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Despite the progress in understanding of neural codes, the studies of the

cortico-muscular coupling still largely rely on interferential electromyographic (EMG)

signal or its rectification for the assessment of motor neuron pool behavior. This

assessment is non-trivial and should be used with precaution. Direct analysis of neural

codes by decomposing the EMG, also known as neural decoding, is an alternative

to EMG amplitude estimation. In this study, we propose a fully-deterministic hybrid

surface EMG (sEMG) decomposition approach that combines the advantages of both

template-based and Blind Source Separation (BSS) decomposition approaches, a.k.a.

guided source separation (GSS), to identify motor unit (MU) firing patterns. We use the

single-pass density-based clustering algorithm to identify possible cluster representatives

in different sEMG channels. These cluster representatives are then used as initial points

of modified gradient Convolution Kernel Compensation (gCKC) algorithm. Afterwards,

we use the Kalman filter to reduce the noise impact and increase convergence rate of

MU filter identification by gCKC. Moreover, we designed an adaptive soft-thresholding

method to identify MU firing times out of estimated MU spike trains. We tested

the proposed algorithm on a set of synthetic sEMG signals with known MU firing

patterns. A grid of 9 × 10 monopolar surface electrodes with 5-mm inter-electrode

distances in both directions was simulated. Muscle excitation was set to 10, 30,

and 50%. Colored Gaussian zero-mean noise with the signal-to-noise ratio (SNR) of

10, 20, and 30 dB, respectively, was added to 16 s long sEMG signals that were

sampled at 4,096Hz. Overall, 45 simulated signals were analyzed. Our decomposition

approach was compared with gCKC algorithm. Overall, in our algorithm, the average

numbers of identified MUs and Rate-of-Agreement (RoA) were 16.41 ± 4.18 MUs and

84.00 ± 0.06%, respectively, whereas the gCKC identified 12.10 ± 2.32 MUs with the
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average RoA of 90.78 ± 0.08%. Therefore, the proposed GSS method identified more

MUs than the gCKC, with comparable performance. Its performance was dependent on

the signal quality but not the signal complexity at different force levels. The proposed

algorithm is a promising new offline tool in clinical neurophysiology.

Keywords: electromyography, kalman filter, motor unit identification, neural decoding, source separation

INTRODUCTION

A connectivity is generated between the motor-related areas
of the brain during movement (Sporns et al., 2004; Rubino
et al., 2006; Kim et al., 2017). A top-down structure in motor
control is used particularly during an upper limb movement
(with many degrees of freedom), where the brain and the
muscles are functionally combined so that the muscle receives
and electrically amplifies the resultant neural commands from
the motor system (Haggard, 2008).

Over the last two decades, the non-invasive techniques for
assessment of cortical and muscular activity have demonstrated
significant progress and linear (e.g., coherence analysis) or
non-linear (e.g., mutual information) methods have been used
to analyze the relations between electromyographic (EMG),
and electroencephalographic (EEG) signals (Chen et al., 2008;
Meng et al., 2008). Due to the non-linear transfer functions
of motor neurons, non-linear methods are more suitable for
such a dependence analysis (Hashimoto et al., 2010; Ioannides
and Mitsis, 2010) and for analysis of neural transfer functions
between the central nervous system and pool of active motor
units (MUs) (Negro and Farina, 2011; Gallego et al., 2015a,b).

Despite this progress in understanding of neural codes, the
cortico-muscular coupling studies are still largely dependent on
interferential EMG signal or its rectification for the assessment
of motor neuron pool behavior (Gross et al., 2001; Schelter et al.,
2009; Artoni et al., 2017). This assessment is not straightforward
since the amplitude of surface EMG demonstrates several
anatomical properties of the muscles, significantly interfering
with the neural commands (Farina et al., 2010; Farina and
Holobar, 2015, 2016). Indeed, amplitude or frequency of EMG
are considerably affected by many factors, such as muscle
anatomy, low-pass filtering of the subcutaneous tissues and
MU Action Potential (MUAP) cancelation (Merletti and Farina,
2016). As result, they are not precisely related to the ongoing
motoneuron activities and provide only a crude estimate of the
central neural commands (so called neural drive) to the skeletal
muscles (Farina et al., 2004, 2014a; Merletti and Farina, 2016).
Therefore, the assessment of cortico-muscular connectivity and
neuromuscular coupling via EEG–rectified EMG relationship is
non-trivial and should be used with precaution.

Direct analysis of neural codes by decomposing the EMG
(Webster et al., 2016), also known as neural decoding (Farina
et al., 2014b; Karimimehr et al., 2017), is an alternative to EMG
amplitude estimation (Gallego et al., 2017; Úbeda et al., 2017). It
represents a paradigm shift, because it enables direct assessment
of the neural drive to muscles (Farina and Holobar, 2015, 2016;
Karimimehr et al., 2017). In fact, MU identification can be

thought as a spike sorting algorithm (typical for computational
neuroscience) applied to the outer layer of the human motor
system (Balasubramanian and Obeid, 2011; Pani et al., 2016).
The results of this MU identification can not only be used in
EMG-EEG coupling analysis, but also in variety of research areas
such as clinical neurophysiology for diagnosing neuromuscular
disorders (Wheeler et al., 2006; Povalej BrŽan et al., 2017), sports
and behavioral science (Merletti and Parker, 2004), movement
science (Winter, 2009), robot-assisted rehabilitation (Savc et al.,
2018), brain machine interface (Werner et al., 2016), and
prosthesis control (Yoshida et al., 2010; Farina et al., 2014a).

