
Clinical Trials 2011; 8: 183–195DESIGN

A point-of-care clinical trial comparing insulin
administered using a sliding scale versus a
weight-based regimen
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Background Clinical trials are widely considered the gold standard in comparative
effectiveness research (CER) but the high cost and complexity of traditional trials
and concerns about generalizability to broad patient populations and general
clinical practice limit their appeal. Unsuccessful implementation of CER results limits
the value of even the highest quality trials. Planning for a trial comparing two
standard strategies of insulin administration for hospitalized patients led us to
develop a new method for a clinical trial designed to be embedded directly into the
clinical care setting thereby lowering the cost, increasing the pragmatic nature of
the overall trial, strengthening implementation, and creating an integrated
environment of research-based care.
Purpose We describe a novel randomized clinical trial that uses the informatics and
statistics infrastructure of the Veterans Affairs Healthcare System (VA) to illustrate
one key component (called the point-of-care clinical trial – POC-CT) of a ‘learning
healthcare system,’ and settles a clinical question of interest to the VA.
Methods This study is an open-label, randomized trial comparing sliding scale
regular insulin to a weight-based regimen for control of hyperglycemia, using the
primary outcome length of stay, in non-ICU inpatients within the northeast region
of the VA. All non-ICU patients who require in-hospital insulin therapy are eligible
for the trial, and the VA’s automated systems will be used to assess eligibility and
present the possibility of randomization to the clinician at the point of care.
Clinicians will indicate their approval for informed consent to be obtained by study
staff. Adaptive randomization will assign up to 3000 patients, preferentially to the
currently ‘winning’ strategy, and all care will proceed according to usual practices.
Based on a Bayesian stopping rule, the study has acceptable frequentist operating
characteristics (Type I error 6%, power 86%) against a 12% reduction of median
length of stay from 5 to 4.4 days. The adaptive stopping rule promotes
implementation of a successful treatment strategy.
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Limitations Despite clinical equipoise, individual healthcare providers may have
strong treatment preferences that jeopardize the success and implementation of the
trial design, leading to low rates of randomization. Unblinded treatment assignment
may bias results. In addition, generalization of clinical results to other healthcare
systems may be limited by differences in patient population. Generalizability of the
POC-CT method depends on the level of informatics and statistics infrastructure
available to a healthcare system.
Conclusions The methods proposed will demonstrate outcome-based evaluation
of control of hyperglycemia in hospitalized veterans. By institutionalizing a process
of statistically sound and efficient learning, and by integrating that learning
with automatic implementation of best practice, the participating VA Healthcare
Systems will accelerate improvements in the effectiveness of care. Clinical Trials
2011; 8: 183–195. http://ctj.sagepub.com

Introduction

Medical decision making is informed by clinical
trials and observational studies. Randomization in
clinical trials reduces or eliminates biases of
observational studies, such as selection by indica-
tion and confounding from unmeasured prognos-
tic factors that affect treatment decisions and
outcomes. By their purpose, randomized clinical
trials (RCTs) can be designed on a spectrum
ranging from pragmatic (comparing effectiveness
of interventions in the most realistic of situations
and with diverse subjects) to explanatory (compar-
ing efficacy in precisely described clinical situa-
tions and selected patients) [1,2]. The goal of
explanatory trials is to better understand how and
why an intervention works while pragmatic clin-
ical trials are designed to provide information
needed to assist healthcare providers make
informed clinical decisions [3].

The Pragmatic–Explanatory Continuum Indicator
Summary (PRECIS) is a measure of where on this
continuum an individual trial is situated [4]. It
takes under consideration the attributes of an RCT
such as flexibility of the interventions, practitioner
expertise required, eligibility criteria, intensity of
follow-up and adherence monitoring, and the
nature and scope of the primary outcome. RCTs
are considered on the pragmatic end of the
spectrum when these attributes are chosen to
allow the trial to more closely mimic conditions
encountered in the clinical care arena. Examples
include eligibility criteria that reflect the patient
population likely to receive the intervention,
study investigators with expertise and experiences
similar to the healthcare providers who will ulti-
mately administer the treatments, treatment pro-
tocols that allow the flexibility required in routine
clinical care, and outcome measures, and follow-
up procedures that would be part of routine
clinical care. Despite their reflection of routine

clinical care, pragmatic trials are currently still
complicated and expensive to implement, because
of the use of dedicated study personnel to recruit
participants, administer the intervention and
monitor the participants for study outcomes and
adverse events.

