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Abstract

Purpose: Group-wise analyses of DTI in mTBI have demonstrated evidence of traumatic axonal injury (TAI), associated with
adverse clinical outcomes. Although mTBI is likely to have a unique spatial pattern in each patient, group analyses implicitly
assume that location of injury will be the same across patients. The purpose of this study was to optimize and validate a
procedure for analysis of DTI images acquired in individual patients, which could detect inter-individual differences and be
applied in the clinical setting, where patients must be assessed as individuals.

Materials and Methods: After informed consent and in compliance with HIPAA, 34 mTBI patients and 42 normal subjects
underwent 3.0 Tesla DTI. Four voxelwise assessment methods (standard Z-score, ‘‘one vs. many’’ t-test, Family-Wise Error
Rate control using pseudo t-distribution, EZ-MAP) for use in individual patients, were applied to each patient’s fractional
anisotropy (FA) maps and tested for its ability to discriminate patients from controls. Receiver Operating Characteristic (ROC)
analyses were used to define optimal thresholds (voxel-level significance and spatial extent) for reliable and robust
detection of mTBI pathology.

Results: ROC analyses showed EZ-MAP (specificity 71%, sensitivity 71%), ‘‘one vs. many’’ t-test and standard Z-score
(sensitivity 65%, specificity 76% for both methods) resulted in a significant area under the curve (AUC) score for
discriminating mTBI patients from controls in terms of the total number of abnormal white matter voxels detected while the
FWER test was not significant. EZ-MAP is demonstrated to be robust to assumptions of Gaussian behavior and may serve as
an alternative to methods that require strict Gaussian assumptions.

Conclusion: EZ-MAP provides a robust approach for delineation of regional abnormal anisotropy in individual mTBI
patients.
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Introduction

Measures of fractional anisotropy (FA) derived from Diffusion

Tensor Imaging (DTI) reveal white matter abnormalities in mTBI,

consistent with traumatic axonal injury (TAI), the presumptive

pathologic substrate of adverse clinical outcomes after TBI

(e.g.,[1–9]). Voxelwise analyses applied to mTBI research, almost

universally compare groups of individuals. These studies thus

implicitly assume that the spatial distribution of mTBI pathology

will be the same across subjects, as only changes affecting a

common location across the patient group will be identified as

abnormal. This approach is inherently insensitive to intersubject

variation in location of pathology. Since the spatial distribution of

mTBI pathology among individual patients depends upon location

and mechanism of injury, and given the wide variation in

mechanism of injury and patient characteristics, this is a highly

questionable assumption [10,11]. Furthermore, clinical use of DTI

requires assessment of individual patients. An approach to

identifying loci of brain injury in individual mTBI patients is
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needed to fully understand the nature and extent of mTBI

pathology toward personalizing and improving clinical practice.

Several studies have assessed DTI in individuals [4,8,12–14].

Viviani, et al. [12] applied a pseudo t-statistic with spatially

smoothed standard deviation and degrees of freedom (DF)

calibrated by cross-validation. They identified abnormal regions

of the apparent diffusion coefficient (ADC) for single stroke and

glioblastoma patients, with thresholds optimized for the Family-

Wise Error Rate (FWER) based on the calibrated pseudo t-

distribution. In many neuroimaging studies focused on lesion

detection, spatial smoothing has not been carried out due to the

risk for blurring of lesion margins. However, the FWER for

control of Type-I errors in neuroimaging data may be overly

conservative, especially when the images are not smoothed

sufficiently [15]. The ‘‘one vs. many’’ T-test approach, employing

a priori thresholds (individual voxel and cluster level) has been

previously applied to mTBI patients [4,8,13] and the standard Z-

score approach [14,16]. However, these authors did not report

validation or effectiveness testing of their thresholds.

This study aims to validate ‘‘Enhanced Z-score Microstructural

Assessment of Pathology’’ (EZ-MAP) described by Lipton et al.

[17], for detection of regional FA abnormalities in individual

mTBI patients, and to compare EZ-MAP to previously reported

methods. Like other studies [4,8,12–14,16], EZ-MAP compares a

patient’s FA value to those from a normal reference group at each

voxel. Therefore, assessment of abnormality for each voxel entirely

depends on summary statistics, i.e., mean and standard deviation,

from the chosen reference group. It follows that final results may

vary with the composition of the reference group, with potential

for highly unreliable inferences when the reference group is small

as it was in previous studies (10–11 subjects in the reference groups

reported by [4,8,13,14]). We employed a bootstrap procedure to

overcome the potential for sample-to-sample variation of Z-scores.

We also address limitations of all the prior approaches including

EZ-MAP and perform specific validation addressing robustness,

sensitivity, specificity and diagnostic utility.

Materials and Methods

Ethics Statement
After Albert Einstein College of Medicine Institutional Review

Board (IRB) approval, Health Insurance Portability and Account-

ability Act (HIPAA) compliance and written informed consent,

subjects were prospectively enrolled, distinct from clinical care.

Thirty-four mTBI patients from one hospital emergency depart-

ment met inclusion/exclusion criteria (Table 1) and were enrolled

between August 2006 and May 2010. Forty-two control subjects

with no history of head injury were recruited through advertise-

ments.