In a typical experimental setup, EMG signals are detected
using either conventional invasive intramuscular electrodes or
non-invasive surface electrodes (Merletti and Parker, 2004). Both
intramuscular (iEMG) and surface EMG (sEMG) signals include
MUAP trains, superimposed into interferential signal patterns.
Although iEMG provides some advantages, such as recording
from deep muscles, it also has problems, such as discomfort and
high selectivity. sEMG is thus a good alternative, particularly in
sport sciences and studies of children (Ghaderi and Marateb,
2017). On the other hand, substantial MUAP superposition
occurs in sEMG signals (Farina and Holobar, 2015, 2016). Also,
surface MUAP shapes from different MUs are rather similar
due to the volume conductor effects (Chen and Zhou, 2016).
Thus, surface EMG decomposition is considered a very difficult
task (Zhou and Rymer, 2004).

Variety of sEMG decomposition methods have been
introduced in the literature. Generally, they either use shape-
based algorithms, also called template matching (Xu et al., 2001;
Gazzoni et al., 2004; Garcia et al., 2005; De Luca et al., 2006;
Ren et al., 2006; Kleine et al., 2007; Nawab et al., 2008; Winslow
et al., 2009; Siqueira Júnior and Soares, 2015) or the blind source
separation (BSS) algorithm (Holobar and Zazula, 2004, 2007;
Glaser et al., 2013; Ning et al., 2013, 2015; Chen and Zhou, 2016;
Negro et al., 2016; Savc et al., 2018).

Although complementary fusion often results in more reliable
findings (Durrant-Whyte, 1988), it is not yet sufficiently clear
how to combine template-based and BSS sEMG decompositions,
especially, as the aforementioned twomethodological approaches
differ substantially in the data model assumptions. For example,
template-based algorithms assume a few recorded EMG channels
and relatively low (or progressively increasing) muscle excitation
levels in order to (progressively) identify the MUAP templates.
They then use MUAP peel-off approach and combinatorial
methods supported with artificial intelligence algorithms to
identify each individual MU firing (Nawab et al., 2010). BSS
approaches, on the other hand, model the mixing process of
MUAPs in EMG, invert it and apply the inversemixing procedure

Frontiers in Computational Neuroscience | www.frontiersin.org 2 April 2019 | Volume 13 | Article 14

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Mohebian et al. Neural Decoding Using Source Separation

directly to the recorded EMG signals. For this reason, they do
not rely on the initialization of MUAP templates, but do require
relatively large number of recorded EMG channels to identify all
the MU firings at once. In other words, BSS approaches estimate
the MU filter directly in the space of MU spike trains and,
once MU filter is estimated, apply it very efficiently (in terms of
computational costs) to the recorded EMG signals, yielding all
the MU firings at once (Holobar and Farina, 2014). Combination
of these two fundamentally different sEMG decomposition
approaches is non-trivial as it imposes complex methodological
steps in which many parameters must be fine-tuned.

In this study, we focus on a hybrid sEMG decomposition
approach that combines the advantages of both template-based
and BSS decomposition approaches. Briefly, we use the single-
pass density-based clustering algorithm to identify possible
cluster representatives in different sEMG recording channels.
Unlike traditional BSS-based decomposition algorithms, in
which the initial search positions are randomly selected and
checked on a trial-and-error basis, we use cluster representative
samples as initial points. Similar approach was proposed in
Ning et al. (2015), where k-means method was used to cluster
MUAPs and, therefore, improve the initial estimate of MU filter
in classical CKC approach. On the other hand, Chen et al. (2016,
2018a) and (Chen and Zhou, 2016) proposed the progressive
FastICA framework along with the advanced peel-off and valley-
seeking process that efficiently enhances the initialization of the
MU filters and speeds-up the decomposition.

We then use the Kalman filter and a modified Gradient CKC
(gCKC) algorithm (Holobar and Zazula, 2008) to further increase
the rate of convergence of MU filter identification. Moreover,
we introduce a new non-linear soft-thresholding algorithm to
reduce the False Positives (FP) and False Negatives (FN) in MU
spike post-processing. Thus, the proposed hybrid algorithm can
be considered a “Guided Blind Source Separation” method.

The rest of the paper is organized as follows: in the next
section, information about the signals and formulation of
methods used in this study is presented. Section Results provides
the results of the proposed method. The discussion is provided in
section Discussion, along with conclusions.

MATERIALS AND METHODS

Simulated Signals
A planar volume conductor model was used for generating
synthetic sEMG signals (Farina and Merletti, 2001). Muscle,
fat and skin tissues were used in the non-homogeneous
and anisotropic volume conductor. It included an inimitable,
and semi-infinite muscle layer with cross-section of 30mm
(transversal) × 15mm (depth). The average fiber length,
isotropic subcutaneous and skin layer thickness were 130mm,
4mm and 1mm, respectively. Each MU had a random number
of fibers uniformly distributed between 24 and 2,048 with
the circular territories of 20 fibers/mm2. The conduction
velocities were normally distributed (4.0 ± 0.3 m/s). In the
initial recruitment, each MU discharged at 8 pulses per
second (pps) (Fuglevand et al., 1993). Its discharge rate
increased linearly with excitation (0.3 pps per % of muscle

excitation). A grid of 9 × 10 (9 columns, 10 rows) monopolar
surface electrodes with 5-mm inter-electrode distances in both
directions was simulated. Fifteen sEMG signals with length
of 16 s were generated and sampled at 4,096Hz. Muscle
excitation was set to 10, 30, and 50% Maximum Voluntary
Contraction (MVC), yielding 262, 388, and 446 active motor
units. Noteworthy, regardless the decomposition algorithm
used, we can identify only superficial motor units, whereas
small and distant motor units contribute to the physiological
noise. In addition to these simulated physiological noise,
colored Gaussian zero-mean noise with the signal-to-noise
ratio (SNR) of 10, 20, and 30 dB and the bandwidth of 20–
500Hz was added to the raw surface EMG signals. Overall, 45
simulated signals were analyzed in this study. The simulated
signals are available online: https://doi.org/10.6084/m9.figshare.
5808291.

