the target 
from scattered light pattern, also suffers from the problems caused by the stochastic perturbation of speckle 
pattern. Deconvolution based approaches can realize imaging with resolution beyond the diffraction limitation, 
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while the main problem is how to acquire the point-spread speckle pattern. Point-spread-function (PSF) captur-
ing based deconvolution method19,20 needs to put a point source behind the scattering media during the estima-
tion process, whose invasiveness impedes the practicability for many real applications.

To non-invasively image complex targets through strongly scattering media with resolution beyond the 
limitation of illumination speckle grain lighted on the targets, a preliminary speckle pattern estimation and 
deconvolution method was proposed in our previous work47. The method is extended in this paper by adding 
cross-correlation matching method for restoring orientations and positions, deriving theoretical model for the 
speckle pattern estimation, analyzing the solution space and data reduction and comparing experimental results 
for imaging targets with different sizes and structural complexities. Imaging system based on speckle correlation15 
is utilized to collect IIMs of the to-be-observed targets. Exploiting the frequency-bounded characteristics of the 
speckle pattern48 and the convolutional relationship between the imaging target and the speckle pattern, speckle 
estimation based on the constrained least square optimization and speckle modeling is proposed to estimate the 
speckle pattern distribution. IIMs are aligned by the orientational and positional information recovered from 
the cross-correlation matching method. The complexity in solving the speckle pattern estimation model and 
the quality of estimation using the training targets in different shapes with different combinations are discussed 
in detail. Deconvolution is performed to reconstruct targets using their corresponding IIMs and the estimated 
speckle pattern. Reconstruction using much less acquired IIM data is also analyzed to demonstrate the feasibility 
in reducing the data collection complexity. Compared with speckle correlation15–17 and bispectrum analysis18 
based approaches, in which the stochastic perturbations in point-spread speckle pattern are considered as statistic 
noises, our method directly estimates the speckle pattern and reconstruct the target by deconvolution algorithm. 
The demand of high-resolution angular sampling is relieved and it can recover high-quality details of complex 
targets with directional information. Experimental results and discussions on real-captured data are provided to 
verify the effectiveness of the proposed method. Compared with the existing approaches, the proposed method 
provides much higher reconstruction quality to much more complex to-be-observed targets with much larger 
FoV.

Principles and Methods
Experimental setup and denotations.  The schematic diagram of data collection process is illustrated in 
Fig. 1. In the enclosed environment surrounded by the scattering media, several imaging targets with different 
structural complexities may appear in the imaging region. The targets that can be reconstructed by phase-retrieval 
algorithm, namely training targets, are denoted by = O i N( 1, 2, , )s

i . And the to-be-observed targets are 
denoted by Oc. Imaging system based on raster scanning and speckle correlation, which was first proposed by 
Bertolotti et al.15, is utilized to collect the IIMs for the imaging targets. When imaging target is in the common 
imaging region behind the scattering media, the laser beam with incident angle of θ θ( , )x y  will generate speckle 
pattern lighting on the target through the scattering media. In case of the existence of memory effect21–23, the 
point-spread speckle pattern can be approximately expressed by θ θ− −S x d y d( , )x y1 1 , where d1 is the distance 
between the imaging target and the scattering media. The intensity of the speckle pattern transmitted and diffused 
by the scattering media, which encodes the information of the imaging target, is recorded by the photon detector. 
Imaging target can be generally denoted by − −O x r y r( , )(1) (2) , where (x, y) is the coordinate on the object plane 
and r r( , )(1) (2)  is its spatial position relative to the center of the FoV. The recorded integrated intensity correspond-
ing to a specific incident angle of laser beam, θ θ( , )x y , can be expressed as

∫ ∫θ θ θ θ

θ θ
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where * denotes the convolution operator and IIM is the integrated intensity matrix. The pixel intensity of IIM 
corresponds to the total intensity of the image captured at a laser incident angle. The sample IIMs collected for Os

1, 
Oc and Os

N  in Fig. 1(a–c) are shown in Fig. 1(d–f), respectively.

Speckle pattern estimation.  From Eq. (1), it can be observed that once the point-spread speckle pattern 
that scans the imaging region is known, theoretically, the target can be reconstructed by deconvoluting S from 
IIM by47
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where   and −1 represent Fourier transformation and inverse Fourier transformation, respectively. However, in 
general, the point-spread speckle pattern is unknown, which can only be estimated.