Data Acquisition
Imaging was performed at 3.0-T (Achieva; Philips Medical

Systems, Best, the Netherlands) using an eight-channel head coil

(Sense Head Coil; Philips Medical Systems). T1-weighted whole-

head structural imaging was performed using sagittal three-

dimensional magnetization-prepared rapid acquisition gradient

echo (MP-RAGE; 9.9/4.6; field of view, 240 mm; matrix,

2406240; and section thickness, 1 mm). T2-weighted whole-head

imaging was performed using axial two-dimensional turbo spin-

echo (4000/100; field of view, 240 mm; matrix, 3846512; and

section thickness, 4.5 mm) and axial two-dimensional fluid-

attenuated inversion recovery turbo spin-echo (1100/120; inver-

sion time, 2800 msec; field of view, 240 mm; matrix, 3846512;

section thickness, 4.5 mm; and average number of signals

acquired, one) imaging. DTI was performed using single-shot

echo-planar imaging (3800/88; field of view, 240 mm; matrix,

112689; section thickness, 4.5 mm; independent diffusion sensi-

tizing directions, 32; and b = 1000 sec/mm2).

DTI Preprocessing
The American Board of Radiology certified neuroradiologist

reviewed MR images of all subjects (patients and controls) in

random sequence, blind to clinical information and group

membership (patient or control). The 33 diffusion-weighted image

sets (32 diffusion sensitizing directions and the b = 0 sec/mm2

image) were corrected for head motion and eddy current effects

using an affine registration algorithm. FA was derived from DTI at

each voxel using the FMRIB Diffusion Toolbox [18]. Preprocess-

ing procedures implemented for DTI included skull stripping,

echo-planar imaging distortion correction, intermediate rigid-body

registration, registration to standard space, transformation of DTI

to standard space, and white matter segmentation, in sequence.

Non-brain voxels were removed from the MP-RAGE and turbo

spin-echo images using FMRIB-FSL software [19]. Each brain

volume was inspected section-by-section, and residual non-brain

voxels were removed manually. Turbo spin-echo images were

acquired with the same section thickness, position and orientation

as DTI. Distortion correction was accomplished using a nonlinear

deformation algorithm to match each echo-planar image to the

corresponding turbo spin-echo volumes [20]. For intermediate

rigid-body registration, each subject’s turbo spin-echo images were

registered to their three-dimensional MP-RAGE volume using the

Automated Registration Toolbox [21] three-dimensional rigid-

body approach [22]. For registration to standard space, the

Table 1. Inclusion and exclusion criteria for patients.

Inclusion Criteria Exclusion Criteria

18–67 years of age Prior head injury

Emergency department diagnosis of concussion within 2 weeks Hospitalization due to the injury

GCS = 13–15 Neurodevelopmental or neurological disorder

LOC ,20 minutes

Posttraumatic amnesia ,24 hours Major psychiatric disorder

No focal neurologic deficit Illicit drug use within 30 days

English or Spanish proficiency Skull fracture or abnormal CT

Note- Normal control subjects (age range: 18–67 years) met the same exclusion criteria as patients. CT = Computerized Tomography.
doi:10.1371/journal.pone.0059382.t001

Abnormality Assessment for Individual mTBI Patient
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Figure 1. Histogram of bootstrap SD estimates. Each histogram of bootstrap SD estimates, ŝsB
i , of Z-scores from all white matter voxels is based

on a reference control group with size 10 (top), 20 (middle), and 40 (bottom), and produced by the procedure described in Text S1.
doi:10.1371/journal.pone.0059382.g001

Abnormality Assessment for Individual mTBI Patient

PLOS ONE | www.plosone.org 3 March 2013 | Volume 8 | Issue 3 | e59382



nonlinear registration module in ART was used to register each

subject’s three-dimensional MP-RAGE volume to a standard T1-

weighted template (Montreal Neurological Institute atlas; MNI)

[23]. For transformation of DTI to standard space, distortion

correction, intermediate rigid-body registration, and standard

space registration were applied to the calculated FA maps in a

single resectioning operation using ART. Final cubic voxel size

was 1 mm3, masked to exclude non-brain voxels from the analysis.

Figure 2. Box plots of uncoverage rates for normal control test subjects. Using 21 control subjects as the reference group, EZ-scores were
derived for each normal control test subject (‘‘Normal Subjects’’, n = 21; different subjects than those comprising the reference group). The actual
uncoverage rate, defined as the proportion of voxels lying outside of 6 z1-l/2 in each ‘‘Normal Subject’’, was determined at three percentiles,
corresponding to three theoretical uncoverage rates, (l), 0.1, 0.05, 0.01. Box plots show the range of actual uncoverage rates across the 21 ‘‘Normal
Subjects’’ for each of the three theoretical percentiles, each corresponding to the chosen l. In each plot, closeness to l, marked in blue, indicates
better correspondence of the subject measurement to the expected distribution. Outliers in each box plot, marked with red+signs, are defined as
values that are more than 1.5 times the interquartile range away from the top or bottom of the box. Observed uncoverage rates produced using EZ-
score, as compared to the standard Z-score approach, indicate that EZ-score better represents the standard normal distribution and, therefore,
provides a more accurate threshold for determination of abnormality with respect to a relatively small reference group of control subjects.
doi:10.1371/journal.pone.0059382.g002

Abnormality Assessment for Individual mTBI Patient
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For white matter segmentation, the fast automated segmentation

tool in the FMRIB-FSL package [19] was used to generate a white

matter mask for the three-dimensional MP-RAGE template brain

images and restrict subsequent statistical analysis of FA to white

matter voxels.

