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A B S T R A C T

The lack of validated immunological correlates of protection makes tuberculosis vaccine development difficult
and expensive. Using intradermal bacille Calmette-Guréin (BCG) as a surrogate for aerosol Mycobacterium tu-
berculosis (M.tb) in a controlled human infection model could facilitate vaccine development, but such a model
requires preclinical validation. Non-human primates (NHPs) may provide the best model in which to do this.
Cynomolgus and rhesus macaques were infected with BCG by intradermal injection. BCG was quantified from a
skin biopsy of the infection site and from draining axillary lymph nodes, by culture on solid agar and quanti-
tative polymerase chain reaction. BCG was detected up to 28 days post-infection, with higher amounts of BCG
detected in lymph nodes after high dose compared to standard dose infection. Quantifying BCG from lymph
nodes of cynomolgus macaques 14 days post-high dose infection showed a significant reduction in the amount of
BCG detected in the BCG-vaccinated compared to BCG-naïve animals. Demonstrating a detectable vaccine effect
in the lymph nodes of cynomolgus macaques, which is similar in magnitude to that seen in an aerosol M.tb
infection model, provides support for proof-of-concept of an intradermal BCG infection model and evidence to
support the further evaluation of a human BCG infection model.

1. Introduction

Tuberculosis (TB) remains an important global health threat, with
an estimated 10.4 million new cases and 1.8 million deaths in 2015 [1].
A third of the world's population are latently infected with the causative
agent, Mycobacterium tuberculosis, (M.tb) with a 10% lifetime risk of
developing active disease, which increases in those co-infected with
HIV [1]. This level of infection, combined with the emergence of
multiple and extensively drug-resistant strains ofM.tb [2], mean that an
effective vaccine is an essential tool in controlling the spread of infec-
tion and reducing the burden of this disease.

Bacille Calmette-Guréin (BCG) is a live, attenuated strain of
Mycobacterium bovis (M. bovis) and the only licenced TB vaccine. BCG
confers variable levels of protection against pulmonary TB in adults,
ranging from 0 to 80% depending on geographical location [3]. The
lack of validated correlates of protection makes vaccine development

very challenging, as it is difficult to predict whether a candidate vaccine
will show efficacy in the target population without costly and time-
consuming efficacy trials. A clinically advanced candidate vaccine,
MVA85A, showed some promising results in pre-clinical animal models
[4–6] and in early phase I/IIa safety and immunogenicity studies [7–9],
but failed to show an improvement in efficacy over BCG alone in a large
scale phase IIb trial in South African infants [10]. In light of this effi-
cacy data, animal models used for TB vaccine development are being re-
evaluated [11]. The use of controlled human infection models has
greatly benefitted vaccine selection and development for other in-
fectious diseases [12–15]. Infecting humans with M.tb is not ethically
acceptable, but the use of intradermal (ID) BCG as a surrogate for M.tb
infection in a human mycobacterial infection model could aid in as-
sessing potential efficacy at an early stage and in candidate vaccine
selection. We have previously shown that a controlled human BCG in-
fection model, where healthy adult volunteers receive BCG by
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intradermal administration into the upper arm and bacterial load is
quantified from a biopsy of the site two weeks later, can detect a re-
duction in the amount of BCG recovered in previously BCG-vaccinated
volunteers compared to those who were BCG-naïve [16,17]. Further
work has been conducted to optimise this infection model in humans,
by varying strain and dose of BCG used [18].

This ID BCG infection model has evidence of biological validity as a
surrogate for aerosol M.tb infection as both infection models have de-
monstrated a similar BCG vaccine effect in mice [19]. Minassian et al.
showed that the efficacy of BCG vaccination against subsequent BCG
infection of the skin in the murine model was comparable to the known
efficacy of BCG against M.tb infection in the lung. In a similar BCG
infection model in cattle, Villarreal et al. demonstrated that infecting
previously BCG-vaccinated animals intranodally with BCG Tokyo
showed partial protection compared to BCG-naïve animals, paralleling
the level of BCG efficacy seen with aerosol M. bovis infection [20]. Non-
human primates (NHPs) are considered to provide the most re-
presentative animal model for TB vaccine studies, due to their anato-
mical and physiological likeness to humans and similar pathology and
infection outcome [21,22]. BCG vaccination is known to be partially
protective against aerosol M.tb infection in both cynomolgus and rhesus
macaques [23,24]. Both species have been used extensively in research
into the pathogenesis ofM.tb infection and the pre-clinical evaluation of
candidate TB vaccines [22]. As it is not possible to compare an ID BCG
infection model with an aerosol M.tb infection model in humans, de-
monstration of a similar BCG vaccine effect in the two models in NHPs
would bridge this gap and provide biological validation for use of this
model in humans for the evaluation of new candidate TB vaccines.

Here we present work carried out in NHPs to develop this BCG in-
fection model in cynomolgus and rhesus macaques. We started with a
study based on the design of successful early clinical trials with the BCG
infection model in humans [16,17] and then developed this model
further for use in NHPs. If validated against aerosol M.tb infection, this
BCG infection model would also provide a less expensive, less severe
method of testing candidate TB vaccines in NHPs. It would not require
the use of expensive BSL3 containment facilities and would greatly
enhance the welfare of the animals [25], in line with the ‘refinement’
criteria of the National Centre for Replacement, Refinement and Re-
duction of Animals in Research (NC3Rs) [26,27].

