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A B S T R A C T

Patients with end-stage kidney disease (ESKD) on maintenance
hemodialysis are subject to a high burden of inflammation and
cardiovascular disease, driven at least in part by retention of
uremic solutes. Existing dialysis technologies using high-flux
membranes offer limited clearance of solutes >15 kDa. New
approaches to improve the removal of large uremic toxins in-
clude the novel medium cut-off dialysis membranes with pores
larger than those in high-flux membranes. These new mem-
branes provide the potential to improve the clearance of large
middle molecules up to 50 kDa. In this review, we discuss 18
uremic toxins with molecular weights between 15 and 60 kDa
that are retained in ESKD, for which there is evidence of a link
to inflammation and/or cardiovascular disease. These include
inflammatory proteins, cytokines, adipokines and other signal-
ing proteins. Improved clearance of this group of difficult to re-
move molecules has the potential to lead to improved outcomes
in dialysis patients by reducing the burden of cardiovascular
disease, which now needs to be assessed in robust clinical trials.
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I N T R O D U C T I O N

In the decades since the introduction and mainstream uptake of
maintenance hemodialysis, outcomes in patients with end-stage
kidney disease (ESKD) have improved. Patients on hemodialysis,
however, continue to experience much higher rates of mortality
than the general population, with particular burdens of cardio-
vascular disease and cardiovascular death. The nature of cardio-
vascular disease in uremia is generally recognized to be different
from that in patients with normal kidney function, with a high
frequency of ventricular remodeling and dysfunction, arrhyth-
mia and sudden cardiac death, and calcific arterial and valve dis-
ease [1]. Risk factors for cardiovascular disease in ESKD are also
different, with contributing factors such as phosphate,

inflammatory markers and others. The pathogenesis and the
drivers for this accelerated cardiovascular disease process are not
completely understood, but the uremic milieu, with retention of
numerous solutes normally cleared by the kidney or excreted in
the urine, likely plays a large part. In this review, we will examine
potential links between the large uremic toxins known as middle
molecules and cardiovascular disease, and the gap that exists cur-
rently in our ability to remove these molecules.

L A R G E U R E M I C T O X I N S

Hemodialysis effectively removes small water-soluble molecules
that circulate without significant protein binding, exemplified by
the use of urea clearance as a metric for dialysis dose and kinetic
modeling. Molecules that are larger and/or protein-bound are,
however, much more difficult to remove. The ‘middle molecules’,
molecules from 500 to 60 000 Da, are a diverse group of mole-
cules, many of which have known toxic effects. Dialysis technolo-
gies have been targeted to improve clearance of smaller middle
molecules up to �15 kDa, such as beta-2 microglobulin, whilst
avoiding albumin loss (66 kDa). Modern high-flux membranes
are reasonably effective at removing proteins in this lower size
range, but clearances are poor for molecules >15 kDa.
Hemodiafiltration (HDF) improves the clearance of molecules
up to�25 kDa and newer ‘medium cut-off’ membranes have the
potential to more effectively remove larger molecules up to
50 kDa, with limited albumin loss [2]. Many of these larger mid-
dle molecules are linked directly, or in some cases indirectly, with
cardiovascular disease and improved removal of such solutes is a
generally accepted goal of improving dialysis technology.

A large number of molecules are known to be retained in ure-
mia, and Table 1 describes 18 that fall into the category of large
middle molecules with a size between 15 and 60 kDa, which are
cleared poorly by conventional dialysis and for which there is ev-
idence of their involvement in inflammation and or cardiovascu-
lar disease. The usual biological role of these molecules is diverse,
and they include a number of cytokines, adipokines, growth
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factors and other signaling proteins. Levels of these proteins can
be markedly elevated in uremia, with most cytokines and inflam-
matory proteins being 2- to 10-fold higher in uremia compared
with subjects with normal renal function. Many other middle
molecules are>10-fold higher and some proteins such as fibro-
blast growth factor (FGF)-23, which is directly involved in phos-
phate handling can be elevated>200-fold. Conventional dialysis
is universally poor at removing these molecules.

R O L E O F L A R G E M I D D L E M O L E C U L E S I N
I N F L A M M A T I O N A N D C A R D I O V A S C U L A R
D I S E A S E

There is a strong body of evidence linking inflammation with
cardiovascular disease. This relationship has been demonstrated
in both the general population and in those with kidney disease.
Many of the cytokines and associated inflammatory molecules
that are elevated in uremia play a part in this inflammation–car-
diovascular disease pathway (Figure 1).