Adjustment for Demographic Covariate Effects
Because application of our methods to clinical settings will

require use of ready control data to assess a new patient, we chose

not to match controls one-to-one with patients. However, controls

were chosen with an even distribution of age, gender and

educational attainment that fully brackets the range of the

patients; no patient age or educational attainment exceeds all

controls at either extreme. For the purpose of our validation

experiments, we subdivided the control group into two similar

subgroups of 21 controls each. We adjusted for the potential effects

of age, gender and education using a linear regression model

estimated from one of the subgroups (the reference group). FA

images used in subsequent analyses were first adjusted by applying

regression coefficients to voxels where effects were significant.

Regression coefficients thus determined were applied to FA images

of the remaining 21 control subjects (‘‘normal control subjects’’)

and patients, but only at locations where effects on individual

voxels were significant at p,0.05 and where more than 100

significant voxels formed a contiguous cluster. This approach was

taken because application of the regression model to all regions

will only add noise to the Gaussian Random Field (GRF),

diminishing sensitivity [24].

EZ-MAP
We computed the Z-score defined by Z~(y{�xx)=s with

s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i~1

(xi{�xx)2=(n{1)

s
at each voxel within a subject’s FA

volume with reference values (mean and Standard Deviation (SD))

computed from the reference control group (n = 20), where one

subject of the reference group in Table 2 was excluded for this

calculation of mean and SD. Since the bootstrap procedure

described in Text S1 requires n+1 control subjects to simulate Z-

Figure 3. Spatial distribution of bootstrap estimated SDs. Voxelwise bootstrap estimated SDs are classified into 3 groups: under-dispersion,
over-dispersion and close to the theoretical SD value. Voxels are classified as over- or under- dispersion if the estimated across-subject variation by
the bootstrap procedure (Text S1) is substantially greater than the SD of the theoretical t distribution (ŝsB

i §yL) or substantially less than the SD of
the theoretical t distribution (ŝsB

i ƒyU ), respectively, while voxels are classified as ‘‘close to the theoretical SD’’ of the t distribution if they are within
yL and yU, where yL and yU are determined by the SD of the t-distribution with the DF from the theoretical t distribution 2/+10, respectively. Each
class was colored coded: red (over-dispersion), blue (under-dispersion), and green (close to the theoretical SD) and superimposed on sagittal T1-
weighted images. Slice locations are, -20, -46 mm (MNI) from left to right.
doi:10.1371/journal.pone.0059382.g003

Table 2. Distribution of demographic variables across mTBI
patients and control subjects.

Total

Control
Group 1
(Reference)

Control Group
2
(Test Subjects) Patients

Total N 42 21 21 34

Age 19–29 11 5 6 13

30–39 12 6 6 13

40–49 8 4 4 5

50–59 9 4 5 –

60+ 2 2 – 3

Min 20 20 21 19

Max 67 67 59 64

Mean 38.3 38.4 38.2 34.9

Education ,10 1 1 – 5

11–13 10 4 6 12

14–17 16 8 8 14

18–20 7 4 3 3

21–23 4 2 2 –

24+ 4 2 2 –

Min 7 7 12 8

Max 26 26 24 19

Mean 16.6 16.5 16.7 13.6

Gender Female 20 11 9 19

Male 22 10 12 15

doi:10.1371/journal.pone.0059382.t002
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scores, each of which is a realization of deviation of a control

subject’s FA from n control reference subjects, the reference group

(Table 2) comprises 21 subjects. For each bootstrap implementa-

tion, (n+1) subjects were resampled, where for each resampling,

first n subjects were grouped as a reference control group and the

(n+1)th subject served as the control test subject. Ideally, although

practically impossible, the reference mean and SD used to

compute any Z-score should be derived from a very large control

group. In our case, the ideal reference population would include

all normal subjects within the demographic parameters defined

above; we extracted subsets of this population as our control

sample. In practice, the limited size of a control group (e.g., 10–11

subjects as previously reported [4,8]), relative to the size of the

entire reference population may mean that the control group does

not optimally represent the full population from which it was

selected. Therefore, the control group mean and SD may change

with the composition of the selected control group, causing a bias

(away from zero) and adding variance to the Z-score. Since the

control group mean converges to the population mean at a faster

rate than SD, additional variance is likely to be the most important

factor contributing to variation of Z-scores across different control

subgroups. Inferences based on Z-scores computed using only the

control group SD might thus yield an unacceptably high rate of

false positive results. Uniform application of higher Z-score

thresholds to all voxels can be adopted in an effort to minimize

false positive results, but may result in decreased detection power.

We account for the potential excess variance in the Z-score at each

voxel nonparametrically by employing a bootstrap procedure as

described in Text S1. We term the Z-score based on this

bootstrap-adjusted variance the Enhanced Z-score (EZ-score). The

EZ-score at voxel (i) is then given in Equation (1).

