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Mitochondria are important regulators of cell death and cell survival. Mitochondrial Ca2+ 
levels are critically involved in both of these processes. On the one hand, excessive mito-
chondrial Ca2+ leads to Ca2+-induced mitochondrial outer membrane permeabilization 
and thus apoptosis. On the other hand, mitochondria need Ca2+ in order to efficiently 
fuel the tricarboxylic acid cycle and maintain adequate mitochondrial bioenergetics. For 
obtaining this Ca2+, the mitochondria are largely dependent on close contact sites with 
the endoplasmic reticulum (ER), the so-called mitochondria-associated ER membranes. 
There, the inositol 1,4,5-trisphosphate receptors are responsible for the Ca2+ release 
from the ER. It comes as no surprise that this Ca2+ release from the ER and the subse-
quent Ca2+ uptake at the mitochondria are finely regulated. Cancer cells often modulate 
ER-Ca2+ transfer to the mitochondria in order to promote cell survival and to inhibit 
cell death. Important regulators of these Ca2+ signals and the onset of cancer are the 
B-cell lymphoma 2 (Bcl-2) family of proteins. An increasing number of reports highlight 
the ability of these Bcl-2-protein family members to finely regulate Ca2+ transfer from 
ER to mitochondria both in healthy cells and in cancer. In this review, we focus on 
recent insights into the dynamic regulation of ER–mitochondrial Ca2+ fluxes by Bcl-2-
family members and how this impacts cell survival, cell death and mitochondrial energy 
production.

Keywords: endoplasmic reticulum–mitochondria contact sites, Ca2+-transport systems, apoptosis, autophagy, 
mitochondrial bio energetics, iP3 receptors, voltage-dependent anion channels, Bcl-2

inTRODUCTiOn

Ca2+ signaling plays important roles in a vast amount of cell physiological processes (1). In cancer 
cells, Ca2+ signaling is altered to promote mitochondrial bioenergetics, cell proliferation, migration, 
and survival while inhibiting cell death (2–6). The involvement of Ca2+ signaling in the development 
of cancer and consequently the potential of Ca2+ signaling as a target for treatment is becoming 
increasingly apparent (5–11). In cancer cells, proteins involved in Ca2+ signaling have been reported 
to have differential expression profiles compared to healthy cells (12–15). In addition, an increasing 
number of proto-oncogenes and tumor suppressors impact Ca2+-signaling pathways by directly 
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FigURe 1 | B-cell lymphoma (Bcl)-2 and Bcl-XL and their targets in 
Ca2+ signaling, inositol 1,4,5-trisphosphate receptor (iP3R) and 
voltage-dependent anion channel 1 (vDAC1), are present in the 
mitochondria-associated endoplasmic reticulum membranes (MAMs). 
Representative immunoblots showing the presence of VDAC1, IP3Rs, Bcl-2, 
and Bcl-XL in the MAMs of MEFs. Calnexin (CNX) and cytochrome c (Cyt c) 
served as specific MAMs and mitochondrial markers, respectively. These 
data were originally published in Journal of Biological Chemistry with 
following reference: Monaco et al. (45). © The American Society for 
Biochemistry and Molecular Biology. Authors of articles in Journal of 
Biological Chemistry have the rights to reuse their own material and are 
automatically granted a permission to reuse figures from their articles in future 
works. The original results have been produced by Dr. Alex van Vliet in the 
laboratory of Prof. Patrizia Agostinis (KU Leuven, Belgium).
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modulating intracellular Ca2+-transport systems with critical 
functions in cell survival and cell death (16–19).

An important Ca2+-signaling pathway involved in both cell 
death and cell survival is the transfer of Ca2+ from the endoplasmic 
reticulum (ER) to the mitochondria (20). These Ca2+ transfers 
occur at the so-called mitochondria-associated ER membranes 
(MAMs), which are close contact sites between the ER and the 
mitochondria (21). A continuous small Ca2+ transfer to the 
mito chondria is necessary to maintain proper energy production 
(22). Ca2+ is required by several enzymes of the tricarboxylic acid  
(TCA) cycle (like pyruvate dehydrogenase, isocitrate dehydroge-
nase and α-ketoglutarate) to promote NADH and ATP production 
(23). Besides this, Ca2+ also modulates the ATP synthase complex 
V and the adenine nucleotide translocator (24). In addition to this 
mitochondrial pathway, pro-survival Ca2+ oscillations activate 
calcineurin, which in turn dephosphorylates the nuclear factor 
of activated T-cells (NFAT), conferring its translocation into 
the nucleus (25). Here, NFAT triggers the transcription of genes 
involved in cell proliferation. In contrast, large Ca2+ transfers 
from the ER to the mitochondria may result in both Ca2+-induced 
mitochondrial outer membrane permeabilization (MOMP) 
and opening of the mitochondrial permeability transition pore 
(mPTP), the latter formed by dimers of the F0F1 ATP synthase 
(4, 26, 27). In this process, Ca2+ overload in the mitochondria 
triggers cardiolipin oxidation, resulting in the disassembly of 
the respiratory chain complex 2 (also known as succinate dehy-
drogenase), subsequently leading to excessive reactive oxygen 
species (ROS) production (28). Mitochondrial produced ROS 
can open the mPTP, ultimately leading to MOMP. At the level 
of the ER, the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) 
(29) is an important intracellular Ca2+-release channel involved 
in these Ca2+ transfers, whereas at the mitochondria, the voltage-
dependent anion channel (VDAC) (at the outer mitochondrial 
membrane) (30) and the mitochondrial Ca2+ uniporter (MCU) 
(at the inner mitochondrial membrane) (31, 32) are important for 
transporting Ca2+ into the mitochondrial matrix.