We are testing a real implementation of a new
methodology for clinical trials, that we have called
point-of-care clinical trials (POC-CTs), with fea-
tures designed to maximize the pragmatic nature
of studies. Aspects of the approach we describe
here have been proposed or implemented by
others [5–8] and discussed in detail under the
name of the ‘clinically integrated randomized trial’
by Vickers and Scardino [9]. The defining charac-
teristic here is that to the maximum extent
possible the clinical trial apparatus is embedded
in routine clinical care. Optimally, this would
include recruitment and randomization of study
subjects at their POC by their usual healthcare
provider. Once randomized to a treatment arm
subjects would continue to be treated by their
healthcare provider with minimal or no deviation
from usual care. Follow-up of participants would
thus reflect current clinical practice. Assessment of
subject compliance and practitioner adherence to
protocol, and ascertainment of clinically relevant
endpoints would be performed through medical
record review, with minimal contamination of the
clinical care ‘ecosystem’ by intrusive study depen-
dencies. The intrusiveness of study operations,
from randomization through endpoint ascertain-
ment, would be greatly reduced if performed using
tools familiar to healthcare providers and data
already present in an electronic medical record
(EMR).

A POC-CT shifts away from the asynchronous,
distinct, and separate environments of research
and clinical care, toward a real-time integrated
system of research-based care. The goal of POC-
CTs is to deliver the best care to patients while
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learning from each experience and redefining that
care. Under this new paradigm, ongoing results
would be more rapidly and more likely adopted by
providers who participated in the studies. By
synthesizing research with practice and tools to
learn from that process, participating facilities can
move to the goal of becoming ‘learning healthcare
systems.’

In this article, we describe a specific POC-CT
designed to test the feasibility and usefulness of the
method, in answering a question of relevance to
the Veterans Affairs (VA) Healthcare System. The
clinical context and issues are described and ethical
issues discussed. The use of outcome adaptive
randomization to enhance implementation also
addresses the frequentist operating characteristics
of the design. The kinds of comparativeness ques-
tions best suited to POC-CT are argued.

Illustrative example: sliding scale insulin
regimen versus weight-based insulin
protocol

We describe a POC-CT which compares two
common regimens of administering insulin ther-
apy to hospitalized patients requiring insulin; the
sliding scale and weight-based approach. The VA
has an EMR that includes electronic ordering of
medications and protocols for both of these insulin
regimens. Review of EMR data at the VA Boston
Healthcare System demonstrated that each of these
two approaches is used with approximately equal
frequency and discussions with treating clinicians
indicated that choice of method administration is
based on personal preference and not on patient
specific determinants.

There are no published data comparing the
effectiveness or the adverse effects of the sliding
scale or a weight-based insulin protocol in treating
inpatients with hyperglycemia. For the sliding
scale, short acting insulin is administered three to
four times daily according to the degree of hyper-
glycemia, and no basal insulin is administered. This
regimen, therefore, responds to hyperglycemia after
it occurs, and does not prevent it. The weight-based
insulin protocol is a twice daily regimen of basal
intermediate-acting insulin (NPH) plus a pre-meal
twice a day regimen of short acting regular insulin,
plus a correction dose of regular insulin depending
on the degree of hyperglycemia. In addition,
depending on the amount of the correction dose,
the basal doses are adjusted upward for the next
day’s NPH insulin dose to manage the
hyperglycemia.

Study design

Overall, the study is an open-label, randomized
trial comparing sliding scale to a weight-based
regimen in non-intensive care units (ICU) inpa-
tients in a single large VA healthcare facility. There
will be no modification to the treatment protocols
already in use which will be accessed through the
existing order entry menu. Consented patients will
be randomized to treatment arms using an adaptive
randomization method. Subjects are otherwise
treated as usual. That is to say, there is no treatment
protocol imposed other than insulin regimen
beyond randomization. There are no required diag-
nostic procedures and no study-specific follow-up events
required. Outcomes and covariates data will be
collected directly from the computerized patient
record system (CPRS). The primary endpoint is
hospital length of stay (LOS); secondary endpoints
include glycemic control and readmissions for
glycemic control within 30 days of hospital dis-
charge. Analysis will be based on intention to treat.

We considered using a cluster-randomized
design, but the number of natural clusters (treat-
ment units) within a hospital is small and having
enough clusters to achieve adequate power would
require opening the study at many hospitals,
posing too many complex issues for a first use of
POC-CT. Furthermore, we are interested in testing
the feasibility of individual patient-level randomi-
zation, and the use of adaptive randomization to
‘close the implementation gap.’ While it is possible
to imagine an adaptive cluster-randomized design,
we have little information on the parameters
necessary for design of such a study.