EZi ~
Zi

ŝsB
i

ð1Þ

where ŝsB
i is the bootstrap SD estimate of Z-scores at voxel i from

the bootstrap procedure (Text S1). The estimated variance from

the bootstrap procedure for estimation of sample-to-sample

variation of Z-scores may be greater than 1 (Figure 1). Therefore,

determining abnormalities based on the EZ-score in Equation (1)

will be more conservative than the assessment with the standard Z-

score. The EZ-score approach adjusts each Z-score, with its

potential variability induced by differing the reference group, and

produces more robust results. This approach may provide a better

coverage rate for FA values from new normal control subjects who

were not part of the control group used for estimation of the mean

and SD, in that the coverage rate is defined by the proportion of

voxels lying between 6z1-l/2, with a target coverage rate (1-

l)6100(%). This result is demonstrated in Figure 2. For all three

coverage rates tested (90%, 95%, 99%). Coverage rates for the EZ

approach are closer to target rates than those for the standard Z-

score approach.

Potential variability induced by differing reference groups,

which was estimated by the bootstrap SD procedure, was maximal

with a smaller reference group and decreased as the number of

reference subjects increased (Figure 1 (top: n = 10, middle: n = 20,

bottom: n = 40)). Determination of an abnormality with standard

Z-scores based on a small control group may therefore include a

substantial number of false discoveries because sample-to-sample

variation in FA among the normal control subjects is not

accounted for.

We initially determined significance by assessing the Tail

Probability at a voxel i (TPi) of the EZ-score from the standard

Gaussian distribution (Equation (2)).

TPi~ Pr DEZi D w za1=2

� �
ð2Þ

We applied two levels of thresholding to identify significantly

abnormal voxels. First, each voxel must meet a threshold (a1) for

the TPi (Equation (2)) in order to be classified as abnormal.

Second, the subset of these voxels that forms contiguous clusters

meeting a size threshold (a2) is ultimately classified as abnormal.

We determined the threshold for cluster size using GRF theory

[24], which determines the significance of each suprathreshold

cluster, a set of contiguous voxels which meet the individual voxel

threshold (a1), and tested thresholds both uncorrected and

corrected for multiple comparisons.

Receiver operating characteristic (ROC) analysis is suited to the

assessment of complex diagnostic methods, such as neuroimaging,

where theoretical validation of all aspects of a diagnostic

procedure may be impossible. ROC is particularly useful in our

case because it allows simultaneous assessment of multiple

Figure 4. White matter regions with significant effect of demographic variables. White matter regions demonstrating significant multiple
regression effects with three covariates (age, gender, years of education) (F (0.05, 3, 17) = 3.2 and cluster size over 100 voxels). Example images are at
Z = 226, 218, 26 and 10 mm (Montreal Neurological Institute (MNI) coordinates).
doi:10.1371/journal.pone.0059382.g004

Abnormality Assessment for Individual mTBI Patient
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threshold values, a1 and a2, which may have a complex

relationship to classification power.

ROC analysis requires explicit definition of true positive and

false positive states. In our sample, however, no observable

structural brain abnormalities were present on which to base a

decision as to the presence of mTBI pathology. Furthermore, we

expect that microstructural pathology will be present even in the

absence of overt imaging abnormalities. Thus, we used ROC

analysis to test the utility of EZ-MAP for classification of subjects

as patients or normals in terms of the number of abnormal voxels

detected. EZ-MAPs were generated for both 34 mTBI patients

and 21 ‘‘normal control subjects’’. We used a separate unique

subgroup of normal subjects (not members of the ‘‘normal control

group’’ tested [as mentioned at the end of the previous sentence])

as the ‘‘reference group’’ for computation of the EZ-MAP in each

patient or ‘‘normal control subject’’. That is, none of the ‘‘normal

control subjects’’ for whom we computed EZ-MAPs were

members of the ‘‘reference group’’ used to provide mean and

SD for computation of the EZ-MAPs. The sole role of the ‘‘normal

control group’’ in this study was to serve as test subjects or

‘‘pseudo-patients’’. Using a range of combinations of the two

Figure 5. Variation in the spatial distribution of FA abnormalities across patients. Three axial images in three patients (A, B, C) showing
multiple areas of abnormally high (blue) and low (red) FA in the acute post-injury period (A- 3days, B- 6days, C-9days). Each patient shows multiple
locations of abnormality, with variable lesion location across individuals.
doi:10.1371/journal.pone.0059382.g005

Abnormality Assessment for Individual mTBI Patient
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thresholds (a1 and a2), ROC analysis identified optimal levels of

the two thresholds, where AUC was maximal.