Interleukin 1 beta (IL-1 beta) plays a key stimulatory role in
the pro-inflammatory cytokine cascade and has been implicated
in the process of atherosclerosis. Animal studies have demon-
strated a causative role by examining both genetic or pharmaco-
logic inhibition of IL-1 beta signaling and the progression of
atherosclerotic disease [3]. In human studies, IL-1 beta is in-
creased in diseased coronary arteries and correlates with plaque
severity [4]. Gene polymorphism studies also indicate a rela-
tionship between interleukin-1 receptor antagonist protein (IL-
1-RN) polymorphisms and coronary artery disease suggesting a
causative role for IL-1 beta and atherosclerotic disease in
humans [5]. IL-1 beta has also been associated with left ventric-
ular hypertrophy in dialysis patients [6].

IL-18 is also typically elevated in uremia and in human stud-
ies, elevated levels have been associated with coronary artery
calcification and cardiovascular mortality in chronic kidney dis-
ease (CKD) patients [7, 8]. In patients with coronary artery dis-
ease, high IL-18 levels are linked to unstable coronary plaque
[9]. In animal models, IL-18 administration increases plaque
formation in susceptible animal models, probably via an inter-
feron (IFN)-gamma-dependent process [10].

Elevated levels of IL-6 are also associated with cardiovascular
mortality [11] and left ventricular hypertrophy [6] in patients
with CKD and those receiving hemodialysis. IL-6 is believed to
play a central role in the development of atherosclerotic lesions,
orchestrating the recruitment and ingress of inflammatory cells,
as well as having local pro-coagulant effects in the vasculature
that promote acute thrombosis [12]. The contribution of IL-6
to coronary heart disease is also supported by human
Mendelian randomization studies [13].

Tumour necrosis factor alpha (TNF-alpha) is a cytokine that
is produced by many cell types in response to inflammatory
stimuli and also downstream of other cytokines such as IL-1. It
has potent effects upregulating the immune response and pro-
duces a wide range of systemic effects including the suppression
of appetite and induction of fever. TNF-alpha is typically ele-
vated 4- to 5-fold in patients with ESKD and is associated with
left ventricular hypertrophy in patients receiving dialysis [6].
High levels of circulating TNF-alpha are thought to contribute
to myocardial dysfunction and fibrosis, as well as influencing
vascular disease via multiple pathways, such as increasing coag-
ulation activators, destabilizing endothelial structure and pro-
moting proliferation and migration of vascular smooth muscle
cells [14]. Intervention studies in humans demonstrated acute

Table 1. Middle molecules in the range of 15–60 kDa that have evidence for involvement in inflammation and cardiovascular disease

Molecule (alternative names) Classification Molecular
size (kDa)

Usual biological role Relative increase in
dialysis or advanced
CKD

Interleukin-18 Cytokine 18 Pro-inflammatory �2-fold higher
Interleukin-6 Cytokine 21–28 Pro-inflammatory 2- to 5-fold higher
Interleukin-1b Cytokine 17.5 Pro-inflammatory �2-fold higher
TNF-a Cytokine 17 Pro-inflammatory 4- to 5-fold higher
Soluble TNF receptor 1 (p75) Protein 27–30 Limits TNF-a activity 3- to 10-fold higher
Soluble TNF receptor 2 (p55) Protein 17 Limits TNF-a activity 3- to 10-fold higher
Pentraxin-3 Protein 40 Opsonization and complement activation. Modulate

macrophage activity
2- to 7-fold higher

YKL-40 (CHI3L1) Protein 40 Regulates local inflammatory markers. Other functions unclear 2- to 5-fold higher
Adiponectin Adipokine 30 Modulates glucose regulation and fatty acid oxidation 2- to 3-fold higher
Visfatin (NAMPT) Adipokine 52 Extracellularly stimulates angiogenesis and endothelial

cell proliferation
3- to 6-fold higher

Leptin Adipokine 16 Regulates appetite and body energy stores 3- to 4-fold higher
VEGF (vascular permeability factor) Growth factor 34 Promotes endothelial cell proliferation, migration

and differentiation
�2-fold higher

FGF-2
(basic fibroblast growth factor)

Growth factor 18 Angiogenic growth factor 5- to 20-fold higher

FGF-23 Growth factor 32 Regulates phosphate homeostasis >200-fold higher
Complement factor D

(C3 proactivator convertase)
Protein 24 Component of alternative complement pathway;

humoral defense
4- to 17-fold higher

Prolactin Hormone 23 Diverse roles 2- to 4-fold higher
b-trace protein

(L-prostaglandin D2 synthase)
Protein 26 Catalyzes isomerization of precursor prostanoids

to active forms
>35-fold higher

AGEs Other <1–70 Unknown 2- to 20-fold higher
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adverse vascular effects from TNF-alpha infusion and TNF-
alpha is thus thought to contribute to the early development
stages of atherosclerosis [15]. In ESKD, the soluble TNF recep-
tors 1 and 2 (27 kDa and 17 kDa) are both also elevated signifi-
cantly and may limit TNF-alpha activity in the acute setting.
However, they also act to prolong the activity and half-life of
circulating TNF-alpha, thus potentially contributing to the
chronic inflammatory state and consequent cardiovascular
disease.