To estimate the speckle pattern, the convolutional relationships among the speckle pattern, S, training targets, 
= O i N( 1, 2, , )s

i , and their IIMs, = IIM i N( 1, 2, , )s
i , are exploited. Denoting the phase-retrieved results of 

training targets as = O i N( 1, 2, , )s
i , the convolutional relationship defined in Eq. (1) can be converted to be

= ∗ + = IIM O S e i N, 1, 2, , , (3)s
i

s
i

i

where ei  represents the error caused by imaging noise and phase-retrieval algorithm. ∈ ×O Rs
i M Mx y, 

∈ ×IIM Rs
i K Kx y, ∈ + − × + −S R M K M K( 1) ( 1)x x y y  and ∈ ×e Ri

K Kx y, where ×M Mx y is the dimension of the imaging tar-
get and ×K Kx y is the number of sampling points in IIMs

i. It is a linear system with + − + −M K M K( 1)( 1)x x y y  
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variables and NK Kx y equations. Solving s in Eq. (3) is an underdetermined problem and ei is also unknown. 
Considering the intensity distribution of speckle pattern is always positive and it presents frequency-bounded 
characteristics inherited from Fourier transformation of the laser beam wavefront48, the prior of speckle pattern 
distribution is introduced to build a constrained least square model for speckle estimation as47
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where ∆ constrains the variation between the intensity of two adjacent points in the speckle pattern. ∆ is inversely 
proportional to the size of the illumination speckle grain, and the speckle grain size is proportional to d1 and 
wavelength of the laser while inversely proportional to the diameter of laser beam48. The speckle estimation model 
in Eq. (4) is a convex problem49, which can be solved by the solvers of convex optimization problem (CVX50,51 is 
used in our experiments).

Phase retrieval and cross-correlation matching for reconstruction of training targets.  The 
phase-retrieval reconstruction of training target, denoted by Os

i, is used as the input of Eq. (4). To reconstruct Os
i, 

the sharply peaked property of the average autocorrelation of speckle pattern52 is exploited first. Through auto-
correlation of IIM and plugging Eq. (1) into it, the Fourier magnitude spectrum of Os

i is given by15
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Figure 1.  Schematic diagram of data collection. (a–c) Os
i and Oc are training target and to-be-observed target, 

respectively. (d–f) are the IIMs, corresponding to (a–c), respectively, collected by the detector as the laser beam 
lights through the scattering media with the incident angle θ θ θ= ( , )x y .
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where * denotes the correlation operator. Then, phase-retrieval algorithm, Hybrid Input-Output and 
Error-Reduction15,45,46, is applied to recover Os

i via iteratively updating the phases with fixed magnitude 
spectrum.

After phase retrieval, the orientational and positional information of Os
i is lost. Also, the training targets may 

not be spatially aligned in the imaging region. It leads to the spatial disconformity between the captured IIMs 
with the convolutions of Os

i and S. Directly putting Os
i and the captured IIMs

i into Eq. (4) will result in mismatches 
and cannot estimate the local spatial distributions of speckle pattern accurately. Thus, cross-correlation matching 
is proposed to correct the orientations of Os

i and to align IIMs
i in Eq. (4).

According to Eq. (1), the IIM of Os
i can be expressed as

θ θ θ θ= ∗ − −IIM O S d r d r( , ) [ ]( , ), (6)s
i
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where r r( , )i i
(1) (2)  is the spatial position of Os

i relative to the center of FoV. The autocorrelation of speckle pattern is 
a sharply peaked function, which can be expressed by48

δ∗ = +S S x y B x y C[ ]( , ) ( , ) (7)

where δ denotes impulse function; B and C are the constants depending on the size of speckle grain. Applying 
cross-correlation to the IIMs of two training targets Os

i and Os
j, we have
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For phase-retrieved result of Os
i, i.e. Os

i, there are two possible orientations: the orientation of Os
i is the same 

with that of Os
i as

θ θ θ θ≈O d d O d d( , ) ( , ) (9)s
i

x y s
i
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and Os
i is the flipped of Os

i as

θ θ θ θ≈ − − .O d d O d d( , ) ( , ) (10)s
i

x y s
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Thus, by comparing the four possible orientation combinations of Os
i and Os

j, the orientation which maximizes 
the correlation between the correlation of rotated phase-retrieved results and the correlation of IIMs is achieved 
by
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As a result, the reconstructed training targets with correct orientations are obtained by
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Since ̈Os
i is an approximation of Os

i with some reconstruction errors, the spatial relative offsets between Os
i and 

Os
j can be estimated by

− − = ∗ ∗ ∗ −






∆ ∆ 




.