The Proposed Algorithm
The structure of the proposed algorithm is depicted in Figure 1.
Briefly, the signal was passed to the first-order band-pass
Butterworth filter with the cut-off frequencies of 20 and 500Hz
in the forward and reverse direction. Furthermore, a whitening
method was performed on sEMG signals (Thomas et al., 2006).
Then, the whitened signal was used for initial point estimation as
well as for the modified gCKC. Moreover, the convergence rate
of the gCKC algorithm was improved by the Kalman filter. The
detailed information about each aforementioned step is provided
in the sequel.

Whitening
Whitening, referred to as “convolutive sphering” (Thomas et al.,
2006) was used as the first step of sEMG decomposition. Assume
the following signal model,

X = WZ (1)

where Z is theN×M extended EMG signal matrix in which each
row is a delayed repetition of one of EMG channels as proposed
in Holobar and Zazula (2004) and Thomas et al. (2006) and each
column corresponds to a time sample. In this study, the number
of delayed repetitions of each signal is dependent to the sampling
frequency and number of channels and in this work it was fixed
to 30. The number of Whitening matrix W could be obtained,
provided that the covariance matrix of X at time lag zero is equal
to the identity matrix (Belouchrani et al., 1997):

W = UD− 1
2 UT (2)

where D is a diagonal matrix obtained by the eigenvalue
decomposition of the covariance matrix of Z and U is the
modal matrix:

E
{

ZZT
}

= UDUT (3)

with E
{

ZZT
}

denoting the covariance matrix of Z.
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FIGURE 1 | The schema of the proposed decomposition algorithm. The sEMG signal is first filtered using band-pass and whitening filters. The template-based

clustering algorithm is then used to identify the initial points for the modified gCKC algorithm. Such a clustering algorithm includes the segmentation and

high-resolution alignment of the up-sampled signal. Then, a modified density-based clustering OPTICS algorithm is used to automatically locate cluster

representatives (i.e., templates) in different recording channels. Such information is combined for different channels and the peak samples of the decimated templates

are used to initialize the modified g-CKC algorithm. Finally, Kalman filtering and optimized peak finding is implemented to increase the efficiency of the algorithm and

also to reduce the decomposition errors.

Initial Point Estimation
Similar to the shape-based sEMG decomposition approach in De
Luca et al. (2006), the time samples of the sEMG signals were
up-sampled to 10KHz to increase the time resolution (Figure 1).
The resampling was based on band-limited approximation of
the original signal, produced by inserting zeros into the discrete
Fourier transform of the waveform (Crochiere, 1979). We also
included steps from Stearns and Hush (2011) to reduce the end
effects caused by the zero-insertion.

Next, the signal detection threshold, required by our
segmentation, was calculated as follows: the absolute values of the
EMG samples were calculated and sorted (vector s). The square
root values of cumulative sum of s were then calculated (ss). The
maximum sample index i, where ss(i) multiplied by K exceeded
the s(i) was found and s(i) was used as the detection threshold.
In our study, K was empirically set to 4.0. The segmentation
was then performed on each recording channel independently,

using the estimated detection threshold on 2ms intervals. Two-
millisecond long signal segments, whose peak value was more
than the detection threshold, were entitled as active segments
(AcSs) (McGill et al., 2005).

Then, a high-resolution peak alignment method was used
to align the detected AcSs on the highest peak (McGill and
Dorfman, 1984). The time lags of the aligned AcSs were used
as features for clustering. The density-based clustering was
performed by using Ordering points to identify the clustering
structure (OPTICS) algorithm (Ankerst et al., 1999; Daszykowski
et al., 2002). This algorithm defines the clusters as areas of higher
density. Among different density-based clustering algorithms,
OPTICS was shown to be suitable for iEMG decomposition in
which clusters have different dispersion (Marateb et al., 2011b). It
is a single-pass clustering algorithm and unlike K-means or any
other aggregative clustering method, does not require multiple
runs on different predefined number of clusters (Daszykowski
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et al., 2002; Larose, 2005). The original OPTICS algorithm
requires two parameters, namely the minimal number of points
in a cluster MinPts and the Euclidean distance ε. A point p is
called a “core point” if there are at least MinPts other points in its
ε-neighborhood (Nǫ(p)). A point p is directly density-reachable
from another point q, if q is a core point and p is in the ε-
neighborhood of q i.e. pǫNǫ(q). Point p is density-reachable from
another point q if there is a chain of points p1,. . . ,pn where pi+1 is
directly density reachable from pi such that p1 = q and pn = p.