Pentraxin-3 (PTX3), a 40-kDa member of the family of acute
phase reactant pentraxins which include also C reactive protein
(CRP), is considered to be part of the ‘long pentraxin’ subfam-
ily. It is rapidly secreted primarily, but not exclusively, by leuko-
cytes when stimulated by pro-inflammatory cytokines such as
TNF-alpha and IL-1, or by other activators of the innate im-
mune system, and has general functions including binding to
pathogens for opsonization and complement activation. PTX3,
similar to the prototypical short pentraxin CRP, has been obser-
vationally linked to increased risk of cardiovascular death and
mortality in a number of studies, some including patients with
CKD [16]. PTX3 may be a more specific marker than CRP for
atherosclerosis however, as it is produced abundantly by cells
within atherosclerotic lesions rather than by the liver, as is CRP.
Several studies have linked PTX3 with unstable plaque in coro-
nary and carotid arteries [17, 18]. It is not entirely clear, how-
ever, if PTX3 has a primary causative role in atherosclerosis,
though PTX3 does have pro-thrombotic effects by interfering
with nitric oxide (NO) production and augmenting the local ex-
pression of tissue factor in response to stimuli [19]. PTX3 can

also be generated in vascular smooth muscle cells in response to
atherogenic lipids, suggesting a possible place in the pathway of
atherosclerosis progression [20].

A D I P O K I N E D E R A N G E M E N T I N U R E M I A
A N D C A R D I O V A S C U L A R D I S E A S E

Cell signaling proteins secreted by adipose tissue overlap in part
with cytokines, but a number of these proteins secreted almost
exclusively by adipose tissue have been termed adipokines.
These molecules have a variety of roles and several are in the
middle molecule size range and accumulate in kidney disease.
These include adiponectin, which is exclusively generated by
adipose tissue. Serum concentrations of adiponectin are in gen-
eral inversely correlated with body fat quantities. Adiponectin
circulates as trimers or larger conglomerates and the higher mo-
lecular weight forms are thought to be more biologically active
with a protective role. Low adiponectin levels have been impli-
cated in obesity-related insulin resistance, the metabolic syn-
drome and cardiovascular disease [21]. Although adiponectin is
elevated in uremia, the relationship appears to be modified by
amounts of fat mass and inflammation [22].

Adiponectin has variable relationships with atherosclerosis
development in studies, possibly due to the variety of molecular
sizes at which it exists, which may have different actions on dif-
ferent receptors. Most studies support an anti-inflammatory
role, though whether this is true in CKD where generally high
adiponectin levels coexist paradoxically with a high risk of car-
diovascular disease is still unclear. Elevated adiponectin is

Plaque
formation

Plaque
instability

Endothelial
dysfunction

Angiogenesis

PTX3

Prolactin

Leptin

Plaque rupture
and thrombosis Platelet activation

and adhesion

Visfatin
VEGF

SMC
proliferation

Plaque
progression Foam cell

formation

Leukocyte adhesion
and activation

AGEs
Leptin

IL1-β
TNF-α

IL6

TNF-α

YKL-40
Prolactin

FIGURE 1: Middle molecules influence multiple steps in atherosclerosis progression. Elevated leptin and AGE levels are associated with endo-
thelial dysfunction, which is also promoted by inflammatory molecules such as PTX3 and IL-1 beta. Elevated cytokines and other molecules
such as prolactin and YKL-40 increase leukocyte adhesion and activation leading to foam cell formation. The progression to unstable plaque
with migration and proliferation of smooth muscle cells and angiogenesis is also influenced by uremic toxins, eventually leading to plaque rup-
ture and thrombosis.
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associated with an increased risk for death in renal transplant
recipients [23], and correlated with inflammatory cytokines
such as IL-6 and TNF-alpha in dialysis population [24]. Other
studies have found a U-shaped association between mortality
and adiponectin [22], suggesting possible confounding by mal-
nutrition and inflammation/wasting.