Eligibility

All non-ICU patients who require sliding scale or
weight-based insulin therapy are eligible. The deci-
sion to obtain consent from a given individual will
be made by the ordering clinician at the time of an
insulin order (see section ‘Methods’). There are no
exclusions.

Treatment regimens

The treatment regimens are sliding scale and
weight-based insulin as currently operationalized
at the VA Boston Healthcare System. The ordering
clinician finds these protocols under the electronic
endocrine order menu and is led through order
entry screens that insure standardization of the
treatment protocol. The sliding scale and weight-
based insulin regimens order menus in place at the
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medical center were not modified other than to
add a third choice allowing for randomization
through the POC-CT mechanism.

Follow-up

Consenting subjects will be followed until 30 days
of post-randomization. Following informed con-
sent subjects will not be contacted by the study
team either during their hospitalization or after
discharge. All follow-up data will be collected via
the EMR.

Data collection

Variables collected include demographics (age and
gender); admission date, discharge date, and bed
location (acute vs. non-acute); bed service (medical,
surgical, and other); admission and other medical
diagnoses (ICD-9 classification); glucose, blood
counts, creatinine, and estimated glomerular filtra-
tion rate (GFR) values; and body temperature,
medications, administered blood transfusion prod-
ucts, readmission date, and readmission diagnosis
(ICD-9) if within 30 days of discharge. Non-VA
hospitalization data for all subjects enrolled in
Medicare will be available through a data-sharing
agreement between VA and the Centers for
Medicare & Medicaid Services.

Outcomes

The clinical outcomes of potential relevance that
were considered included episodes of suspected
hypoglycemia and measures previously used in
studies examining potential benefit of improved
glycemic control such as: (1) shortened length of
hospital stay; (2) fewer infections; (3) fewer epi-
sodes of acute kidney injury; (4) less need for renal
dialysis; (5) lower blood transfusion requirements;
and (6) less neuropathy.

LOS is selected as the primary outcome,
because LOS has important cost implications,
lowers the risk of hospital-acquired complications
including falls and infections, and might be
expected to be shortened if diabetic control can
be made more efficient. It is also readily ascer-
tainable from the EMR. Secondary outcome mea-
sures include degree of glycemic control and
readmission within 30 days of discharge with
the primary readmission diagnosis of control of
glycemia. Tertiary outcomes include infections,
acute kidney injury, and anemia, all of which
have been previously used as outcome measures

in studies of insulin regimens. Infection will be
defined as new antibiotic administration associ-
ated with either fever or leukocytosis. Acute
kidney injury is defined as a decrease in estimated
GFR of greater than 50% and anemia as a drop in
the hemoglobin level of at least 2 g/dL.

Recruitment and enrollment

The POC-CT process is implemented using software
tools available in CPRS. CPRS is the clinical care
component of the Veterans Health Information
Systems and Technology Architecture (VISTA),
which supports clinical as well as administrative
applications. Software tools available in CPRS
include order sets (predefined customizable sets of
orders), templates for clinical notes, decision logic
(reminder dialog templates), and defined data
objects that extract data from the medical record
for display purposes (patient data objects). CPRS
also has the ability to store flags (indicators in the
data base) known as ‘health factors’ related to
clinical parameters and flags derived from the
ordering process. These tools make it possible to
identify certain data elements in real time (e.g., an
insulin order) and to incorporate programmatic
logic into the medical record’s workflow based on
the value of data elements. The order sets and
templates utilized for this project were designed to
be consistent in format and process with the
existing system.

The following describes the workflow of the
study and demonstrates how CPRS processes
already familiar to clinicians were adopted for
POC-CT (Figures 1 and 2):

1) The VISTA order entry screen for insulin has
been modified to include a third option in
addition to the current options to order sliding
scale or the weight-based regimen. The third
option is labeled ‘No preference for insulin
regimen, consider enrollment in an inpatient
study of Weight Based vs. Sliding Scale proto-
cols’ (Figure 3).

2) Clinicians who choose this third option will be
presented with a brief description of the study
and given the option to either proceed or not
with consideration of their patient for study
enrollment.

3) Clinicians who choose not to continue will click
on the button labeled ‘No. The patient may not
be approached. Proceed with usual care.’ and
will be returned to the previous order entry
screen to continue without further consider-
ation of this trial.
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4) Clinicians who choose to proceed will click
on the button labeled ‘Yes. The research
team may approach this patient for consider-
ation of enrollment.’ and will be brought to a
consult entry screen. The consult entry screen
will be pre-populated requesting a ‘Research
insulin dosing consent request.’ After submit-
ting this consult, the clinician will then be
directed to the order entry menu and will
order either sliding scale or weight-based
insulin as per their choice. This order will
serve as a holding order to provide insulin
treatment until the patient can be consented
and randomized.