By setting the parameter ε to the maximum distance between
any points in the dataset, each point in the dataset will be the
core point. Thus, the modified OPTICS algorithm only requires
the parameter MinPts. In our case, MinPts was set to 40 for
10 s long signal epochs. OPTICS detects varying-density clusters
(i.e., clusters with different dispersions) in the dataset, such that
most similar points (AcSs) become neighbors. In the other words,
similar points are grouped together into hierarchical clusters. In
this procedure, the first AcS is selected as the current point. Its
reachability distance (RD) is set to INF. Its nearest neighbor in
respect to RD is then set as the current point. Its RD is calculated
as the smallest density reachable distance from the previous AcS
(Marateb et al., 2011b). This process is repeated until all the
points are processed in this way. Using this method, the entire
feature space is transferred to a two-dimensional plot in which
x-axis corresponds to the ordered points and y-axis depicts the
RD of the ordered points. Each RD valley in such plot is a
possible cluster, with the point corresponding to the minimum
RD in a valley as the corresponding cluster representative. In our
study, the possible valleys were automatically extracted using the
adaptive method proposed by Marateb et al. (2011b, 2012).

Modified CKC
Denote by X(n,m) the (n,m)-th element of the signal matrix X

(the m-th sample of channel n) and by X(m) the m-th column
of matrix X. The rows in matrix X are EMG channels and their
delayed repetitions (Holobar and Zazula, 2004; Thomas et al.,
2006). In the CKC algorithm (Holobar and Zazula, 2004, 2007),
the spike train ťj of the j-thMU is estimated as

ťj = RXťj
′R−1

XXX (4)

where R−1
XX is the inverse of autocorrelation matrix of X, RXťj

is the cross-correlation vector of X and ťj and the operator
′ denotes the matrix transpose. The cross-correlation vector RXťj

is unknown, but can be iteratively estimated by gCKC (Holobar
and Zazula, 2007, 2008):

RXťj,g
= RXťj,g−1

+ η(g)
(

f
(

ťj,g
)

X′
)′

(5)

where ťj,g is the j-th MU spike train, estimated in the g-th
iteration, η is the step-size, f (x) = α (x) log

(

1+ x2
)

and α (x) is
the attenuation coefficient introduced herein to improve the
FP and FN errors in gCKC. The initial value of α is set to
one but is then determined for each MU firing in each gCKC
iteration. Namely, we observed that sometimes gCKC iterations
erroneously amplify signal artifacts. Thus, after each iteration, we

search for a spike detection threshold that yields the maximum
Pulse-to-Noise Ratio (PNR) (Holobar et al., 2014).

PNR
(

j, k
)

= 10× log





E(ťj,g)
∣

∣

ťj,g≥thr

E(ťj,g)
∣

∣

ťj,g<thr



 (6)

where thr is the pulse detection threshold and PNR(j,k) is the
Pulse-to-noise-ratio of the j-thMU in the k-th iteration. This is in
fact a one-dimensional optimization problem and we efficiently
solved it using a greedy search algorithm (Feo and Resende,
1995). The fitness function is the PNR while the optimization
variable is the threshold thr. When this threshold is estimated,
its 95% CI (Confidence Interval) is estimated and spikes within
thr ± 95% CI of thr are detected (marginal spikes). The cluster
representative (CR) of the spike samples surpassing the upper
95% CI threshold is formed and then if the corresponding sEMG
AcS of a marginal spike has a high correlation with AcS of a
CR, parameter α is set to one, otherwise it is set to 0.9. In
this way, template-based methods are also used in the proposed
modification of the previously introduced gCKC iterations (in
addition to initial point estimation) (Holobar and Zazula, 2008).
This operation is, in principle, equivalent to non-linear soft
thresholding (Krzakala et al., 2016).

Kalman Filter
In our method, Equation (4) is substituted by expectation
maximization Kalman filter (EM-Kalman filter), proposed by
Bensaid et al. (2010). For this purpose, the gCKC is defined as
the following state-space model joint to the EM-Kalman filter:

x̌k|k−1 = Fkxk−1|k−1 + wk

=

[

IN η(g)
(

Xf ′(tj,g,k−1)
)

0 1

] [

RXtj,g,k−1

1

]

+wk ťj,g,k(m) = x̌k| k−1H(m) (7)

where x̌k|k and k are estimated state and current
Kalman filter iteration, respectively, g is related to the g-
th iteration of the gCKC algorithm and wk = Cwek =

Cw[ek(1) , ek(2), . . . , ek(N), 0]
′

is the normally distributed
noise vector of size (N+1)× 1 with variance σ 2

k . Cw is a diagonal
(N+1)× (N+1) covariance matrix of noise and ek = Vk

′x̌k|k−1 .
According to the Bensaid et al. (2010), Vk is covariance matrix of
x̌k|k−1 and due to the whitening process,Vk could be considered
identity matrix. Thus, wk = Cwx̌k|k − 1.

Fk =

[

IN η(g)
(

Xf ′(ťj,g,k)
)

0 1

]

is the (N+1)×(N+1) state (or

system) matrix with IN denoting the identity matrix and N being
the number of channels. x̌k|k andH(m) are defined by Equations
(8) and (9):

x̌k|k =

[

RXťj,g,k

1

]

(8)

H(m) =

[

X (m)

0

]

(9)
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In this regard, a priori error covariance P and σ 2
k could be defined

by Equations (10) and (11), respectively.

Pk|k −1 = FkPk−1|k−1 Fk
′
+ CwCw

′
(10)

σ 2
k =

1

M − 1

M
∑

m=1

[

H′(m)
(

x̌k|k x̌
′

k|k + Pk|k

)

H(m)− ťj,g,k (m)

]

(11)

where H =
[

H (1) ,H (2) ,H(3) . . .H(M)
]

and its size is (N +

1)×M. Kalman gain (K) is defined with Equation (12).