2. Methods

2.1. Experimental animals

The animals used in these studies were rhesus macaques of Indian
genotype and cynomolgus macaques of Mauritian genotype obtained
from established UK breeding colonies and were between 4 and 15
years of age. Absence of previous exposure to mycobacterial antigens
was confirmed by a tuberculin skin test and screening using an ex-vivo
IFN-γ ELISpot (MabTech, Nacka. Sweden) to measure responses to
purified protein derivative (PPD) from M.tb (SSI, Copenhagen,
Denmark), and pooled 15-mer peptides of ESAT-6 and CFP-10 (Peptide
Protein Research LTD, Fareham, UK). The Project Licence enabling
these studies was approved by the Ethical Review Process of Public
Health England (PHE), Porton, Salisbury, UK and the Home Office, UK.
Animals were housed in socially compatible groups and according to
the Home Office (UK) Code of Practice for the Housing and Care of
Animals Used in Scientific Procedures (1989), (now updated to Code of
Practice for the housing and Care of Animals Bred, Supplied or Used for
Scientific Purposes, December 2014), the NC3Rs, and the Guidelines on
Primate Accommodation, Care and Use, August 2006 (NC3Rs, 2006).
For procedures requiring removal from their housing, animals were
sedated by intramuscular (IM) injection with ketamine hydrochloride
(Ketaset, 100 mg/ml, Fort Dodge Animal Health Ltd, Southampton, UK;
10 mg/kg). None of the animals had been used previously for experi-
mental procedures.

2.2. Clinical procedures

Animals were monitored daily for behavioural or clinical changes.
Prior to blood sample collection, vaccination and euthanasia, animals
were weighed, body temperature measured and were examined for
gross abnormalities.

2.2.1. BCG vaccination
Macaques were vaccinated intradermally in the upper left arm with

100 μl BCG Danish strain 1331 (SSI, Copenhagen, Denmark). BCG was
prepared and administered according to manufacturer's instructions for
preparation of vaccine for administration to human adults, by addition
of 1 ml Sauntons diluent to a vial of vaccine, to give a suspension of
BCG at an estimated concentration of 2–8 × 106 CFU/ml.

2.2.2. BCG infection
Macaques were infected intradermally in the upper right arm with

100 μl BCG Danish strain 1331 (SSI, Copenhagen, Denmark) at a con-
centration equivalent to an adult human vaccine dose (‘standard in-
fection dose’) as described above, or at a concentration 5-fold greater
(‘high infection dose’). For the high infection dose, 5 vials of BCG SSI
vaccine were reconstituted with 0.2 ml of Sauntons diluent and com-
bined to give a suspension of BCG at an estimated concentration of
1–4 × 107 CFU/ml. In each case the exact location of the infection site
was measured and recorded on a diagrammatic representation of the
animal.

2.2.3. Biopsy collection
Following sedation, the area of skin for biopsy was cleaned with 4%

w/v chlorhexidine preparation (Hibiscrub, Regent Medical Overseas
Ltd, Manchester, UK) and 1–2 ml of local anaesthetic (lignocaine,
10 mg/ml with adrenaline, 5 μg/ml, Xylocaine, AstraZeneca, Luton UK)
injected subcutaneously in and around the BCG infection site. After
1–2 min, when the skin was fully anaesthetised, a 4 mm biopsy was
collected using a disposable biopsy punch (William Needham &
Associates, Duffield, UK), the piece of skin collected was transferred
into a sterile cryovial and snap frozen. Following sample collection,
pressure was applied to the skin with a gauze swab for 30 s–1 min and
the site cleaned with a moist swab.

2.2.4. Necropsy
Animals were anaesthetised, clinical parameters measured and skin

biopsy collected from the site of BCG infection. The level of anaesthesia
was deepened and blood samples were taken, prior to termination by
intra-cardiac injection of a lethal dose of pentobarbitone sodium
(Dolelethal, Vétoquinol UK Ltd, 140 mg/kg). A full necropsy was per-
formed immediately, gross pathology assessed and the left and right
axillary lymph nodes were collected and snap frozen.

2.3. Infection studies

A summary of the BCG infection studies performed is presented in
Table 1.

2.3.1. Study 1: evaluation of initial human BCG infection model in NHPs
Twelve rhesus macaques were used to compare BCG-vaccinated and

BCG-naïve animals with a study design successfully used in the early
clinical trials of the BCG infection model in humans [16,17]. Six ani-
mals received a BCG vaccination and 21 weeks later all 12 were in-
fected intradermally with a standard dose of BCG. Twenty-one weeks is
the standard interval used in M.tb challenge studies [28,29] and
therefore was chosen for this work. Fourteen days later, a biopsy of the
infection site was taken and BCG quantified by culture on solid agar and
quantitative polymerase chain reaction (qPCR).
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2.3.2. Study 2: development of the NHP BCG infection model
Both studies 2 and 3 were designed for the purpose of developing

the BCG infection model further in NHPs. In study 2, thirty-two, BCG-
naïve cynomolgus macaques were used for a comparison of BCG in-
fection dose. Sixteen were infected with standard dose BCG and 16 were
infected with high dose BCG. After 14 days, a skin biopsy of the in-
fection site and draining axillary lymph nodes were harvested from
eight animals from the standard dose group and eight animals from the
high dose group. Biopsies and axillary lymph nodes were harvested 28
days post-infection from the remaining eight animals per group.