5) Upon receiving the ‘Research insulin dosing
consent request,’ the study nurse will discuss the
study with the patient and obtain informed
consent. If the patient declines enrollment, a
template progress note completing the consult
will be automatically entered. Patients who
refuse randomization will be asked for consent
to allow access to their VISTA data for compar-
ison to the subset of patients who accepted
randomization.

6) Patients who provide consent will be random-
ized through the VISTA system to one of the two
insulin regimens. A template progress note
activated by the study nurse will document

randomization. This template progress note will
generate ‘health factors’ that will serve to iden-
tify patients as subjects in the trial for tracking
purposes in VISTA. It will also generate the order
for whichever insulin regimen the subject was
randomized to receive.

7) Progress notes (for both patients accepting
and declining participation) and orders (for
those accepting randomization) will be auto-
matically forwarded to the original ordering
clinician.

8) By signing these documents, the clinician com-
pletes the study enrollment process.

The protocol was approved by the VA Boston
Institutional Review Board (IRB) who waived
Health Insurance Portability and Accountability
Act (HIPAA) authorization to allow the study
team, once contacted and prior to seeing the
patient, to have access to protected health infor-
mation in the medical record. Importantly, clini-
cians, in simply referring patients to the study
coordinator for recruitment and signing the insulin
orders generated by the randomization procedures
were not considered by the IRB to be ‘engaged in
clinical research’ and thus were not required to be
research credentialed.

Insulin order
for

inpatient with
hyperglycemia
or known DM

Order options

No clinical preference
(consider randomization)

Sliding scale (ss)

Weight based (WB)

No preference

Randomization not elected

Randomization  elected

Create consult to study team
and

initial insulin orders
(provider’s choice)

Continue
conventional

ordering process

Advise provider of
option for randomization

SS or WB

Figure 1 Initial order process performed by clinician
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Statistical issues

We define three main aims: (1) to determine the
physician and patient acceptance of POC random-
ization, (2) to test the null hypothesis of no
difference against reasonable alternatives (two-
sided), and (3) to demonstrate successful imple-
mentation of the superior strategy. The first aim
requires descriptive statistical approaches, includ-
ing estimating proportions and defining patient-
and physician-level predictors of acceptance. The
second aim requires tuning the design parameters
to achieve acceptable operating characteristics. The
third aim motivates an adaptive randomization,
adjusting the assignment probabilities to increase
the chances that patients are assigned to the better
treatment.

Adaptive design

In the proposed study, the response or outcome is
hospital LOS and the parameters of interest are the
median LOS with each of the two protocols: (1)
weight-based (Protocol A) and (2) sliding scale
(Protocol B). We predict that the patients using
the weight-based protocol will have a smaller
median LOS than patients using the sliding scale
protocol. To test this hypothesis, we propose using
a Bayesian adaptive design.

The rules of adaptation considered herein
modify the assignment probability each time the
study accrues a new fixed number or ‘batch’ of
patients, with practical batch sizes of at least 100
patients to allow more time for review and cleaning
of data as is implicit in group sequential designs.

Patient seen
by study team

Patient 
and provider

agree to consider
randomization ?

NO

NO

YES

YES

Obtain
consent

Record review only
(no randomization)

Generate progress note Continue
conventional
management

Generate progress note

Generate progress note

Randomize
to SS or WB protocol Prompt provider to sign

orders

Capture
order data

Continue
conventional
management

Follow-up
data collection

Generate orders
based on assigned protocol

(Document that patient was
considered and that enrollment

was not elected)

(Document consent for
randomization)

(Document consent for record
review, no randomization)

Figure 2 Workflow beginning when clinician has agreed to consider randomizing patient into one of two interventions
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According to this scheme (Figure 4)

1) First, subjects will be assigned to either weight-
based protocol (Group A) with probability
�¼0.5 or to sliding scale protocol (Group B)
with probability 1��¼0.5. This assignment
probability is utilized for the first batch of
patients.