Kk(m) = Pk|k−1 H(m)
(

H
′
(m)Pk|k−1 H (m) + σ 2

k

)−1
(12)

We then update gCKC algorithm and error covariance as:

x̌k|k = x̌k|k−1 + Kk
(

ťj,g,k − ťj,g,k−1
)

(13)

Pk|k = Pk|k−1 − Kk H
′
Pk|k−1 (14)

When considering the state-space system matrix, hm is
the output matrix in the state-space model and Kk =

[Kk(1),Kk(2), . . . ,Kk(M)] of size (N+1)×M is the Kalman gain
in the k-th iteration. ťj,g,k in the first gCKC state is generated with
the fixed point algorithm and one iteration of gCKC (Holobar
and Zazula, 2007) and Pk−1|k−−1 is initialized as IN+1 i.e.,
the identity matrix. The estimation of the observation noise
power σ 2

k is achieved bymaximizing the Log-Likelihood function

log(P(ťj
∣

∣x̌ , σ 2
k )) relative to σ 2

k (Bensaid et al., 2010).
In a nutshell, we added additional noise factor in gCKC

formulation and estimated it during each iteration since,
practically, colored noise exists instead of white noise and gCKC
algorithm, which works by correlation procedure, enhances
colored noise (Li, 1990). This approach is used in other fields
for finding noise parameters (Schwartz et al., 2015, 2016;
Ge and Kerrigan, 2017) and also neuro spike decoding (Xue
et al., 2017). In this light, EM-Kalman filter could prevent
enhancing noise in x̌k|k in each iteration of gCKC and
decrease the FP errors. This hypothesis will be, at least partially,
confirmed by the results presented in section Results as the
newly presented method detects substantially more MUs than
CKC method.

Motor Unit Identification
The non-linear soft thresholding method mentioned in section
Modified CKC, was applied to the reconstructed MU spike
trains to identify MU firing times. Moreover, extracted MUs
were monitored in terms of regularity of the firing times and
their distinguishability from the background noise. MUs with the
PNR <20 dB were excluded from further validations (Holobar
et al., 2014). The following firing time parameters were extracted
and used for MU exclusion: the number of inconsistent firings
times nI(number of pulses that are fired more than once in
every 40ms), the detection probability pd(the probability of MU
inter-spike interval having normal distribution as assessed by
the method proposed by McGill Kevin, 1984) and the mean
discharge rate (MDR). A MU was excluded when nI was higher

TABLE 1 | Decomposition validation parameters.

Parameter Definition

RoA TP
TP+FN+FP

Sensitivity TP
TP+FN

Precision TP
TP+FP

DIki DIki =
min{‖mki‖,‖mki−mk*i‖}

VRMS
i

SIR(i)






1−

E

[

(

xi(n)−
∑

j zij(n)
)2

]

E
[

x2i (n)
]






× 100

RoA, Rate of agreement; SIR(i), signal-to-interference ratio of the i-th channel; DIk,I is

decomposability index and defines as the average MUAP shape of the k-th motor unit

in the i-th channel,mk*i is the MUAP most similar tomki, among the other MUAPs in the

same channel, VRMS
i is the RMS value of the channel i, and ‖.‖ stands for the Euclidean

norm; TP (True Positive): the number of MU spikes correctly identified, FN (False negative):

the number of missed MU spikes; FP (False Positive): the number incorrectly identified MU

spikes; xi (n) denotes the time samples of the i-th surface EMG channel and zij stands

for the time samples of the action potential train of the j-th motor unit reconstructed from

the i-th EMG channel.

than 50, or pd was lower than 50% or MDR was higher than
35Hz. The underlying assumptions were the following: during
constant force isometric contractions, MU firing rates lie between
5 and 25Hz. Moreover, the inter-spike intervals have a unimodal
distribution which is approximately Gaussian (Clamann, 1969;
Andreassen and Rosenfalck, 1980). The pseudocode of the
proposed HDsEMG decomposition algorithm is available as the
Supplementary Material.

Performance Assessment
The identified MU firings were compared with the simulated
firings. When at least 30% of the firings were time-locked
to within ± 0.5ms, a MUs was considered to be identified
by our algorithm (Marateb et al., 2011a). For each identified
MU, the accuracy of our new decomposition algorithm was
assessed using the parameters of signal detection theory (e.g.,
TP (True Positive; correct firings), FN (False Negative; missed
firings), and FP (False Positive; erroneous firings)). TP was
the number of firings matching the simulated firings within
± 0.5ms. FP was the number of firings not matching any
simulated firing to within ± 0.5ms. FN was the number of
firings of the simulated MU that did not match any firings of
the identifiedMU. Then, the performance indices Sensitivity (Se),
Precision (Pr), and the Rate of agreement (RoA) were calculated
(Holobar et al., 2010, 2014) (Table 1).

Moreover, the signal-to-interference ratio (SIR) was reported
as the overall quality of the sEMG decomposition (Table 1).
In fact, SIR estimates the percentage of the variance of the
energy of the single-differential sEMG signals explained by
the decomposition (Holobar et al., 2010). Also, the overall
decomposability of a MU in the entire recording signals (cDI)
was measured by the sum of norm of individual decomposability
indices (DIs) (Holobar et al., 2010) (Table 1), calculated over all
the EMG channels, normalized by the number of channels. The

Frontiers in Computational Neuroscience | www.frontiersin.org 6 April 2019 | Volume 13 | Article 14

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Mohebian et al. Neural Decoding Using Source Separation

program was run on an Intel Core i7-8700 3.2 GHz CPU with 32
GB of RAM.