2.3.3. Study 3: evaluation of the NHP BCG infection model
Using the optimal dose and time interval derived from Study 2,

eight cynomolgus and six rhesus macaques received a BCG vaccination
and 21 weeks later were infected intradermally with high dose BCG,
along with seven BCG-naïve cynomolgus and six BCG-naïve rhesus
macaques. Skin biopsies and axillary lymph nodes were taken 14 days
post-infection.

2.4. Biopsy homogenisation and culture

Biopsies and axillary lymph nodes were processed as previously
described [17,19]. Briefly, samples were thawed and transferred to a
dispomix tube (MACS) containing 1 ml sterile phosphate buffered saline
(PBS). Tubes were loaded onto a dispomix machine (Thistle Scientific)
and homogenised. The homogenate was then sonicated for 15 s. 100 μl
neat homogenate and 100 μl of a 10−1 dilution in PBS, were plated in
triplicate onto Middlebrook 7H11 agar (Appleton Woods Ltd.). Plates
were incubated at 37 °C for 4 weeks before counting of colonies. The
remaining biopsy or lymph node homogenate was stored at −80 °C for
later DNA extraction.

2.5. DNA extraction

Biopsy or lymph node homogenate was thawed and BCG DNA from
200 μl homogenate was released using the tough micro-organism lysing
kit (Precellys®) in a Precellys®24 machine at 6500 rpm for 3 × 30 s.
Sample was transferred to a separate tube and 50 μl PBS used to wash
remaining homogenate from the beads. Samples were then processed as
previously described [19] and DNA was eluted in 400 μl AE buffer.

2.6. Quantitative polymerase chain reaction

Primers ET 1/3 (Forward - CCG CCG ACC GAC CTG ACG AC,
Reverse - GGC GAT CTG GCG GTT TGG GG) modified by Minassian
et al., were used for detection of BCG DNA. These are complementary to
regions flanking the BCG deletion sequence, RD-1 and amplify a 196 bp
fragment [30]. PCR reactions were carried out as previously described
[19]. A standard curve was obtained by extracting BCG DNA from 1 in
10 serial dilutions of 5 pooled SSI vaccine vials in PBS and correcting
for live BCG from the corresponding CFU counts on solid agar.

2.7. Statistical analysis

Statistical analyses were performed using GraphPad Prism. Data was
not normally distributed, so one-way ANOVA (Kruskal-Wallis) and
Mann Whitney U-tests were used to determine significant differences
between groups. The Spearman's Rho test was used to determine cor-
relations between amount of BCG recovered by culture and qPCR.

3. Results

3.1. Quantification of BCG from skin biopsies did not detect a difference
between BCG-vaccinated and BCG-naïve rhesus macaques following
infection with a standard dose of BCG

BCG was detected from skin biopsies of the infection site in 5 out of
6 previously BCG-vaccinated and 4 out of 6 BCG-naïve rhesus macaques
from study 1, by both culture on solid agar and qPCR (Fig. 1). Neither
method of quantification detected a significant difference in the amount
of BCG recovered between the two groups. The amount of BCG quan-
tified from each biopsy was very low, with a median of 32 CFU/biopsy
(range 0–1663), detected across the two groups by solid culture and
317 BCG copy number/biopsy (range 0–6268) by qPCR. BCG was un-
detected, by both culture and qPCR, in 25% (3/12) of NHP biopsies in
this study, however, as only part of the sample was plated out and used
for qPCR, there is a small possibility that these values might not be true
0s.

3.2. Infection with high dose BCG and 14 day sampling interval chosen for
further studies

Comparison of the numbers of BCG CFU recovered from skin
biopsies of cynomolgus macaques, infected with standard and high dose
BCG and sampled at 14 or 28 days post-infection (Study 2), showed no
difference between the groups (Fig. 2A). Quantification of BCG from the
draining axillary lymph nodes detected significantly higher numbers of
BCG CFU in both of the high dose groups compared to the standard dose
group who were sampled at 28 days post-infection (Fig. 2B) (Mann
Whitney, p < 0.05). However lymph node data was not available for
two animals in the standard dose group and one animal in the high dose
group (all of which were sampled at day 28) due to contamination on
the agar plates. Sampling at 14 or 28 days post-infection did not appear
to have an effect on the amount of BCG recovered from the lymph nodes
as statistical differences between the two standard dose groups or the
two high dose groups were not seen (Mann Whitney, p > 0.05).
Therefore, to be consistent with the human infection model, the 14 day
sampling interval was chosen for study 3 with animals infected with
high dose BCG.