2) Then, the data collected on the first group of
subjects are used to calculate the probability
that Protocol A is superior to Protocol B given
the accumulated data, that is

pA ¼ PðProtocol A is superior to Protocol BÞ

¼ P �A<�BjDATAð Þ

The ‘DATA’ here refers to the data collected
on the first batch of patients, with allowance
for a period (UPDATE strip in Figure 4) in which
the investigators clean the data and do the
update and �A and �B are the median LOS in
Groups A and B, respectively. The ‘posterior’
probability pA (‘probability of Protocol A being
superior to Protocol B given the data’) is calculated
using Bayesian methods. Bayesian methods use
prior information or beliefs, along with the

current data, to guide the search for parameter
estimates. Prior information/beliefs are input as a
distribution, and the data then help refine that
distribution and construct the posterior distribu-
tion. Our statistical model is based on an expo-
nential data model for the LOS with conjugate
Inverse Gamma prior for the median LOS [10].
Prior distributions in each group were chosen to
be centered on the null median value and have a
shape parameter �.

1) The posterior probability pA is then used to
evaluate whether the accumulated information
overwhelmingly supports one protocol over
the other so that the termination of the trial
is warranted. In particular, we would stop the
trial if

pA>� or pA<1� �

where � is the cutpoint reflecting the level of
evidence demanded by the investigators to termi-
nate the trial. If pA>�, then the study is terminated
and Protocol A is chosen as being superior while if
pA<1� �, the study is terminated and Protocol B is
chosen to be superior. The value for � is at the

Figure 3 Screen shot of CPRS showing introduction of POC-CT option into the insulin options menu
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investigators’ disposal and it is usually a value that
is close to 1 (for example 0.9, 0.95, or 0.99).

1) If the decision to terminate is not made, the
posterior probability pA is used to update the
assignment probability to �1 using the transfor-
mation [11]

�1 ¼
pA

� ��

pA

� ��
þ 1� pA

� ��

where �>0 is a calibration parameter. If � is set to 1,
the updated assignment probability is �1 ¼ pA,
while a value of �¼0 leads to a balanced random-
ization design. Values greater than 1 (less than 1)
lead to more aggressive (less aggressive) adaptation.

1) The second batch of patients will then be
assigned to Protocol A with probability �1 and
to Protocol B with probability 1� �1. After the
data on the second batch of patients are col-
lected, the assignment probability �1 is updated
to �2 using the above algorithm and the termi-
nation criterion is checked. If the termination
criterion is met, the study is terminated. If not,
the assignment probability �1 is updated to �2

using the above algorithm and the third batch is
then enrolled.

2) This process is continued until either the termi-
nation criterion is met or the number of subjects
enrolled reaches a pre-specified maximum
number of subjects Nmax.

Proposed design

Extensive computer simulations were done to select
a design for the study based on their operating
characteristics. The following operating character-
istics were considered in selecting the final design:

1) Overall Type I error – the chance of declaring one
of the two protocols better at any time during
the trial when in fact there is no difference
between the two protocols.

2) Overall power – the chance of declaring a proto-
col better at any time during the trial when in
fact that protocol is better.

3) The number of patients assigned to each protocol.
The number of patients enrolled will depend on
the data collected and hence is a random
variable.

4) Time until a decision is made. The duration of the
study will depend on the data collected and
hence is a random variable.

Start of
trial

End of
first batch

End of
second batch

→

→

→

Randomization
probability

π=0.5

Randomization
probability

π1

Randomization
probability

π2

Use this data
to update π to π1

First batch

Use this data
to update π1 to π2

Second batch

U
p

d
a

te

U
p

d
a

te

θA ←  Median LOS in patients using the Weight-Based Protocol (Protocol A)

θB ←  Median LOS in patients using the Sliding-Scale Protocol (Protocol B)

Calculate : pA = P(θA < θB, |DATA), then choose π1 =
pA

η

pA
η + (1 − pA)η

Figure 4 Diagram representing the flow of the design In the figure above, � represents the probability of assigning the weight-

based protocol to a patient
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We chose a design with the following parame-
ters: prior shape parameter �¼100, batch
size¼200, cutpoint k¼0.99, calibration parame-
ter�¼0.5, and maximum number of patients to be
randomized Nmax ¼ 3000. In addition, the upda-
tion occurs after 150 patients of each batch have
entered the study, we do not update or allow
stopping after the first batch, and we censor the
LOS at 30 days.

We studied the above design under various
scenarios. Our null hypothesis is that the median
LOS with both protocols is 5 days. As alternative,
we posit a minimal clinically important reduction
of at least 12% in median LOS.

The operating characteristics of the design are
represented in Table 1.

Type I error: Under the assumption of no differ-
ence (first row in Table 1 – median LOS is 5 days
with both protocols) the probability of (incorrectly)
selecting either protocol as superior was 0.06.