∆ ∆
̈ ̈r r r r O O IIM IIM D

r
d

r
d

( , ) arg max {[ ] {[ ] }} ,
(13)

j i j i
r r

s
i

s
j

s
i

s
j ij ij(1) (1) (2) (2)

,

(1)

1

(2)

1ij ij
(1) (2)

Then, = IIM i N( 2, , )s
i  is aligned to IIMs

1 by
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Finally, the speckle estimation model in Eq. (4) is updated to be
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which uses aligned IIMs and orientation-corrected phase-retrieved results to provide a theoretical optimization 
solution matching the original distribution of S.
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Model Analysis
Training targets analysis.  The speckle estimation performance of Eq. (15) is decided by the shape, size and 
the number of training targets. The increase in the number of training targets, the larger shape differences among 
training targets and the size reduction of each target will result in better estimation performance. However, the 
estimation qualities of entries in matrix S are not the same. The objective function of the estimation model, Eq. 
(15), is the least square solution of linear equations,

= ∗ =� � �̈IIM O S i N, 1, 2, , , (16)s
i

s
i

in which the entries of S in the central are included in more independent equations than those in the margins. 
Thus, the central entries have smaller solution spaces and higher probabilities to be solved with lower errors. Eq. 
(16) can also be discretely formed by
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in which θ θ∆ ∆( , )x y  is the sampling interval of IIMs and the values of undefined elements in matrix A are 
zeros. The increase in the number of training targets with different shapes leads to the increase in the number of 
variables, denoted by χ =NoV A b( ), and the increase in the rank of A, denoted by rank A( ). χ =NoV A b( ) equals 
to the number of nonzero columns in matrix A. Simulations in Fig. 2 compare the speckle pattern estimation 
performance using the training targets in different shapes with different combinations. Four training targets in 
size of 60 × 60 =M M( , 60)x y , as shown in Fig. 2(a–d), are selected. Speckle patterns at object plane are generated 
by simulating the wave propagation of random phased laser beam with Fresnel diffraction equation43. Raster 
scanning process (corresponds to changing the incident angle of laser beam with the memory effect21–23) is simu-
lated to acquire the IIMs in size of 60 × 60 =K K( , 60)x y . To get rid of the reconstruction error caused by 
phase-retrieval algorithm, original training targets are utilized to estimate the speckle patterns using the proposed 
model in Eq. (15). Cropping the estimated speckle patterns in size of 60 × 60 in the center, i.e. the region lined in 
white, the peak signal to noise ratio (PSNR) is calculated using the simulated ground truth, as an example shown 
in Fig. 2(e), as the reference. 100 simulated speckle patterns are tested to average the PSNR for a robust result. As 
we can see from the results, the estimation quality is positively related to the number of the training targets used. 
For example, the estimation quality using two training targets is much higher than only using one training target, 
while much lower than using three or four training targets. Also, it can be found that the estimation quality is 
mainly determined by the rank-variable ratio, i.e. χ =rank A NoV A b( )/ ( ). When the number of training targets 
is increased, the increase in the number of independent equations, i.e. rank(A), is larger than that in the number 
of variables, i.e. χ =NoV A b( ). And it results in the increase of rank-variable ratio. Since the higher rank-variable 
ratio corresponds to the less underdetermined variables, the estimation quality can be improved obviously. The 
variation in the shape of the training targets also results in the change of the rank-variable ratio. If the targets with 
higher structural complexities can be reconstructed well by phase retrieval, the bigger structural differences 
among the training targets result in the higher rank(A), which benefits the speckle pattern estimation.

Reconstruction with less data.  After getting the estimated speckle pattern ̈S from Eq. (15), deconvolution 
can be executed for the acquired IIM to reconstruct an imaging target with much higher accuracy and robustness 
than the phase-retrieval methods. It is also observed that we can further reduce the data acquisition complexity 
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for acceptable reconstruction quality. Considering that the collection of IIM by raster scanning and memory 
effect as proposed by Bertolotti et al.15 is a discrete sampling process, the discrete representation of IIM for a 
to-be-observed target can be expressed by updating Eq. (1) to

∫ ∫
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θ θ
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Figure 2.  Simulated experiment for comparing the speckle pattern estimation performance. (a–d) Training 
targets in size of 60 × 60 =M M( , 60)x y ; (e) A sample of speckle pattern ground truth in size of 119 × 119 