3.3. Amount of BCG detected in draining axillary lymph nodes are lower in
previously BCG-vaccinated cynomolgus macaques

Infection with high dose BCG did not result in a significant differ-
ence in the number of BCG CFU recovered from the skin biopsies of

Table 1
Summary of NHP BCG infection studies.

Study NHP species Number in study BCG vaccinated (n) BCG naïve (n) Challenge dose Time to sampling (days) Samples taken

1 Rhesus 12 6 6 Standard 14 SB
2 Cynomolgus 32 0 8 Standard 14 SB + LN

0 8 High 14 SB + LN
0 8 Standard 28 SB + LN
0 8 High 28 SB + LN

3 Cynomolgus 15 8 7 High 14 SB + LN
Rhesus 12 6 6 High 14 SB + LN

SB=skin biopsy, LN=lymph node.
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previously BCG-vaccinated and BCG-naïve animals in either the cyno-
molgus (Fig. 3A) or rhesus macaques (Fig. 3C). Quantification of BCG
by qPCR also did not result in a significant difference between the
groups (Fig. 3B and D). Quantification of BCG CFU from the axillary
lymph nodes draining the site of infection, showed a significant re-
duction in the number of BCG CFU detected in the BCG-vaccinated
group compared to the BCG-naïve group in the cynomolgus macaques
(Fig. 3E) (Mann Whitney, p = 0.014). The same was true by quantifi-
cation by qPCR (Fig. 3F) (Mann Whitney, p = 0.0059), In contrast to
the cynomolgus macaques, there was no significant difference in
numbers of BCG CFU detected in the draining axillary lymph nodes of
BCG-vaccinated and BCG-naïve rhesus macaques (Fig. 3G). However,
BCG was undetectable in 2 out of 6 lymph nodes in the BCG-vaccinated
group and 4 out of 6 in the BCG-naïve group, compared to only 1 out of
15 in the cynomolgus macaques. BCG was undetectable by qPCR in all
of the rhesus lymph nodes (Fig. 3H).

Assessment of gross pathology was completely normal for all

animals in these studies.

4. Discussion

We have presented the results of a series of studies to develop and
evaluate an NHP BCG infection model.

Quantification of BCG from skin biopsies of the infection site was
not able to distinguish between BCG-vaccinated and BCG-naïve groups
of animals after infection with standard or high dose BCG in either
macaque species. This is in contrast to the human BCG infection model
where, in two separate studies in healthy adults, significantly lower
levels of BCG were detected in the skin biopsies of the BCG-vaccinated
compared to BCG-naïve groups [16,17]. The lack of a detectable vac-
cine effect from the skin biopsies of NHPs may be due to the lower
amount of BCG recoverable from NHP compared to human skin biopsies
and the higher percentage of biopsies in which BCG was undetectable.
This discrepancy could be due to differences between humans and

Fig. 1. Amount of BCG recovered from skin
biopsies at the site of infection with standard
dose BCG. Amount of BCG detected by culture on
solid agar (A) and qPCR (B) from BCG-vaccinated
and BCG-naïve rhesus macaques (Study 1) and
correlation between the two methods of detection
(C). Dots represent individual animals, lines show
median values and stars denote significance,
*** = p < 0.001 (Spearman Rho).

Fig. 2. Number of BCG CFU recovered after
infection with standard or high dose BCG.
Number of BCG CFU recovered from skin biopsies
(A) and draining axillary lymph nodes (B) of cy-
nomolgus macaques infected with either standard
or high dose BCG and sampled at either 14 or 28
days post-infection (Study 2). Dots represent in-
dividual animals, lines show median values and
stars denote significance * = p < 0.05 (Mann
Whitney).
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NHPs in the tissue structure of the biopsy, as macaque skin possesses
less underlying fatty tissue than human skin, which may impact on BCG
retention at the site, allowing dispersal from the infection site at a faster
rate in NHPs than in humans.

In cynomolgus macaques, quantifying BCG from the axillary lymph

nodes draining the site of infection can distinguish between the BCG
vaccination status of the groups, with significantly lower levels of de-
tection in previously BCG-vaccinated animals in a high dose infection
model. The same was not true in rhesus macaques where BCG was
detected in only 50% of the lymph nodes, suggesting that in this

Fig. 3. Number of BCG CFU recovered in cy-
nomolgus and rhesus macaques after infection
with high dose BCG. Number of BCG CFU or BCG
copy number recovered from skin biopsies (A–D)
and axillary lymph nodes (E–H) of cynomolgus
(A, B, E and F) and rhesus macaques (C, D, G and
H) 14 days post-infection with high dose BCG
(Study 3). Dots represent individual animals, lines
show median responses and stars denote sig-
nificance, * = p < 0.05, ** = p < 0.01 (Mann
Whitney).
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species, BCG does not disseminate so readily from the site of infection
to the lymph nodes, highlighting the difference between the two NHP
species in their response to BCG vaccination and supporting the finding
that Mauritian cynomolgus macaques are less able to control M.tb than
rhesus macaques [31]. This also emphasises the importance of char-
acterising the response to BCG andM.tb in both species in more detail in
order to select the most appropriate species to use to model human
disease.