Power: Under the alternatives (median LOS with
Protocol A<median LOS under Protocol B) pre-
sented in the remaining rows of the table, the
probability of correctly selecting Protocol A repre-
sents the power. For a difference of 12% in median
LOS, across the interim looks, the design will
correctly select Protocol A as superior with 86%
probability (power), while the probability of
wrongly selecting Protocol B as superior decreases
fast to levels close to 0%. The decision to stop
increases with time (Figure 5); thus, the probabil-
ity or terminating the trial by the 6th interim look
(after 1400 subjects have been enrolled) is 50%
and it increases to 86% by the 14th look (after all
3000 subjects have been enrolled).

From among the many alternatives designs we
evaluated, we briefly discuss here the balanced

design that has the same parameters as the design
presented above. Additional information on the
simulation study including the R [12] script used in
running the simulations can be obtained from the
authors.

With a balanced design, the Type I error is the
same, the power is slightly higher (for example,
77% vs. 71% to detect a difference with Protocol A
of 10% in median LOS), the median number of
patients enrolled is about the same (�2000),

Table 1 Operating characteristics of the proposed design

Difference in
median LOS (B–A)

in days [median under

Protocol B¼5 days]

Probability of
selecting Protocol A

as superior (%)

Probability of
selecting

Protocol B

as superior (%)

Median number
of patients on

Protocol A

Median number of
patients on

Protocol B

Median
duration

(days)a

0 3 3 1495 1461 599

0.1 8 1 1634 1292 598
0.2 17 0 1738 1125 597

0.3 30 0 1791 969 595

0.4 51 0 1719 778 581

0.5 71 0 1434 598 408
0.6 86 0 1075 465 316

0.7 95 0 825 380 240

0.8 99 0 673 332 201

0.9 100 0 540 289 164
1 100 0 506 268 157

aIn calculating the duration of the study, we assumed an accrual rate of 5 patients per day.

Interim look

C
um

ul
at
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e 

pr
ob

ab
ili

ty
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f s
to

pp
in

g 
th

e 
tr

ia
l

2 4 6 8 10 12 14

600 1000 1400 1800 2200 2600 3000

0%

20%

40%

60%

80%

100%

Subjects enrolled

Figure 5 Cumulative probability of stopping the trial across
interim looks; assumed median LOS with Protocols B and A are

5 and 4.4 days, respectively
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however, while with the balanced design the
enrollment is balanced, with our proposed design
the number of patients assigned to the superior
treatment is higher.

The operating characteristic simulation is
dependent on the accuracy of the data model
used to generate the LOS. In Table 1, we use the
exponential model to generate the data, as well as
to do the updating. Thus, it makes the assumption
that the Bayesian model is correctly specified, as is
done in most published work, when estimating
(frequentist) operating characteristics. But the
LOS data from a historical sample of patients
approximating the proposed study intake criteria
indicates a heavier tail, such as log-normal.
Therefore, we assessed the sensitivity of the
assumptions by using the log-normal model to
generate the data (but still using the exponential
model for the updates; Table 2).

The difference between these two simulations
illustrates the modest sensitivity of the operating
characteristics to misspecification of the data
model. For example, the Type I error estimate
rises from 6% to 7%, and the power at a
difference of 0.5 days drops from 71% to 62%.
However, we consider the Type I error less
relevant in this context, comparing the effective-
ness of two widely used procedures for setting
dose. In a different context, the Type I error
might be more important. The probability of
making the right choice when it matters (a full
day difference) is high (100%) in the log-normal
scenario, too. These results illustrate the value of
a hybrid approach, where the Bayes method is
confined to updating the randomization proba-
bility (thus closing the implementation gap and
maximizing the number of patients receiving the

right treatment) and inference is based on oper-
ating characteristics from a range of more realistic
models.

Discussion

POC-CT methodology is well suited for studies with
the following features:

� Interventions already approved by the FDA.
� A clinical question where there is equipoise

regarding clinically relevant alternative
interventions.
� Interventions that are part of routine practice,

well tolerated, and have well-recognized toxici-
ties which mitigates the need for adverse event
monitoring beyond that in routine clinical care.
� Subject identification, inclusion and exclusion

criteria, and endpoints that are accurately
obtained from the EMR.
� Outcomes are objective and require little or no

adjudication.
� Study protocol requiring minimal deviations

from usual care.
� No systematic laboratory or clinical follow-up

required for either safety or comparative
effectiveness.