+ − = + − =M K M K( 1 119, 1 119)x x y y  used for raster scanning the training targets, where 
× = ×K K 60 60x y  is the number of points for raster scanning, i.e. the size of IIMs. (f–h) Speckle pattern 

estimation results with different combinations of training targets.
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where IIMc, Oc and S  are the discrete sampling signals of θ θIIM ( , )c x y , − −O x r y r( , )c c c
(1) (2)  and S x y( , ) with the 

sampling intervals as θ θ∆ ∆( , )x y , θ θ∆ ∆d d( , )x y1 1  and θ θ∆ ∆d d( , )x y1 1 , respectively; r r( , )c c
(1) (2)  is the position of the 

to-be-observed target.
As the sampling interval becomes to be θ θ∆ ∆ | ∈ >+H H H Z H{( , ) , 1}x y , corresponding to reducing the 

complexity in data acquisition by H2 times, the collected IIM becomes to be
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Thus, using the down-sampled estimated speckle pattern, denoted by ̈S , it is still possible to reconstruct the 
imaging target in lower resolution by deconvoluting IIMc with ̈S .

Results and Discussion
In this section, the performance of the proposed speckle pattern estimation model is demonstrated by testing on 
a real imaging system, in which two Edmund Optics 120-grit ground-glass diffusers15 are used as the scattering 
media. In this system, speckle scanning and recovery method proposed by Bertolotti et al.15 is used. The laser 
beam is controlled by two galvanometric scanners in vertical and horizontal directions separately to generate 
different incident angles at the scattering media. The details of the imaging system can be found in the electronic 
supplementary material. To reduce the noises and artifacts, Richardson-Lucy deconvolution algorithm53,54 is 
applied for reconstruction.

Four training targets, as O O, ,s s
1 4 shown in Fig. 3(a), are used in the experiments. Their sizes range from 20 

microns to 25 microns. The distances between the targets and scattering media, d1 in Eq. (1), are set as 5 millime-
ters. Scanning angles are divided evenly into 600 intervals, ranging from − . °2 1  to . °2 1  in both horizontal and 
vertical directions. Thus, the corresponding IIMs collected are shown in Fig. 3(b) as IIM IIM, ,s s

1 4. The recon-
structed results of the training targets are shown in Fig. 3(c) as O O, ,s s

1 4 via autocorrelation, Fourier transfor-
mation and phase-retrieval algorithm. Using the proposed cross-correlation matching method, the orientation 
corrected reconstruction results of the training targets are shown in Fig. 3(d) as 

̈ ̈O O, ,s s
1 4 and the spatially 

aligned IIMs are corrupted by the white line in Fig. 3(b) as � � � � �IIM IIM, ,s s
1 4. Then, Eq. (15) is executed to estimate 

the speckle pattern by setting ∆ to be 0.3 and binarizing 

̈ ̈O O, ,s s
1 4 to be those in Fig. 3(e) to reduce the compu-

tational complexity of solving Eq. (15). Figure 3(f) and (g) show the estimated speckle patterns using only two 
training targets and four training targets respectively. The ground truth of the speckle pattern is shown in 
Fig. 3(h). Comparing Fig. 3(f) and 3(g) with the ground truth, it can be found that both the two estimated speckle 
patterns are visually similar to the ground truth especially considering the low-frequency features. The result 
estimated using four training targets preserves more high-frequency components, which may lead to reconstruct-
ing more details of the imaging targets by deconvolution.

Applying the estimated speckle pattern to the deconvolution process, the to-be-observed targets with com-
plex structures can be reconstructed. The reconstruction quality is compared with those generated by phase 
retrieval15,45,46 to demonstrate the efficiency of the proposed method. As shown in Fig. 4(a), eight complex tar-
gets with different textural complexities and different number of subsections are tested. Their sizes range from 
40 microns to 165 microns. IIMs of these targets are collected in the same way with the training targets. The 
reconstructed results are compared visually with the original images. Also, structural similarity index (SSIM)55 
is calculated between the reconstructed results and the original images to evaluate the structural reconstruction 
capability objectively. SSIM closer to 1 corresponds to a higher reconstruction quality.

Figure 4(b) shows the reconstructed results using phase retrieval, each of which is the best result selected from 
performing 20 times of phase retrieval using random initial phases. It can be found that the quality of the results 
deteriorates sharply when targets become complex or have separated subsections. Also, because of the random-
ness of initial phases, the positions and shapes of the reconstructed results change a lot for each test.