BCG vaccination has been shown to be partially protective against
pulmonary M.tb infection in rhesus [29,32] and cynomolgus [33–35]
macaques. The results presented here from the high dose BCG infection
model in cynomolgus macaques have shown a BCG vaccine effect si-
milar to the partial protection seen with aerosol M.tb infection, as BCG
growth was reduced in the BCG-vaccinated compared to the BCG-naïve
group. These data provide important evidence to support the human
infection model as it is not possible to validate against M.tb infection in
humans. Demonstration of a BCG vaccine effect in rhesus macaques
may be achievable after further development of the model. The ulti-
mate validation of this model in NHPs would be to follow ID BCG in-
fection with aerosolM.tb challenge and assess whether the results of the
BCG infection are predictive of the outcome of the M.tb challenge.
However, as the detectable vaccine effect was observed in the lymph
nodes, this requires necropsy and therefore the same animals cannot go
on to receive aerosol M.tb.

Models such this could also be used to help identify immune cor-
relates of mycobacterial immunity, which could be targeted in further
vaccine development. Peripheral blood mononuclear cells and serum
samples from these studies have been cryopreserved and will be used to
investigate cellular and humoral immune responses and perform my-
cobacterial growth inhibition assays (MGIAs) to assess correlations with
the BCG infection outcome. This in turn will provide biological vali-
dation of the putative correlates such as MGIA, which may also have
utility as an additional alternative to using virulent pre-clinical M.tb
infection models to evaluate the efficacy of candidate TB vaccines.

Although an ID BCG infection model appears to be a valid surrogate
for aerosol M.tb infection, there are some limitations. The natural route
of M.tb infection is by aerosol. The aerosol delivery of BCG has been
shown to be safe, immunogenic [36] and protective [37] in rhesus
macaques and a clinical trial is currently ongoing in humans to assess
aerosol BCG as a route of delivery, both as a potential route of vacci-
nation and as a potential route of challenge in a controlled human in-
fection model (clinicaltrials.gov ref. NCT02709278). Unlike M.tb and
M.bovis, the genome of BCG does not possess the RD-1 region, which
encodes the secretory proteins ESAT-6 and CFP-10, both important
virulence factors [38]. Therefore, the efficacy of candidate vaccines
which include these antigens may not be fully evaluated using this BCG
infection model. However, an attenuated strain of M.tb, MTBVAC, is
currently in phase 1 clinical trials [39] and such a strain could be
considered for use in future controlled human infection models.

An infection model using BCG or an attenuated strain of M.tb would
be a less severe way of testing new TB vaccines in NHPs and would
comply with the NC3Rs criteria of improving the welfare of the animals
as it would remove the requirement for animals to be exposed to
virulent M.tb and to develop clinical signs of TB disease. They would
also have a better quality of life as do not need to be confined to BSL3
facilities and therefore would benefit from a richer housing environ-
ment [25]. Furthermore, removing the expensive and restrictive BSL3
facilities needed for M.tb infection would increase the number of sites
able to perform such studies and would be a more cost-effective, easier
and potentially more high-throughput way of screening new TB vac-
cines. Both the NHP and human BCG infection models could provide a
useful tool in TB vaccine development and aid in discovering and va-
lidating immunological correlates of protection.

Funding

This work was supported by the Wellcome Trust and the
Department of Health, UK. The views expressed in this publication are
those of the authors and not necessarily those of the Department of
Health. HMcS is a Wellcome Senior Clinical Research Fellow and a
Jenner Institute Investigator.

Acknowledgements

We thank staff of the Biological Investigations Group, PHE for as-
sistance in conducting the studies, Stephen Lawrence, Samantha
Dinnage, Andrew Bradwell, Peter Levick and Sandra Holmes for expert
technical assistance.

References

[1] WHO. WHO tuberculosis factsheet. 2017http://www.who.int/mediacentre/
factsheets/fs104/en/, Accessed date: 15 June 2017.

[2] WHO. Multidrug and extensively drug-resistant TB (M/XDR-TB): 2010 global report
on surveillance and response Geneva 2010

[3] Colditz GA, Brewer TF, Berkey CS, Burdick E, Fineberg HV, Mosteller F. Efficacy of
BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published lit-
erature. JAMA 1994;271:698–702.

[4] Vordermeier HM, Villarreal-Ramos B, Cockle PJ, McAulay M, Rhodes SG, Thacker
T, et al. Viral booster vaccines improve Mycobacterium bovis BCG-induced pro-
tection against bovine tuberculosis. Infect Immun 2009;77:3364–73. http://dx.doi.
org/10.1128/IAI.00287-09.

[5] Williams A, Hatch GJ, Clark SO, Gooch KE, Hatch KA, Hall GA, et al. Evaluation of
vaccines in the EU TB Vaccine Cluster using a Guinea pig aerosol infection model of
tuberculosis. Tuberculosis 2005;85:29–38. http://dx.doi.org/10.1016/j.tube.2004.
09.009.