Statistical Analysis
Continuous variables were reported as mean ± std. The level
of statistical significance was set to P = 0.05. The normality of
the variables was assessed using the Shapiro-Wilk test. We used
generalized estimating equation (GEE) method (Hardin, 2005)
to model factors associated with the repeated responses (RoA
and the running time of the algorithm). The paired t-test was
used to identify if there is a significant difference between the
estimated MDR and CoV in the decomposed signals, compared
with those of the simulated MU firings. The Pearson correlation
coefficient (r) was used to assess the association between two
normal variables. The statistical analysis was performed using
SPSS version 16 (SPSS for Windows, Released 2007, Chicago, IL,
USA, SPSS Inc.).

RESULTS

The average number of MUs, identified per contraction and SNR
and also the accuracy of the decompositions of the assessed MUs
are listed in Table 2. The accuracy of the clustering algorithm
is also shown in this table as the average number of identified
clusters. The cluster’s representatives as well as their 20 nearby
spikes in the RD plots, were compared with the simulated MU
firings. When at least 75% of the firings in a cluster was time
locked within 0.5ms with firings of a simulated MU firings,
the cluster was marked as correctly identified. Therefore, the
reported number of identified clusters shows how many initial
points were related to correct MU clusters. For comparison, the
number of identified MUs and their decomposition accuracy of
the gCKC (Holobar and Zazula, 2007) are also shown. Overall,
our algorithm identified 16.41 ± 4.18 MUs with RoA of 84.00 ±
0.06%. The average number ofmodified gCKC iterations required
to identify individual MU was 54.11± 3.06.

The firing characteristics of the MUs, identified by the
decomposition program and simulated MUs were very similar
(Table 3), regardless the tested level of excitation and SNR.

The sensitivity, RoA and precision of the proposed algorithm
vs. PNR for different excitation levels and SNR values are
depicted in Figure 2. Also, the distribution of the precision of
the proposed decomposition algorithm compared with that of the
gCKC for 30 dB SNR at 30% excitation and 20 dB SNR at 50%
excitation is shown in Figure 3.

Figure 4 shows an example of the MUAP trains identified
during seven seconds of a contraction at 10% MVC and 30 dB
SNR. In this case, 14 MUs were identified with the average RoA
of 89.00 ± 0.89 (%). Figure 5 shows the spatial distribution of
Single-differential sEMG MUAP of MU 14 form Figure 4 as
estimated by the spike-trigger averaging of the HDsEMG signals
over the estimated MU firing times.

DISCUSSION

Neural decoding is used to identify how the electrical activity of
neurons generates responses in the brain (Jacobs et al., 2009). T
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TABLE 3 | The firing statistics of the decomposed MUs.

SNR (dB) MVC (%) MDR (Hz) ˇMDR (Hz) CoV ˇCoV MDR bias (Hz) CoV bias cDI (%)

10 10 13.17 ± 2.15 13.20 ± 2.19 0.14 ± 0.00 0.14 ± 0.00 0.03 ± 0.08 0.01 ± 0.00 15.40 ± 4.61

10 30 26.40 ± 7.27 26.74 ± 6.83 0.15 ± 0.00 0.14 ± 0.00 0.34 ± 0.24 0.01 ± 0.00 16.44 ± 8.37

10 50 30.19 ± 7.02 31.64 ± 6.02 0.15 ± 0.00 0.14 ± 0.00 1.45 ± 0.26 0.01 ± 0.00 18.19 ± 8.91

20 10 13.12 ± 2.10 13.20 ± 2.19 0.13 ± 0.02 0.14 ± 0.00 0.08 ± 0.08 0.01 ± 0.00 20.08 ± 4.44

20 30 26.77 ± 6.38 26.74 ± 6.83 0.13 ± 0.01 0.14 ± 0.00 0.03 ± 0.08 0.01 ± 0.00 19.87 ± 4.10

20 50 32.02 ± 4.26 31.64 ± 6.02 0.13 ± 0.02 0.14 ± 0.00 0.38 ± 0.14 0.01 ± 0.00 17.64 ± 4.53

30 10 13.18 ± 2.10 13.20 ± 2.19 0.13 ± 0.03 0.14 ± 0.00 0.02 ± 0.03 0.01 ± 0.00 22.63 ± 4.55

30 30 26.75 ± 6.33 26.74 ± 6.83 0.13 ± 0.04 0.14 ± 0.00 0.01 ± 0.01 0.01 ± 0.01 22.61 ± 4.80

30 50 31.88 ± 4.01 31.64 ± 6.02 0.13 ± 0.02 0.14 ± 0.00 0.24 ± 0.05 0.01 ± 0.00 21.89 ± 3.92

MDR, Simulated mean discharge rates; ˇMDR: the MDR estimated by the proposed algorithm; CoV, Simulated coefficient of variability for the firing rate; ˇCoV, CoV estimated by the

proposed algorithm; SIR: average signal-to-interference ratio; cDI: cumulative Decomposability Index. MDR and CoV biases were calculated as the absolute mean value of the pair-wise

difference between estimated minus gold standard MDR and CoV, respectively.

FIGURE 2 | The sensitivity, precision, and Rate of Agreement (RoA) of the proposed algorithm vs. PNR (in dB). Representative plot is provided for each SNR level (10,

20, and 30 dB) at each simulated level of muscle excitation (10, 30, and 50% MVC).