This trial is designed to be on the pragmatic
extreme of the clinical trial spectrum with the
subject consent process being the sole perturbation
of the clinical care ‘ecosystem.’ The absence of
study specific interventions, procedures, and mon-
itoring together with passive data capture attempts
to maximize the relevance of the findings to

Table 2 Operating characteristics under lognormal data model

Difference in

median LOS (B–A)

in days [median under

Protocol B¼5 days]

Probability of

selecting Protocol A

as superior (%)

Probability of

selecting

Protocol B

as superior (%)

Median number

of patients

on Protocol A

Median number

of patients

on Protocol B

Median

duration

(days)a

0 4 3 1469 1473 599
0.1 8 2 1594 1317 599

0.2 16 1 1711 1163 597

0.3 28 0 1759 998 595

0.4 46 0 1724 832 587
0.5 62 0 1600 696 485

0.6 78 0 1244 535 360

0.7 90 0 924 414 275

0.8 96 0 715 352 210
0.9 99 0 626 309 193

1 100 0 522 278 160

aIn calculating the duration of the study, we assumed an accrual rate of 5 patients per day.
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current practice at the VA Boston Healthcare
System. Adaptive randomization is designed to
assign subjects preferentially to the treatment arm
that, in real time, appears superior, with an ‘effi-
cacy’ stopping rule that has acceptable Type I error.
If the study terminates without reaching its ‘effi-
cacy’ boundary, it will reliably rule out a substantial
difference, in which case cost, convenience, and
other factors will dictate which treatment arms
continue to be supported. Such direct translation of
study results into clinical practice defines a ‘learn-
ing healthcare system.’

The clinical question posed in this protocol,
comparison of insulin administration methods, was
chosen because it is amenable to a maximally
pragmatic study as defined by the PRECIS criteria
and because:

� Broad participation by healthcare providers is
expected. The clinical question is compelling and
in practice there is apparent equipoise between
the two regimens in that roughly half of patients
are currently treated by each technique.
� The inclusion/exclusion criteria will allow enroll-

ment of nearly all the VA Boston patients who
require the intervention.
� The study interventions are currently utilized at

VA Boston, have known toxicities that are mon-
itored as part of usual care, and thus require no
specific study related monitoring.
� All study data elements are objective, resident in

the EMR and do not require study specific
interactions or visits for capture.
� Adaptive randomization methodology leads to

real-time incorporation of study results into
practice, if one treatment proves superior.

The ability to implement this study is made
possible by the VA’s EMR environment. CPRS is in
use at all the VA’s 1500-plus points of care and
was designed to incorporate clinical data as part of
efforts to improve clinical care. As a result, it
features several packages that allow end users to
automatically generate reports, ‘listen’ for certain
values associated with patient data objects, con-
sider these values with programmatic logic, and
introduce information and workflows directly into
the EMR. To capitalize on this level of flexibility,
most VA healthcare systems employ Clinical
Application Coordinators, who use these tools to
create and report measures of the quality of care,
to implement guidelines, and to create clinical
reminders based on the priorities of each hospital.
This infrastructure will allow for the relatively easy
roll-out of this and other POC-CT studies system-
wide as well as systematic implementation of
findings.

The ability to use existing functionalities, as
opposed to developing custom software is impor-
tant for a number of reasons. First, development of
new software functionality is constrained by time
for development, testing, and approval, and devel-
opment resources. Second, by capitalizing on exist-
ing system functionality, we increase the likelihood
of a successful deployment to other VA hospitals or
clinics, each one of which employs CPRS. Finally,
although this particular use of CPRS may be novel,
the POC-CT processes are presented through famil-
iar interfaces and into a culture of robust CPRS use,
which we hope will facilitate adoption of this
approach.

The ability of institutions to implement POC-
CTs is dependent on the ability to use the EMR to:
(1) identify events as they present in real time;
(2) intervene in the clinical care workflow; and
(3) track longitudinal data. It is worth noting that
these functionalities are critical to the creation and
implementation of many novel approaches to learn
from and improve healthcare based on real data
and that few systems offer such capabilities to end
users. The need for such functionalities is of
particular relevance in light of the US Federal
Government’s upcoming investment of $19 billion
to support the adoption of EMRs [13]. Much of
this funding is contingent on the adoption of
‘certified’ EMR systems and the ‘meaningful use’ of
such systems. Definitions that require flexible
integration with EMR data and workflows are
essential to meeting the goals of such enormous
investments [14].

The ethical and practical considerations of
informed consent have been extensively discussed
and debated [15–19] as have methods such as
cluster randomization which might obviate or
preclude individual informed consent [20,21].
Detailed analyses of these considerations are out-
side the scope of this article. However, as POC-CTs
or similarly designed trials become an important
component of clinical research, it will be incum-
bent on investigators, ethicists, and IRBs to fully
consider the potential benefits and apparently
minimal incremental risks of a POC-CT, and to
take responsibility for helping their healthcare
systems to lower the barriers to successful study
design and implementation of improvements in
care.