[6] Williams A, Goonetilleke NP, Mcshane H, Simon O, Hatch G, Gilbert SC, et al.
Boosting with poxviruses enhances Mycobacterium bovis BCG efficacy against tu-
berculosis in Guinea Pigs. Infect Immun 2005;73:3814–6. http://dx.doi.org/10.
1128/IAI.73.6.3814.

[7] McShane H, Pathan AA, Sander CR, Keating SM, Gilbert SC, Huygen K, et al.
Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-
primed and naturally acquired antimycobacterial immunity in humans. Nat Med
2004;10:1240–4. http://dx.doi.org/10.1038/nm1128.

[8] Hawkridge T, Scriba TJ, Gelderbloem S, Smit E, Tameris M, Moyo S, et al. Safety
and immunogenicity of a new tuberculosis vaccine, MVA85A, in healthy adults in
South Africa. J Infect Dis 2008;198:544–52. http://dx.doi.org/10.1086/590185.

[9] Scriba TJ, Tameris M, Mansoor N, Smit E, van der Merwe L, Isaacs F, et al. Modified
vaccinia Ankara-expressing Ag85A, a novel tuberculosis vaccine, is safe in adoles-
cents and children, and induces polyfunctional CD4+ T cells. Eur J Immunol
2010;40:279–90. http://dx.doi.org/10.1002/eji.200939754.

[10] Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, Lockhart S, et al.
Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously
vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet
2013;381:1021–8. http://dx.doi.org/10.1016/S0140-6736(13)60177-4.

[11] McShane H, Williams A. A review of preclinical animal models utilised for TB
vaccine evaluation in the context of recent human efficacy data. Tuberculosis
2014;94:105–10. http://dx.doi.org/10.1016/j.tube.2013.11.003.

[12] Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, et al. Time
lines of infection and disease in human influenza: a review of volunteer challenge
studies. Am J Epidemiol 2008;167:775–85. http://dx.doi.org/10.1093/aje/
kwm375.

[13] Sauerwein RW, Roestenberg M, Moorthy VS. Experimental human challenge in-
fections can accelerate clinical malaria vaccine development. Nat Rev Immunol
2011;11:57–64. http://dx.doi.org/10.1038/nri2902.

[14] Marwick C. Volunteers in typhoid infection study will aid future vaccine develop-
ment. JAMA 1998;279:1423–4.

[15] Statler J, Mammen M, Lyons A, Sun W. Sonographic findings of healthy volunteers
infected with dengue virus. J Clin Ultrasound 2008;36:413–7. http://dx.doi.org/10.
1002/jcu.20476.

[16] Minassian AM, Satti I, Poulton ID, Meyer J, Hill AVS, McShane H. A human chal-
lenge model for Mycobacterium tuberculosis using Mycobacterium bovis bacille
Calmette-Guerin. J Infect Dis 2012;205:1035–42. http://dx.doi.org/10.1093/
infdis/jis012.

[17] Harris SA, Meyer J, Satti I, Marsay L, Poulton ID, Tanner R, et al. Evaluation of a
human BCG challenge model to assess antimycobacterial immunity induced by BCG
and a candidate tuberculosis vaccine, MVA85A, alone and in combination. J Infect
Dis 2014;209:1259–68. http://dx.doi.org/10.1093/infdis/jit647.

[18] Minhinnick A, Harris S, Wilkie M, Peter J, Stockdale L, Manjaly-Thomas ZR, et al.
Optimization of a human bacille calmette-guérin challenge model: a tool to evaluate
antimycobacterial immunity. J Infect Dis 2016;212:824–30. http://dx.doi.org/10.
1093/infdis/jiv482.

[19] Minassian AM, Ronan EO, Poyntz H, Hill AVS, McShane H. Preclinical development
of an in vivo BCG challenge model for testing candidate TB vaccine efficacy. PLoS

S.A. Harris et al. Tuberculosis 108 (2018) 99–105

104

http://clinicaltrials.gov
http://www.who.int/mediacentre/factsheets/fs104/en/
http://www.who.int/mediacentre/factsheets/fs104/en/
http://refhub.elsevier.com/S1472-9792(17)30319-0/sref2
http://refhub.elsevier.com/S1472-9792(17)30319-0/sref2
http://refhub.elsevier.com/S1472-9792(17)30319-0/sref3
http://refhub.elsevier.com/S1472-9792(17)30319-0/sref3
http://refhub.elsevier.com/S1472-9792(17)30319-0/sref3
http://dx.doi.org/10.1128/IAI.00287-09
http://dx.doi.org/10.1128/IAI.00287-09
http://dx.doi.org/10.1016/j.tube.2004.09.009
http://dx.doi.org/10.1016/j.tube.2004.09.009
http://dx.doi.org/10.1128/IAI.73.6.3814
http://dx.doi.org/10.1128/IAI.73.6.3814
http://dx.doi.org/10.1038/nm1128
http://dx.doi.org/10.1086/590185
http://dx.doi.org/10.1002/eji.200939754
http://dx.doi.org/10.1016/S0140-6736(13)60177-4
http://dx.doi.org/10.1016/j.tube.2013.11.003
http://dx.doi.org/10.1093/aje/kwm375
http://dx.doi.org/10.1093/aje/kwm375
http://dx.doi.org/10.1038/nri2902
http://refhub.elsevier.com/S1472-9792(17)30319-0/sref14
http://refhub.elsevier.com/S1472-9792(17)30319-0/sref14
http://dx.doi.org/10.1002/jcu.20476
http://dx.doi.org/10.1002/jcu.20476
http://dx.doi.org/10.1093/infdis/jis012
http://dx.doi.org/10.1093/infdis/jis012
http://dx.doi.org/10.1093/infdis/jit647
http://dx.doi.org/10.1093/infdis/jiv482
http://dx.doi.org/10.1093/infdis/jiv482