In contrast to adipokine, leptin has a clearer role in athero-
sclerosis, contributing to early-stage atheroma formation by
impairing vasorelaxation via increasing endothelin and causing
dysregulation of NO production [25]. Furthermore, leptin
appears to potentiate Angiotensin II-related vascular dysfunc-
tion via increasing the expression of type-1 Angiotensin II
receptors in vascular smooth muscle cells as well as promoting
hypertrophy of these cells [26]. Leptin also increases local ex-
pression of inflammatory cytokines thus promoting inflamma-
tion-related damage [27]. In addition, leptin also enhances
platelet activation leading to thrombus formation. Studies have
demonstrated that high levels of circulating leptin are an inde-
pendent risk factor for acute cardiovascular events [28].

Visfatin, also known as nicotinamide phosphoribosyltrans-
ferase (NAMPT) or historically as pre-B cell colony-enhancing
factor, is an adipokine primarily but not exclusively secreted by
visceral adipose tissue. At 52 kDa, it is one of the largest middle
molecules to be elevated in uremia [29]. Intracellularly, it is in-
volved in nicotinamide adenine dinucleotide biosynthesis but it
is also released extracellularly, where it appears to have a wide
range of effects including stimulating angiogenesis and endo-
thelial cell proliferation. It also promotes the growth of vascular
smooth muscle cells, has anti-apoptotic effects on macrophages
and promotes vascular inflammation and endothelial damage
[30]. High levels of visfatin expression have been found in ath-
erosclerotic plaque in human studies. Furthermore, circulating
levels of visfatin predict the presence of unstable plaque [31].

O T H E R L A R G E U R E M I C T O X I N S L I N K E D
W I T H C A R D I O V A S C U L A R D I S E A S E

YKL-40, also known as chitinase-3-like protein 1 (CHI3L1), has
a molecular weight of 40 kDa. It has precise role in inflamma-
tion and angiogenesis though its preciseness is unclear. It is se-
creted by activated macrophages and other cells and is induced
by pro-inflammatory cytokines. YKL-40 is known to regulate
other inflammatory markers, such as increasing the expression
of monocyte chemoattractant protein-1 and activating cyto-
plasmic signaling pathways that increase cell proliferation and
survival. Circulating YKL-40 levels have been observationally
associated with stroke risk [32], and a possible causative role is
supported by associations also with homozygosity for a single-
nucleotide polymorphism in the CHI3L gene (which relates to
YKL-40) [32]. In dialysis patients, YKL-40 correlates with the
presence of known coronary artery disease, though studies in
other populations do not support a clear link with coronary dis-
ease [33]. The study of YKL-40 has not yet progressed to delin-
eate a clear mechanistic link with disease but given the
appearance as a stroke marker this deserves further exploration.

The family of growth factors contains many arms that are in-
volved broadly in stimulating proliferation and cellular differ-
entiation, and several are increased in uremia, including

vascular endothelial growth factor (VEGF) (elevated �2-fold),
FGF-2 (elevated �5- to 20-fold) and FGF-23 (�200-fold
higher). The 34 kDa molecule VEGF is an essential regulator of
angiogenesis both in normal physiology and in disease states
such as cancer. VEGF promotes endothelial cell proliferation,
migration and differentiation in endothelial cells and elsewhere.
VEGF also appears to have an important role in cardiac adapta-
tion to hypoxia and stretch, being upregulated by these stimuli
and notably increased in cardiac hypertrophy [34]. VEGF ex-
pression is present in atherosclerotic plaque in human subjects
and correlates with CKD grade in this setting [35].

FGF-2 is a signaling protein that is closely linked with the pro-
cess of cardiac hypertrophy, providing paracrine mediation be-
tween cardiac fibroblasts and cardiomyocytes. In knockout
mouse models, the lack of FGF-2 prevents compensatory hyper-
trophy in angiotensin II-dependent hypertension [36] and this
has also been demonstrated in pressure/volume overload models,
which are likely applicable to ESKD [37]. Interestingly, circulating
FGF-2 has an inverse relationship with atheroma progression in
CKD patients suggesting both deleterious and beneficial roles in
cardiac disease [38]. FGF-23 has also been demonstrated to di-
rectly cause left ventricular hypertrophy when administered in
animal models [39], and this can be attenuated with a FGF-23
blocker. Furthermore, FGF-23 levels correlate closely with Left
Ventricular Hypertrophy in human observational studies [40],
and this extends to patients with CKD [39].