One vs. Many t-test
The ‘‘one vs. many’’ t-test [4,8] utilizes the t-distribution with n-

1 (n = size of the reference group) DF. Individual voxels are

classified as abnormal based on the t-score defined by

Ti~Zi

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z1=n

p
: ð3Þ

However, the t-score strictly requires a Gaussian distribution in

order for FA values at each voxel to have the assumed theoretical t

distribution with n-1 DF. Although the two-group t-test is known

to be robust to deviation from the Gaussian distribution, this

property cannot be applied to ‘‘one vs. many’’ t-test because when

a patient is compared to a group of control subjects, the central

limit theorem, which provides robustness in the two-group t-test, is

no longer valid. One way to validate this Gaussian assumption is to

compare theoretical variance and variance estimated from the

data. The SD of the t-score can be estimated from the data simply

by dividing the bootstrap SD estimate of the Z-score at each voxel

by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z1=n

p
. A comparison of the theoretical SD

( =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n{1)=(n{3)

p
) and bootstrap SD estimates of t-scores is

demonstrated in Figure S1. The distribution of the bootstrap SD

estimates of t-scores is approximately centered (Median = 1.05;

Mean = 1.07) on the theoretical value 1.06 with n = 20, but widely

spread, indicating deviation from the theoretical t distribution.

Inferences that voxels are abnormal, based on the theoretical t

distribution, may therefore be substantially biased for those voxels

located at the tail regions of the histogram shown in Figure S1.

Since about 60% of voxels showed smaller SD estimates than the

theoretical SD, determination that voxels are abnormal based on

‘‘one vs. many’’ t-test tends to be conservative and subject to false

negative inferences. Further, voxelwise bootstrap SD estimates

were classified into 3 classes: (a) under-dispersion, (b) over-

dispersion and (c) close to the theoretical SD value by comparing

bootstrap SD estimates to the theoretical SD. Over-dispersion was

frequently found in peripheral WM regions while under-dispersion

was found in the deep white matter (Figure 3). Methods that apply

a theoretical SD threshold uniformly across all voxels may thus

produce higher false positive or false negative decisions for the

over- and under- dispersion regions. Deviation from the theoret-

ical variance suggests deviation from the Gaussian assumption for

FA measures. For example, the distribution of FA at a voxel can be

a mixture of two Gaussian distributions as in Equation (4).

Z *p1 Q (
Z{m

s1
)z(1{p1)Q

Z{m

s2

� �
, ð4Þ

with the standard Gaussian density w, 0,p1,1, and si .0 (i = 1,

2). The distribution of FA values in Equation (4) corresponds to a

mixture of two subpopulations, each of which has Gaussian

distribution with the same mean m, but different variances. This

model may be plausible in certain populations, for example, above

a certain age, variance may increase or decrease significantly.

Although, in the present study, effects of age on the mean FA were

removed by linear regression, heterogeneous variance among age

groups may remain. Under an assumption that the sample size (n)

for the reference group is sufficiently large, the distribution of t-

scores in Equation (3) derived with samples from a mixture

Gaussian distribution is found to be a mixture of two t-

distributions. Accordingly, classification of a voxel as abnormal

based on the theoretical t-distribution is not valid; the coverage

rate bounds (- tn-1,a/2, tn-1,a/2) from the theoretical t distribution

cannot achieve the desired coverage rate [(1-a)6100%] in the

presence of a mixed Gaussian distribution as in Equation (4).

Details of this derivation are provided in Text S2.

Table 3. Comparison of thresholds (a1, a2) based on AUC.

Cluster size threshold (a2)

Individual voxel threshold (a1) 5% uncorrected 1% uncorrected 5% corrected 1% corrected

(a1 = 5%)

EZ-MAP 0.701 (0.002) 0.701 (0.002) 0.724 (0.000) 0.702 (0.002)

‘‘1 vs. many’’ T test 0.702 (0.002) 0.710 (0.001) 0.738 (0.000) 0.718 (0.001)

Z-score 0.689 (0.004) 0.692 (0.003) 0.703 (0.002) 0.696 (0.003)

(a1 = 1%)

EZ-MAP 0.678 (0.007) 0.668 (0.011) 0.695 (0.003) 0.702 (0.002)

‘‘1 vs. many’’ T test 0.665 (0.012) 0.678 (0.007) 0.705 (0.002) 0.695 (0.003)

Z-score 0.678 (0.007) 0.674 (0.008) 0.685 (0.005) 0.681 (0.006)

Note – Discrimination between patients and controls based on a global metric, (all abnormal white matter voxels across the whole brain) assessed by AUC score. AUC is
tested by Wilcox-Mann-Whitney test (1-tailed); AUC score and its p-value in parentheses are calculated for each pair of two thresholds.
doi:10.1371/journal.pone.0059382.t003

Table 4. Sensitivity and specificity from the ROC analysis.

EZ-MAP
‘‘1-vs.-many’’
T test Z-score FWER- control

Sensitivity 0.706 0.647 0.647 NA

Specificity 0.714 0.762 0.762 NA

Note- EZ-MAP, ‘‘one vs. many’’ T, and Z-scores were thresholded at a1 = 0.05 (2-
tails); a2 = 0.05 (corrected for multiple comparisons). In the ROC analysis, the
optimal cut-off number (all abnormal voxels for discrimination of patients and
controls) is the point closest to the top-left corner of the ROC curve. Sensitivity
and specificity are not applicable because the FWER-control method was not
significantly powered in the ROC analysis.
doi:10.1371/journal.pone.0059382.t004

Abnormality Assessment for Individual mTBI Patient
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Results

Characteristics of the patient and control samples (Table 2)

show that the range of age, gender, and years of education of

controls fully encompasses those of patients. Furthermore, no

significant difference in age (t-test; p = 0.289, 0.324) or gender

distribution (Chi-squared test; p = 0.864, 0.511) was found

between each control group and the patient group. However, a

significant difference in years of education (t-test; p = 0.005, 0.004)

was found. 27,290 white matter voxels (4.5% of total white matter

volume) met significance criteria for the effects of demographic

covariates, dominated by the effect of education. Four axial slices

with significant effects of demographic covariates on FA are shown

in Figure 4.