One 2011;6:e19840http://dx.doi.org/10.1371/journal.pone.0019840.
[20] Villarreal-Ramos B, Berg S, Chamberlain L, McShane H, Hewinson RG, Clifford D,

et al. Development of a BCG challenge model for the testing of vaccine candidates
against tuberculosis in cattle. Vaccine 2014;32:5645–9. http://dx.doi.org/10.1016/
j.vaccine.2014.08.009.

[21] Scanga CA, Flynn JL. Modeling tuberculosis in nonhuman primates. Cold Spring
Harb Perspect Med 2014:a018564.

[22] Pena JC, Ho WZ. Monkey models of tuberculosis: lessons learned. Infect Immun
2015;83:852–62. http://dx.doi.org/10.1128/IAI.02850-14.

[23] Langermans JA, Andersen P, van Soolingen D, Vervenne RA, Frost PA, van der Laan
T, et al. Divergent effect of bacillus Calmette-Guérin (BCG) vaccination on
Mycobacterium tuberculosis infection in highly related macaque species: implica-
tions for primate models in tuberculosis vaccine research. Proc Natl Acad Sci U. S. A
2001;98:11497–502. http://dx.doi.org/10.1073/pnas.201404898.

[24] Sharpe S, White A, Gleeson F, McIntyre A, Smyth D, Clark S, et al. Ultra low dose
aerosol challenge with Mycobacterium tuberculosis leads to divergent outcomes in
rhesus and cynomolgus macaques. Tuberculosis 2016;96:1–12. http://dx.doi.org/
10.1016/j.tube.2015.10.004.

[25] Wolfensohn S, Sharpe S, Hall I, Lawrence S, Kitchen S, Dennis M. Refinement of
welfare through development of a quantitative system for assessment of lifetime
experience. Anim Welf 2015;24:139–49. http://dx.doi.org/10.7120/09627286.24.
2.139.

[26] NC3Rs. NC3Rs. 2017https://www.nc3rs.org.uk/the-3rs, Accessed date: 15 June
2017.

[27] Tanner R, McShane H. Replacing, reducing and refining the use of animals in tu-
berculosis vaccine research. ALTEX 2017;34:157–66. http://dx.doi.org/10.14573/
altex.1607281.

[28] Sharpe S, White A, Sarfas C, Sibley L, Gleeson F, McIntyre A, et al. Alternative BCG
delivery strategies improve protection against Mycobacterium tuberculosis in non-
human primates: protection associated with mycobacterial antigen-specific CD4
effector memory T-cell populations. Tuberculosis 2016;101:174–90. http://dx.doi.
org/10.1016/j.tube.2016.09.004.

[29] Sharpe SA, McShane H, Dennis MJ, Basaraba RJ, Gleeson F, Hall G, et al.
Establishment of an aerosol challenge model of tuberculosis in rhesus macaques and
an evaluation of endpoints for vaccine testing. Clin Vaccine Immunol
2010;17:1170–82. http://dx.doi.org/10.1128/CVI.00079-10.

[30] Talbot EA, Williams DL, Frothingham R, Talbot EA, Williams DL. PCR identification

of Mycobacterium bovis PCR Identification of Mycobacterium bovis BCG. J Clin
Microbio 1997;35:566.

[31] Sharpe SA, White AD, Sibley L, Gleeson F, Hall GA, Basaraba RJ, et al. An aerosol
challenge model of tuberculosis in Mauritian cynomolgus macaques. PLoS One
2017;12:1–19. http://dx.doi.org/10.1371/journal.pone.0171906.

[32] Verreck FAW, Vervenne RAW, Kondova I, van Kralingen KW, Remarque EJ,
Braskamp G, et al. MVA.85A boosting of BCG and an attenuated, phoP deficient M.
tuberculosis vaccine both show protective efficacy against tuberculosis in rhesus
macaques. PLoS One 2009;4:e5264http://dx.doi.org/10.1371/journal.pone.
0005264.

[33] Kita Y, Tanaka T, Yoshida S, Ohara N, Kaneda Y, Kuwayama S, et al. Novel re-
combinant BCG and DNA-vaccination against tuberculosis in a cynomolgus monkey
model. Vaccine 2005;23:2132–5. http://dx.doi.org/10.1016/j.vaccine.2005.01.
057.

[34] Okada M, Kita Y, Nakajima T, Kanamaru N, Hashimoto S, Nagasawa T, et al.
Evaluation of a novel vaccine (HVJ-liposome/HSP65 DNA + IL-12 DNA) against
tuberculosis using the cynomolgus monkey model of TB. Vaccine 2007;25:2990–3.
http://dx.doi.org/10.1016/j.vaccine.2007.01.014.