A study coordinator will obtain written informed
consent for all subjects entered into this trial. This
requirement accounts for a significant proportion
of the study cost and introduces the single most
tangible perturbation to the usual care workflow.
We recognize that replacement of such full written
informed consent by an alternative (such as simple
‘notification’ by the healthcare provider and verbal
consent by the subject with subsequent
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randomization through a fully automated comput-
erized process) would result in an even more
efficient design, with a closer match to clinical
care. The IRB could consider such a variation
on the usual research informed consent, on a
study-by-study basis, especially when the POC-CT
results in care materially identical to usual clinical
practice. Parallel requirements would be a waiver
of HIPAA authorization to obtain study data
from the EMR and acknowledgement that treating
clinicians who authorize automated randomization
are not ‘engaged’ in research.

A POC-CT will likely require significantly
less study-specific infrastructure and cost than
traditional RCTs (after the up-front investment in
coordinating center and informatics, already made
by the VA). These advantages together with an
economy of scale once an investment in the
methodology has been made could lead to low
incremental cost per study as well as allowing study
designs of sufficient duration to capture clinically
relevant (as opposed to surrogate) endpoints.

Limitations

Several issues may impede adoption of POC-CTs.
Some patients may find it surprising and troubling
that healthcare providers do not know what is the
best treatment for them. This disclosure could make
the consent process lengthy and difficult. Although
the medical community might be at equipoise
regarding treatment options, individual healthcare
providers may have strong treatment preferences,
either in general or for particular individual
patients. Both of these issues could have ramifica-
tions for recruitment rates and the success of a POC-
CT. We note that ‘reluctance to randomize’ is an
issue for all RCT designs, not just POC-CT.

Most (if not all) uses of POC-CT we envision
would have an open (unblinded) design, which
raises the possibility of cross-contamination of
treatments, or differential clinical interventions
due to physicians’ perceptions of patients’ needs,
or other failures of the exclusion principle, such as
observational bias in the outcome. Therefore, the
use of POC-CT may be restricted to clinical situa-
tions where the effects are likely to be minimal. We
think that the EMR-based protocols we compare
here, as well as the outcome of LOS, sharply reduce
physician unblinding as a threat. We emphasize
that POC-CT is not a universal alternative to the
classical double-blind RCT with its many controls
for bias; rather, it can be seen as a competitor to
observational studies, by removing the particular
bias from selection by indication that plagues such
non-experimental studies.

Our pragmatic intent requires us to rely on
individual clinician judgment of eligibility, which
is another mark of distinction between POC-CT and
conventional trials, which often have elaborate
procedures for defining ‘inclusion and exclusion.’
This certainly restricts the use of POC-CT to
contexts where such precision is unnecessary.
However, it also contributes to the ‘ecological
validity’ of treatment effects.

Highly pragmatic POC-CTs such as this study
may yield results that are locally convincing but
are not easily generalized to other healthcare
systems. A healthcare system such as the VA,
motivated to conduct POC-CTs and with the
organization and infrastructure capable of sup-
porting it, could generate ‘locally selfish’ evidence-
based medicine to gain evidence of comparative
effectiveness most relevant to its population and
systems. In general, comparative effectiveness
findings are most applicable to the systems and
individuals who participated in its creation rather
than to the ‘free riders’ – those who may desire
evidence-based medicine but who are unwilling to
be a part of that evidence.

The above may suggest that the POC-CT
approach is limited to a narrow range of clinical
questions and contexts. We are just now begin-
ning to expand our list of possible use cases, and
we do not want to speculate in advance of the
facts. We agree with Vickers and Scardino [9] that
features of POC-CT might be implemented in
practice in four distinct areas: surgery, ‘me too’
drugs, rare diseases, and lifestyle interventions. In
addition to questions of optimizing care (such as
the insulin example described here) use cases
currently under consideration include technology
introduction (imaging, robotics, and biomarker-
guided therapy), pre-hydration with bicarbonate
versus saline with or without n-acetylcysteine in
contrast-induced nephropathy, and comparing
prolonged exposure and cognitive processing ther-
apies as alternative treatment strategies for post-
traumatic stress disorder.

Finally, the proposed study design using out-
come adaptive randomization leads to real-time
implementation into practice, and stimulates
reconsideration of the role of the traditional peer
review process that subjects study results to expert
outside review before planning their implementa-
tion in practice.
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