Figure 5 shows example maps of abnormal FA from three

different mTBI patients, demonstrating multiple areas of abnor-

mally high and low FA with significant variation in the size and

spatial distribution of FA abnormalities across patients. The

determination of abnormality at this stage was defined using

thresholds (a1 = 0.05 (2-tails); a2 = 0.05 (corrected for multiple

comparisons)) determined from the ROC analysis (below).

In assessing diagnostic utility in individual patients, we initially

investigated three global metrics: (1) all abnormal white matter

voxels across the whole brain, (2) all white matter voxels where FA

was significantly lower than normal and (3) all white matter voxels

where FA was significantly higher than normal. Table 3 shows

AUC and p-values (Wilcox-Mann-Whitney test, 1-tailed) calculat-

ed at various levels of the two thresholds, a1 and a2, for the first

global metric (all abnormal white matter voxels across the whole

brain). Greatest efficacy in making the discrimination between

patients and controls, based on maximizing AUC, was found at

lower thresholds for a1 and higher thresholds for a2.

Similarly, ROC studies were conducted for the ‘‘one vs. many’’

t-test and the standard Z-approach to find optimal thresholds;

these results are summarized in Table 3. All three methods showed

maximal AUC scores at a1 = 0.05 (2-tails); a2 = 0.05 (corrected for

multiple comparisons). This pattern is opposite to that for FWER

control, where thresholds less strict for a1 but fairly strict for a2

yield optimal discrimination power. Table 4 shows the sensitivity

and specificity achieved when applying optimized thresholds (a1

and a2) for each method.

Diagnostic utility of the different analysis methods were

compared for each of the three global metrics derived at the

optimized thresholds [(a1 = 0.05 (2-tails); a2 = 0.05 (corrected for

multiple comparisons) for EZ-MAP, standard Z-score and one vs.

many t-test, while FWER-control was tested at 5% for each tail

area]. Overall, all of the three global metrics attained significant

power to discriminate mTBI patients from controls using EZ-

MAP, standard Z-score or ‘‘one vs. many’’ t-test. However, the

discrimination power of the FWER control approach was not

significant as shown in Table 5 and Figure 6. The first global

metric (all abnormal FA voxels) was somewhat more significantly

different between groups than the other two metrics (all

abnormally low FA voxels or all abnormally high FA voxels).

Two example axial slices from two different patients are presented

in Figure 7. As shown in Table 5 and Figure 7, the standard Z-

score approach identifies the largest number of voxels, while EZ-

MAP identifies fewer and the ‘‘one vs. many’’ T-test still fewer

abnormalities. The FWER-control identified the fewest voxels as

abnormal. Interestingly, the number of abnormal voxels from

standard Z-score was about 1.5 times greater than the number

from EZMAP, and again the number from EZ-MAP was about

1.5 times greater than the number from ‘‘one vs. many’’ t-test.

Abnormal regions detected by the standard Z-score should contain

more false positives due to underestimation of variance in

comparison to EZ-MAP. Since 60% of voxels showed under-

dispersion when compared to the expected theoretical variance of

Table 5. Assessment of discriminatory ability.

Number of abnormal
white matter voxels

Mean and SD of the numbers of abnormal voxels across
subjects Significance of group difference (p-value)

Normal Subjects (n = 21) mTBI Patients (n = 34) 2-group T W-M

All Abnormal Voxels

EZ-MAP 6211 (6282) 14000(11108) 0.003 0.000

‘‘1 vs. many’’ T test 3147 (4356) 8759 (8206) 0.003 0.000

Z-score 11783(9393) 21603(14459) 0.004 0.002

FWER-control 1136 (625) 1459 (1092) 0.112 0.164

Abnormally Low Voxels

EZ-MAP 2285(3189) 6489(7800) 0.012 0.077

‘‘1 vs. many’’ T test 1058(2255) 4134(6559) 0.022 0.063

Z-score 4315(4977) 9998(10661) 0.013 0.042

FWER-control 756 (494) 941(753) 0.161 0.253

Abnormally High Voxels

EZ-MAP 3925(4463) 7512(6850) 0.019 0.007

‘‘1 vs. many’’ T test 2089(2796) 4625(4763) 0.016 0.017

Z-score 7468(6845) 11605(9232) 0.041 0.046

FWER-control 380 (539) 518 (770) 0.478 0.184

Note- Mean number of abnormal voxels and SD (in parentheses) detected by each analysis method from each group for each global metric (1) ‘‘All’’ - all abnormal white
matter voxels across the whole brain, (2) ‘‘Low’’ - all white matter voxels where FA was significantly higher than normal and (3) ‘‘High’’ - all white matter voxels. Two-
group t-test and Wilcox-Mann-Whitney test was conducted for each global metric to compare the numbers of abnormal voxels between normal subjects and mTBI
patients.
doi:10.1371/journal.pone.0059382.t005
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the t-distribution, the number of voxels classified as abnormal by