[35] Reed SG, Coler RN, Dalemans W, Tan EV, DeLa Cruz EC, Basaraba RJ, et al. Defined
tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus mon-
keys. Proc Natl Acad Sci U. S. A 2009;106:2301–6. http://dx.doi.org/10.1073/pnas.
0712077106.

[36] White AD, Sarfas C, West K, Sibley LS, Wareham AS, Clark S, et al. Evaluation of the
immunogenicity of Mycobacterium bovis BCG delivered by aerosol to the lungs of
macaques. 2015;22:992–1003. http://dx.doi.org/10.1128/CVI.00289-15.

[37] Barclay WR, Busey WM, Dalgard DW, Good RC, Janicki BW, Kasik JE, et al.
Protection of monkeys against airborne tuberculosis by aerosol vaccination with
bacillus Calmette-Guerin. Am Rev Respir Dis 1973;107:351–8. http://dx.doi.org/
10.1164/arrd.1973.107.3.351.

[38] Ganguly N, Siddiqui I, Sharma P. Role of M. tuberculosis RD-1 region encoded
secretory proteins in protective response and virulence. Tuberculosis
2008;88:510–7. http://dx.doi.org/10.1016/j.tube.2008.05.002.

[39] Spertini F, Audran R, Chakour R, Karoui O, Steiner-Monard V, Thierry A-C, et al.
First Human Immunization with A Live-Attenuated Mycobacterium tuberculosis: a
randomized, double-blind, controlled phase I trial. Lancet Respir Med
2015;3:953–62.

S.A. Harris et al. Tuberculosis 108 (2018) 99–105

105

http://dx.doi.org/10.1371/journal.pone.0019840
http://dx.doi.org/10.1016/j.vaccine.2014.08.009
http://dx.doi.org/10.1016/j.vaccine.2014.08.009
http://refhub.elsevier.com/S1472-9792(17)30319-0/sref21
http://refhub.elsevier.com/S1472-9792(17)30319-0/sref21
http://dx.doi.org/10.1128/IAI.02850-14
http://dx.doi.org/10.1073/pnas.201404898
http://dx.doi.org/10.1016/j.tube.2015.10.004
http://dx.doi.org/10.1016/j.tube.2015.10.004
http://dx.doi.org/10.7120/09627286.24.2.139
http://dx.doi.org/10.7120/09627286.24.2.139
https://www.nc3rs.org.uk/the-3rs
http://dx.doi.org/10.14573/altex.1607281
http://dx.doi.org/10.14573/altex.1607281
http://dx.doi.org/10.1016/j.tube.2016.09.004
http://dx.doi.org/10.1016/j.tube.2016.09.004
http://dx.doi.org/10.1128/CVI.00079-10
http://refhub.elsevier.com/S1472-9792(17)30319-0/sref30
http://refhub.elsevier.com/S1472-9792(17)30319-0/sref30
http://refhub.elsevier.com/S1472-9792(17)30319-0/sref30
http://dx.doi.org/10.1371/journal.pone.0171906
http://dx.doi.org/10.1371/journal.pone.0005264
http://dx.doi.org/10.1371/journal.pone.0005264
http://dx.doi.org/10.1016/j.vaccine.2005.01.057
http://dx.doi.org/10.1016/j.vaccine.2005.01.057
http://dx.doi.org/10.1016/j.vaccine.2007.01.014
http://dx.doi.org/10.1073/pnas.0712077106
http://dx.doi.org/10.1073/pnas.0712077106
http://dx.doi.org/10.1128/CVI.00289-15
http://dx.doi.org/10.1164/arrd.1973.107.3.351
http://dx.doi.org/10.1164/arrd.1973.107.3.351
http://dx.doi.org/10.1016/j.tube.2008.05.002
http://refhub.elsevier.com/S1472-9792(17)30319-0/sref39
http://refhub.elsevier.com/S1472-9792(17)30319-0/sref39
http://refhub.elsevier.com/S1472-9792(17)30319-0/sref39
http://refhub.elsevier.com/S1472-9792(17)30319-0/sref39

	Development of a non-human primate BCG infection model for the evaluation of candidate tuberculosis vaccines
	Introduction
	Methods
	Experimental animals
	Clinical procedures
	BCG vaccination
	BCG infection
	Biopsy collection
	Necropsy

	Infection studies
	Study 1: evaluation of initial human BCG infection model in NHPs
	Study 2: development of the NHP BCG infection model
	Study 3: evaluation of the NHP BCG infection model

	Biopsy homogenisation and culture
	DNA extraction
	Quantitative polymerase chain reaction
	Statistical analysis

	Results
	Quantification of BCG from skin biopsies did not detect a difference between BCG-vaccinated and BCG-naïve rhesus macaques following infection with a standard dose of BCG
	Infection with high dose BCG and 14 day sampling interval chosen for further studies
	Amount of BCG detected in draining axillary lymph nodes are lower in previously BCG-vaccinated cynomolgus macaques

	Discussion
	Funding
	Acknowledgements
	References