In the case of motor system, this can be performed either at the
level of motor nerves or motor units. Although, the methods are
very similar, the former is called “spike sorting” in computational

neuroscience while the latter is known as “EMG decomposition,”
or “decoding of the neural drive to the muscles” (Rey et al.,
2015; Webster et al., 2016; Karimimehr et al., 2017). Such a
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FIGURE 3 | The histogram of the precision of the proposed decomposition algorithm (black), compared to the one form gCKC (blue) for 30 dB SNR at 30% excitation

level (left), and 20 dB SNR at 50% excitation level (right).

FIGURE 4 | MU spike trains, identified from the simulated sEMG signal with 30 dB SNR and 10% excitation level (red), and the simulated firings (black). Each vertical

line indicates one MU firing.

decomposition algorithm could be used in variety of applications,
including prosthesis control (Farina et al., 2014a) or robot-
assisted neurorehabilitation (Savc et al., 2018). The structure of
the spike sorting algorithms is, in principle, similar to that of

iEMG decomposition methods, where the recording electrodes
are close to the MU fibers. However, this is not the case for sEMG
decomposition, where electrodes are located over the skin at a
relatively large distance from the muscle fibers.
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FIGURE 5 | Single-differential sEMG MUAP waveforms of MUs from different

sEMG channels. The corresponding MU was identified with accuracy >90%.

sEMG decomposition is considered a very difficult task
when low selectivity of traditional sEMG electrodes, low-pass
filtering of MUAPs, their overlapping, and shape similarities are
considered (Farina et al., 2004). In this study, we proposed a
new algorithm that combines the advantages of two different
approaches to sEMG decomposition, namely the template-based
and the BSS algorithms. Classification procedures are critical
steps of the template-based algorithms. sEMG MUAPs are
rather similar in shape and their classification is challenging
(De Luca et al., 2006; Nawab et al., 2010). BSS algorithms,
on the other hand, combines MU activities in the space of
MU spikes in order to identify all the MU firings (Holobar
and Farina, 2014). Many BSS algorithms cannot guarantee
the identification of the same set of sources in multiple
runs, because they rely (at least partially) on stochastic
algorithms, for example on random initialization of vector R

Xťj
in

Equation (5).
Our algorithm, is fully deterministic since it identifies the

initial points using a new clustering algorithm (Figure 1) rather
than random initialization. Other CKC-based algorithms, use the
time samples of the peaks of the sEMG signal as the possible
starting point of the gradient-based optimization. However,
sEMG contains highly overlapped MUAPs, and selected peaks
of the signal usually correspond to the overlapped MU activity.
This overlapped MU activity is then separated in several
iterations of gCKC algorithm (Equation 5). On the other
hand, if the initial R

Xťj
estimate is not related to any MU

firings, but rather to the movement artifact or line interference,
the CKC algorithm cannot amplify the MU spikes and the
noise is amplified instead. Thus, being fully deterministic in

our sense means that we know where a MU firing exists
and we start the CKC gradient optimization from the initial
point with a much higher MU identification potential than
gCKC algorithm.

Similar aggregative clustering methods have been proposed
in the past for sEMG decomposition (Ning et al., 2015).
However, aggregative clustering methods, such as K-means
or Fuzzy C-means do not have satisfactory “rerun” stability
due to poor reproducibility based on random initialization
(Jayaram and Klawonn, 2013). Furthermore, they may get stuck
in local minimum owing to a two-stage iterative algorithm
used to minimize the sum of point-to-center distances over
all clusters. Finally, they have high computational complexity
due to the need of running the algorithm several times
with the pre-defined number of clusters (Duda et al., 2001).
Therefore, we used a density-based OPTICS algorithm, which
is a single-pass algorithm designed particularly for high-
dimensional data (Ankerst et al., 1999; Daszykowski et al.,
2002). This algorithm can automatically identify the optimal
number of clusters when a proper automatic valley detection
algorithm is used (Marateb et al., 2011b). Moreover, it adaptively
identifies clusters of different sizes and variable dispersions and
densities (Loh and Park, 2014).

In sEMG, there are many active MUs. This causes the overlap
between MUAPs and thus the number of isolated segments
reduces significantly, especially at higher contraction levels.
Although each recording sEMG channel provides a different
perspective of the MUAPs, the performance of the initial point
detection generally drops at higher contraction levels (Table 2;
The number of identified clusters variable). This is one of the
limitations of the proposed algorithm. Using different spatial
filters could improve the performance of this step of the
algorithm which will be investigated in our future work.

Moreover, several cluster representatives identified by the
OPTICS algorithm may be related to the same MU. This is
why the average number of clusters identified by the OPTICS
algorithm is higher than the number of identified MUs by the
entire algorithm (Table 2). Since the MUAP shapes are very
similar over the skin and largely submerged into the physiological
noise, it is not possible to merge them unless their firing times
are identified by the CKC gradient loops. On the other hand,
due to the high overlapping between different MUAPs and the
similarity between the shapes of different MUAPs in the sEMG
signal, it is not optimal to use traditional classifiers (e.g., the
minimum-distance classifier) based on the clusters obtained by
the OPTICS algorithm. Thus, the combination of the OPTICS
and gCKC algorithm is required, as proposed in our manuscript.

In our study, results of clustering were used as initial points
in a modified g-CKC algorithm (Figure 1). In fact, our algorithm
is a Guided-Source Separation (GSS) method with the following
modifications introduced into the gCKC method:

(1) An adaptive soft-thresholding method was designed
based on stochastic optimization, correlation analysis and
estimation theory on the spike times as to reduce the FP
(by suppressing noise spikes) and FN (by amplifying valid
marginal spikes) error rates;
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(2) The Kalman filtering was used to improve the convergence
rate of the algorithm and to reduce the noise enhancement in
gCKC iterations.