the ‘‘one vs. many’’ t-test is excessively conservative. The FWER-

control approach is also overly conservative. Robustness of the

spatial extent of abnormalities for individual patients derived with

different control subjects were explored, as demonstrated in

Table 6 and Figure 8. Two sets of reference groups (n = 20 and

n = 40; the n = 40 group includes the n = 20 group plus an

additional 20 control subjects) were used separately to assess

individual mTBI patients. For each of the three global metrics the

number of abnormal voxels detected by standard Z-score

approach greatly decreased as the size of the reference group

increased, while ‘‘one vs. many’’ T-test showed the opposite

pattern. The regions of abnormally low FA detected with the EZ-

score were stable across reference group. Regions of abnormally

high FA detected with the EZ-score, however, decreased as the

size of the reference group increased.

Discussion

Individualized assessments are needed to guide personalized

therapeutic interventions [25–30]. Personalized medicine is

generally understood to encompass genotype-tailored treatment

[25–29], but other unique manifestations of disease demand

individualized diagnostic and therapeutic approaches. Individual-

ized assessment of DTI has been reported in only a few studies of

TBI, which applied group-wise methods to individuals [4,6,8,31].

However, individualized assessments are especially relevant to

TBI, where the nature of the injury and its pathologic

manifestations will be unique in each individual [10]. Additionally,

the analytic methods we have described could, after appropriate

validation, be generalized to the assessment of many brain

diseases.

We carefully addressed several important considerations in the

implementation and validation of our approach. First, any study

must in practice employ a control group that is a small subset of

the population against which determinations of abnormality are to

be inferred. This sampling limitation may lead to underestimation

of variance in Z-scores and consequent erroneous inferences. EZ-

MAP accounts for this potential additional variance by bootstrap,

a nonparametric method which resamples the Z-score (i.e., by

Figure 6. ROC curves from four analytic methods. ROC curves
from four analytic methods, (1) EZ-MAP, (2) ‘‘one vs. many’’ t-test, and
(3) standard Z-score approach and (4) the FWER test with pseudo t-
distribution, were compared for one global metric (number of whole
brain white matter voxels meeting criteria for abnormality). The
thresholds applied were a1 = 0.05 (2-tailed) and a2 = 0.05 (corrected
for multiple comparisons) for the EZ approach, ‘‘one vs. many’’ t-test,
and standard Z-score approach while a1 = 0.05 (1-tailed) with no spatial
extent threshold was employed for the FWER test. The ROC curve for
each of the three analytical methods is shown (blue dotted line = EZ-
approach, red dotted line = ‘‘one vs. many’’ t-test, black dotted
line = standard Z-score, grey dotted line = FWER test). The EZ-MAP,
‘‘one vs. many’’ t-test, and standard Z-score approaches showed
significant power; the yellow square indicates the optimal sensitivity
and specificity of the ROC curve for EZ-MAP (sensitivity- 71%, specificity
71%); red and black squares indicate this point for the ‘‘one vs. many’’ t-
test and standard Z-score, respectively (sensitivity 65%, specificity 76%
for both methods). The FWER test was not significant and therefore
optimal sensitivity and specificity are not noted.
doi:10.1371/journal.pone.0059382.g006

Table 6. Robustness: Number of abnormal voxels (n = 34).

Tested with n = 40 Control subjects Tested with n = 20 Control subjects Paired T-test (p-value)

All abnormal Voxels

EZ-MAP 12965 (11623) 14000 (11108) 0.725

‘‘1 vs. many’’ T test 10271 (10534) 8759 (8206) 0.537

Z-score 16516 (13383) 21603 (14459) 0.156

Abnormally Low FA Voxels

EZ-MAP 6400 (8314) 6489 (7800) 0.965

‘‘1 vs. many’’ T test 5187 (7641) 4134 (6559) 0.566

Z-score 8129 (9657) 9998 (10661) 0.475

Abnormally High FA Voxels

EZ-MAP 6565 (6548) 7512 (6850) 0.590

‘‘1 vs. many’’ T test 5083 (5464) 4625 (4763) 0.736

Z-score 8387 (7738) 11605 (9232) 0.149

Note- Mean number of abnormal voxels (SD) detected by each analysis method from each group for each global metric (1) ‘‘All’’ - all abnormal white matter voxels
across the whole brain, (2) ‘‘Low’’ - all white matter voxels where FA was significantly higher than normal and (3) ‘‘High’’ - all white matter voxels. Paired t-test was
conducted for each global metric to compare numbers of abnormal voxels detected in mTBI patients using each of two reference groups (n = 20, n = 40).
doi:10.1371/journal.pone.0059382.t006
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resampling the composition of the control group). An alternative

bootstrap method would first resample the deviation of an

individual FA from the mean FA obtained from a control group

arriving at a new bootstrap SD quantity, which would then be

used in computing the individual patient Z-scores. We employed

the former approach because it yields a more robust and stable

approximation of the true distribution [32].