Complement factor D is an integral component of the alter-
native complement pathway, being the rate-limiting step in the
production of C3 convertase. It is elevated significantly (4- to
17-fold) in ESKD, and thus contributes to dysregulation of the
complement system in these patients, priming them for exces-
sive complement activation. Complement activation and depo-
sition is known to play a role in endothelial dysfunction and
cardiac ischemia-reperfusion injury. In animal models, block-
ade of complement components has been demonstrated to re-
duce tissue injury in this setting [41].

Prolactin levels in CKD are high due to reduced renal clear-
ance and increased production. Prolactin is now recognized to
have diverse roles, some of which are involved in cardiovascular
disease at different levels. At the endothelial level, prolactin
stimulates the adhesion of mononuclear cells to endothelial cells
in response to inflammatory cytokines [42]. The main 23 kDa
fragment is a driver of angiogenesis [43]. Excess prolactin in the
setting of prolactinoma is also associated with impaired insulin
sensitivity and adverse effects on lipids [44]. A role for prolactin
in cardiovascular disease is supported by the association be-
tween prolactinoma and an elevated risk for incident cardiovas-
cular disease in males compared with control subjects [45] and
in CKD patients, prolactin levels have been positively associated
with mortality and cardiovascular death [46].

Beta-trace protein is normally freely filtered and metabolized
completely by the renal tubule, and it is usually elevated 20- to
30-fold in ESKD. Functionally it is involved in prostanoid syn-
thesis and is heavily expressed in the heart and cardiac vessels.
Beta-trace protein levels correlated strongly with cardiovascular
disease and atheroma in hemodialysis patients [47], and prosta-
glandins from the pathway catalyzed by beta-trace protein have
many cardiovascular effects. These are thought, however, to be
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cardioprotective with anti-thrombotic and anti-atherogenic po-
tential [48], and in animal models gene knockout also causes ac-
celerated atherosclerosis [49].

Advanced glycosylation end products (AGEs) refer to a
large group of different molecules that result from the nonen-
zymatic glycation of proteins and lipids, and can be endoge-
nously generated or from dietary sources, though the latter
appears not to contribute to the high levels that accumulate
in uremia [50]. They exist in a variety of sizes although in the
hemodialysis population the main fractions are found at
�70, �14 and<2 kDa [51]. AGE levels predict cardiovascu-
lar mortality in the dialysis population [52] and are thought
to contribute structurally to vascular disease and inflamma-
tion [53]. The receptors for AGEs may also be involved in en-
dothelial dysfunction in dialysis patients by enhancing
adhesion molecule expression and interfering with NO syn-
thesis in blood vessels [50].

C U R R E N T A N D F U T U R E S T R A T E G I E S T O
R E M O V E L A R G E M I D D L E M O L E C U L E S

Conventional hemodialysis with high-flux membranes has very
limited clearance of larger middle molecules, e.g. clearance of
1.8 mL/min for complement factor D (24 kDa) compared with
208 mL/min for urea [54]. Therapies utilizing convection such
as HDF are one such strategy that has been promoted to im-
prove clearance of middle molecules. Studies comparing low-
flux hemodialysis and HDF have demonstrated better beta-2
microglobulin (<15 kDa) clearance with HDF [55] but compar-
isons between HDF and HD using high-flux membranes have
been less impressive [56], and clearance of larger middle mole-
cules is severely limited due to membrane pore size.
Membranes with larger pores (‘high cut-off’ dialyzers) have
been developed with initial interest primarily in use for acute
kidney injury secondary to acute load of large middle molecules
such as free light chains in myeloma [57]. The use of such mem-
branes, however, results in a large amount of albumin loss along
with the removal of the target proteins. Improvements in
manufacturing technology have now allowed improvements in
the uniformity of pore distribution, enabling the production of
membranes that will allow greater clearance of larger molecules
but without significant albumin loss (medium cut-off mem-
branes). Studies to date show that these membranes improve
clearance of larger molecules significantly compared with high-
flux dialysis. For example, clearance of complement factor D
(24 kDa) was improved from 1.8 mL/min to 26–35 mL/min us-
ing medium cut-off membranes compared with high flux, and
the reduction ratio for YKL-40 (40 kDa) similarly increased
from 19% to 61–71% [54]. This technology offers a leap in our
ability to remove these large uremic toxins, and studies are now
required to define the medium- and long-term safety of this ap-
proach as well as patient outcome data.

C O N C L U S I O N S

Large middle molecules are a diverse group of uremic toxins
that contribute significantly to the high cardiovascular disease
burden in ESKD. Dialysis technologies available to date offer

limited clearance of these molecules. A new generation of mem-
branes demonstrates improved clearance and now need to be
tested prospectively to determine if improved clearance will
lead to improved patient outcomes.
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