Figure 4(c,d) show the reconstructed results generated by deconvoluting estimated speckle pattern in Fig. 3(f) 
and that in Fig. 3(g), respectively. It is obvious to see that compared with the results generated by phase retrieval, 
the proposed method improves the reconstruction performance for all the targets significantly, which is also 
robust to the structure of the targets. Although the reconstructed results derived by deconvoluting speckle pattern 
estimated from two training targets lose some high-frequency details, as shown in Fig. 4(c), their reconstruction 
qualities are still much higher than that of phase retrieval. It demonstrates that an acceptable reconstruction qual-
ity can be achieved by applying less training targets. For the targets with separated subsections, like those on the 
last two rows with spatial extensions more than 150 microns, the proposed method always provides reconstruc-
tion results superior to those of phase retrieval. It demonstrates a big improvement in the FoV for our method.

Figure 4(e–g) show the reconstruction results generated by deconvolution using 4, 16, 36 times lower sam-
pling rate in collecting the IIMs of the imaging targets, as defined in Eq. (22). The speckle pattern estimated using 
four training targets, as shown in Fig. 3(g), is also down-sampled to be ̈S . The reconstructed results are up-sampled 
using bilinear interpolation and SSIM is calculated between the up-sampled results and the original images. It can 
be found that acquiring only 1/4 × 1/4 of the data, the reconstruction quality of the proposed method is still 
acceptable. Even if reducing the data acquired to be only 1/6 × 1/6 of those used by phase retrieval, the proposed 



www.nature.com/scientificreports/

8Scientific RePortS | (2018) 8:9088 | DOI:10.1038/s41598-018-27467-1

method can still provide reconstruction quality better than that of phase retrieval. It shows high potential in sig-
nificantly reducing the complexity in speckle scanning and data acquisition process for collecting IIMs, which 
greatly benefits the real applications.

Conclusions
To non-invasively image complex targets through strongly scattering media with resolution beyond the limita-
tion of illumination speckle grain lighted on the targets, speckle pattern estimation and deconvolution method is 
proposed. Cross-correlation matching is proposed to correct the orientations of training targets and align their 
corresponding IIMs, which are applied as the inputs of the speckle pattern estimation model. Both theoretical 
derivation and experimental results have demonstrated that the proposed speckle pattern estimation model can 
accurately estimate the distribution of the point-spread speckle pattern. The proposed deconvolution method is 
also robust even with much less data acquired. In conclusion, our imaging method relieves the complexity limi-
tation for imaging targets, improves the reconstruction performance and reduces the data-collection complexity 
for the to-be-observed targets.

The principal limitation of our proposed work is the dependency on the reconstruction accuracy of training 
targets by phase retrieval. While, the reconstruction accuracy of phase retrieval is constrained by the relative 
spectral bandwidths between the imaging targets and the speckle pattern17. So, we put this as one of our future 
works to seek the way, such as introducing low rank feature of S, to improve the prior information for the speckle 
pattern estimation model, and to further analyze the solution space. Evaluating structural complexity of target 
from its IIM can be quite valuable in real scenario for selecting suitable training targets without phase retrieval. 
A preliminary experiment shows a kind of correlation between the entropy of the IIM and the phase-retrieval 

Figure 3.  (a) Training targets, = O i( 1, 2, , 4)s
i . (b) Collected IIMs of training targets, = IIM i( 1, 2, , 4)s

i . 
The regions lined in white are the aligned IIMs, =� � �IIM i( 1, 2, , 4)s

i . (c) Phase retrieval results of training 
targets, = O i( 1, 2, , 4)s

i . (d) Phase retrieval results with corrected orientations, = 

̈O i( 1, 2, , 4)s
i . (e) 

Binarized phase retrieval results with correct orientations. The thresholds are set as 0.436, 0.592, 0.549 and 
0.291, respectively. (f) Estimated speckle pattern, ̈S, using two training targets (N = 2), Os

1 and Os
2. (g) Estimated 

speckle pattern, ̈S, using the four training targets (N = 4). (h) Ground truth of speckle pattern S.
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performance, which will be investigated further with other possible features. Another problem faced in the data 
collection process is the movements of imaging targets when collecting their IIMs, and it causes the structural 
deformation of IIMs and reconstructed results. A possible solution can be used is to track targets in real-time by 
analyzing the linear relationships between the variance and decorrelation time of the integrated intensity with 
target displacement along the axial and transversal directions, respectively56. Thus, the incident-angle offset of 
laser beam can be calculated. Beyond these, deconvoluting to-be-observed targets from different depths and 
introducing the deformation of memory effect can be future works as well.
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