The performance of our algorithm was compared with that of
the previously published gCKC algorithm (Table 3) since gCKC
was shown to be accurate with different muscle architectures
(Holobar et al., 2010; Marateb et al., 2011a; Webster et al.,
2016) and different pathological conditions including essential
tremor (Gallego et al., 2015a), Parkinson’s disease (Holobar
et al., 2012), diabetes (Watanabe et al., 2013), after stroke
(Li et al., 2015), targeted muscle reinnervation (Farina et al.,
2014c), and cleft lip surgery (Radeke et al., 2014). The previously
introduced PNR, an efficient objective signal-based metric of
gCKC decomposition accuracy (Holobar et al., 2014), was also
reported for our decomposition results (Table 2, Figure 2).
Although the sensitivity and RoA of the proposed algorithm is
less than that of the gCKC algorithm, we identified more MUs at
comparable Precision (Table 2; The average precision of 0.96 ±

0.05 compared with 0.95± 0.05 for gCKC). In fact, as mentioned
in section Kalman filter, the Kalman filter decreases the FP errors
and such errors have a direct effect on the Precision (Table 1).
Therefore, FP error reduction goal was achieved by Kalman filter
and the adaptive soft thresholding method. In our future work,
we intend to focus on the reduction of FN errors. Moreover, we
tested our algorithmwith and without the Kalman filter.With the
Kalman filter, the number of iterations was reduced in average
down to 48% compared to the case without the Kalman filter.
Moreover, when the Kalman filter was added, two more MUs
were correctly identified, on average, whereas the running time
of our algorithm was significantly reduced (P < 0.001; GEE).

The results of our statistical analysis showed that RoA was
significantly associated with the SNR parameter i.e., the signal
quality (P < 0.001; GEE) but not with the muscle excitation level
i.e., signal complexity (P > 0.05; GEE). RoA was significantly
and highly correlated with cDI at 10 dB and 20 dB SNR (P <

0.001; r > 0.7), but not at 30 dB SNR. This suggests that the
proposed algorithm would work even if MUAPs were relatively
similar in shapes when the quality of the signal was high.
Moreover, there was no significant differences between the MDR
and CoV values estimated from the decomposed sEMG signals
and the corresponding simulated MU firings (P > 0.05; paired t-
test). Thus, the decoded neural information can be considered
reliable. Although measuring the MU identification accuracy
indirectly, the PNR parameter was highly correlated with all the
performance indices, namely with RoA, Sensitivity, and Precision
(Figure 2; P < 0.001, r > 0.8). Thus, MUs with high PNR values
can be considered as accurately identified. This is in agreement
with the results in Holobar et al. (2014); Martinez-Valdes et al.
(2016), and Watanabe et al. (2016).

In our study, simulated data was used for validation.
Although, the used volume conductor model has been widely
discussed in the literature (e.g., in McGill, 2004; Zazula and
Holobar, 2005; Holobar et al., 2009; Zalewska, 2009), it could
not completely resemble the experimental sEMG signals (De
Luca and Nawab, 2011). Thus, further tests on experimental
signals from different skeletal muscles in different experimental

conditions (i.e., different contraction levels, force profiles,
muscle geometries etc.) are required before the reported results
can be generalized. This is a common challenge to all the
reported HDsEMG decomposition algorithms as the results
from one experimental setup cannot easily be generalized to
all experimental conditions. In this study, we introduced the
novel methodological steps and tested their efficiency against
previously introduced CKC method that has been extensively
validated over the past decade and applied to many (but not
all) experimental conditions. Further generalization of the results
reported herein exceeds the scope of this study and is left for the
future work.

Indeed, the validation of the decomposition on experimental
sEMG signals is, in principle, controversial. Using cross-
checking, also known as two-source method, between the
decomposition of concurrently recorded iEMG and sEMG
signals, could only assess the accuracy of common MUs.
Partitioning the sEMG channels into two groups and cross-
checking them against each other, on the other hand, is
also problematic as the information they convey is highly
correlated (Webster et al., 2016). However, the objective measure
PNR could be reported and used as the MU reliability
index by the decomposition program (Holobar et al., 2014).
Moreover, a novel validation approach proposed by Chen et al.
could serve as a supplement to the conventional two-source
methods (Chen et al., 2018b).

Finally, the proposed GSS algorithm has relatively low
sensitivity to MUs, although it identifies more MUs than
gCKC (Table 2). It identifies only a small portion of active
MUs. This is a common limitation to all EMG decomposition
approached introduced by now. The proposed algorithm is
also limited to off-line analysis and cannot easily be converted
to the online neural decoding algorithms (Glaser et al., 2007;
Karimimehr et al., 2017). Its online implementation requires
improvements in the rate of convergence of gradient-based
optimization (Equation 5). For this purpose, the condition
number of the Hessian matrix could be analyzed and proper
diagonal scaling could be used to reduce the number of iterations
(Beck, 2014), but this additional step has not been thoroughly
investigated yet. Moreover, detection of firing-time inconsistency
could be added to the OPTICS clustering algorithm in order to
increase the number of MUs identified by the entire algorithm.
We will address these methodological improvements in our
future work.

In conclusion, we proposed a new framework for sEMG
decomposition. The proposed algorithm is promising and a new
offline tool in clinical neurophysiology.
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