We did not incorporate bias (variability of the control group

mean based on its composition) in calculating the EZ-MAP,

assuming that bias would be very close to zero. The narrow

distribution (particularly around zero) of the mean of resampled Z-

scores at each voxel confirms the validity of this assumption

(Figure S2).

We further confirmed that differences between the patient and

control groups were carefully assessed and accounted for to

minimize the chance that covariates such as age, gender and

education would be detected as real effects. Notably, we found that

significant effects of age, gender and education were modest in

magnitude and spatial extent.

EZ-MAP discriminated mTBI patients from normals, showing

statistical significance on assessment of area under the ROC curve

and significant differences between patients and controls in the

number of abnormal voxels detected. In terms of discrimination

power, the standard Z-score and ‘‘one vs. many’’ t-test approaches

also attained significance while an approach employing FWER-

control did not. Although all three methods achieved significant

discrimination power, the extent of abnormal regions varied

among the methods. Inferences based on the standard Z-score

approach tend to produce more false positive findings and those

identified with the ‘‘one vs. many’’ t-test yield more false negative

inferences. EZ-MAP inferences fall in between these two extremes.

Because EZ-MAP is a data-adaptive approach, it is inherently less

sensitive to underlying assumptions regarding the composition of

the reference group than standard Z-score approach and ‘‘one vs.

many’’ t-test.

Several potential limitations of our study should be considered.

The assumption that the distribution of FA at each voxel would be

symmetric, implicit in the standard Z-score, EZ-MAP and the

‘‘one vs. many’’ t-test, was explored because we suspected that

such assumptions would lead to erroneous inferences. The density

functions of EZ-scores from each normal control subject (Figure

S3, top) and all subjects (Figure S3, bottom), were estimated by

mixture modeling [33]. In the estimated density functions for

individuals, we found a thicker tail to the right (highly positive EZ-

scores). The estimated density function for all control subjects also

showed a thicker tail to the right in comparison to the standard

Gaussian distribution. As a consequence of this asymmetry,

abnormally high FA voxels (i.e., the right tail) were likely to be

identified in ‘‘normal control subjects’’. Such ‘‘abnormalities’’

might be detected due to deviation from underlying assumptions

Figure 7. Abnormal regions detected by four analytic methods. Two example axial slices (z = 214 and 20 mm in MNI coordinates, from top
to bottom) for detected abnormalities in two different mTBI patients are presented. Analysis methods are arranged as, from left, standard Z-score, EZ-
MAP, ‘‘one vs. many’’ t-test and FWER-control. Abnormal regions are colored blue (abnormally high) and red (abnormally low). While similar locations
are classified as abnormal by the various methods, fewer of the abnormal regions survive among analysis methods from left to right.
doi:10.1371/journal.pone.0059382.g007
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about the control group (i.e., the absence of a symmetric

distribution across subjects at each voxel) not due to actual

abnormalities. Therefore, a further improvement for analysis of

DTI images in individual patients beyond the EZ-MAP may be

achieved by developing methods to account for potential

asymmetry in the FA distribution.

It is also important to critically assess the likelihood that the

effects seen in the mTBI patients we studied are due to mTBI

rather than some other white matter abnormality. Although,

strictly speaking, it would never be possible to accept a null

hypothesis that our patient and control subjects do not differ other

than due to mTBI, we went to great lengths to ensure, to the

maximum extent possible, that differences between patients and

controls are reasonably attributable to mTBI. The mTBI patients

enrolled in this study were carefully screened to exclude pre-injury

medical, neurological or psychiatric disorders, including substance

use, which could possibly cause white matter pathology. In

addition to adjusting for age, we excluded patients at extremes of

the lifespan, where developmental or senescent changes may affect

FA. Although a significant difference in education was found

between patients and controls, we found only minimal effects on

FA, which were adjusted for in our analyses. Finally, abnormal

findings occurred in areas expected to be affected in TBI (e.g.,

[1,3–10,31,34–45]) and are consistent with numerous prior studies

of DTI in TBI (e.g., [4,6–8,36,38–40]).

Supporting Information

Figure S1 Bootstrap SD estimates of T-scores. Bootstrap

SD estimates of t-scores from all white matter voxels across the

whole brain is compared to the theoretical SD ( = 1.06) from the t-

distribution with DF = 19. The thin red bar indicates the

theoretical SD. About 60% of the voxels are located below the

theoretical SD.

(TIF)

Figure S2 Histogram of the mean of resampled Z-
scores. Histogram of the mean of resampled Z-scores at each

voxel, based on the bootstrap procedure (Text S1) is shown. The

histogram is approximately centered at zero with a narrow width

(60.1).

(TIF)

Figure S3 Estimated density function of EZ-scores. The

density function of EZ-scores was estimated for each normal

control subject (top, blue) and all subjects (top, red), by

concatenating individual volumes. The estimated density function

for all control subjects (bottom, red) was compared to the standard

Gaussian density function (bottom, black).

(TIF)

Text S1 Bootstrap procedure for estimation of the SD
for use in Enhanced Z-scores.

(DOC)

Text S2 Derivation of the distribution of T-score with
random samples from a mixture of two Gaussian
distributions.

(DOC)
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