The B-cell lymphoma 2 (Bcl-2)-protein family, consisting of 
both anti- and pro-apoptotic members, is critically involved in 
regulating cell death and survival (33–36). Dysregulated expres-
sion and function of Bcl-2 proteins have been not only implicated 
in oncogenesis but also represent an “Achilles’ heel” in cancer cells 
that can be exploited by the use of Bcl-2 inhibitors (37–39). Anti-
apoptotic Bcl-2 proteins (like Bcl-2, Bcl-XL and Mcl-1) have been 
extensively described to inhibit apoptosis by neutralizing the pro-
apoptotic Bcl-2-family members (like Bax, Bak, Bim, Bid, etc.). 
The mechanism involves binding of the Bcl-2 homology (BH) 3 
domains of the pro-apoptotic proteins to the hydrophobic cleft 
formed by the BH1, BH2 and BH3 domains of the anti-apoptotic 
members, thereby inhibiting cell death (40). A recently developed 
class of compounds, so-called BH3-mimetic drugs (40–42), 
is able to compete with pro-apoptotic Bcl-2-family members 
for the hydrophobic cleft of the anti-apoptotic Bcl-2-family 
members. Hence, BH3-mimetics alleviate the inhibition of Bax 
and Bak by the anti-apoptotic Bcl-2-family members, effectively 
killing cancer cells that are dependent on anti-apoptotic Bcl-2 
proteins for their survival. In addition to this, the BH4 domain of 
Bcl-2 also contributes to the interaction with Bax via a site that 

is distinct from Bax’s BH3 domain (43). Moreover, the isolated 
BH4 domain, delivered as a stapled peptide, neutralized the pro-
apoptotic activity of Bim-derived BH3 peptides by restricting 
Bax’s conformational change (44).

Anti-apoptotic Bcl-2 proteins are also known to regulate ER 
to mitochondrial Ca2+ signaling at both organelles, and several 
Bcl-2-family members, including Bcl-2 and Bcl-XL, are present 
in the MAMs (45, 46) (Figure  1). At the ER, anti-apoptotic 
Bcl-2, Bcl-XL and Mcl-1 promote pro-survival IP3R-mediated 
Ca2+ oscillations, enhancing cell proliferation and mitochondrial 
energy production (47–49). Bcl-2 (and Bcl-XL at high concentra-
tions) also inhibits excessive pro-apoptotic IP3R-mediated Ca2+ 
release (50–53), thereby preventing Ca2+-induced MOMP. At the 
mitochondrial side of the MAMs, anti-apoptotic Bcl-2 and Bcl-XL 
proteins inhibit VDAC1-mediated Ca2+ uptake in the mitochon-
dria (45, 54, 55). However, also stimulatory roles of Bcl-2-family 
members on VDAC1-mediated mitochondrial Ca2+ transfer have 
been described, thereby maintaining adequate mitochondrial 
Ca2+ levels that promote survival and mitochondrial bioenerget-
ics (56, 57). Besides IP3Rs and VDAC, anti-apoptotic Bcl-2-family 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


FigURe 2 | Modulation of endoplasmic reticulum (eR) to mitochondrial Ca2+ transfers by anti-apoptotic B-cell lymphoma (Bcl)-2 proteins. ER to 
mitochondrial Ca2+ transfers are critical for the regulation of cell death and cell survival decisions. In order to fuel the tricarboxylic acid (TCA) cycle, a continuous 
influx of Ca2+ into the mitochondria is required (green arrow), thereby promoting cell survival. Excessive mitochondrial Ca2+ uptake leads to Ca2+-induced 
mitochondrial outer membrane permeabilization (MOMP) and cell death (red arrow). The anti-apoptotic side of the Bcl-2-protein family regulates these Ca2+ transfers 
at both organelles. During pro-survival Ca2+ signaling at the ER, Bcl-2, Bcl-XL, and Mcl-1 modulate inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release 
to generate Ca2+ oscillations. At the mitochondria, Bcl-XL and Mcl-1 can increase voltage-dependent anion channel 1 (VDAC1)-mediated Ca2+ uptake. Combining 
the effects at the two organelles results in an efficient and finely regulated Ca2+ uptake at the mitochondria, which increases mitochondrial bioenergetics and 
promotes cell survival. In addition, Mcl-1 and Bcl-XL target the F0F1 ATP synthase, thereby regulating ATP-production. During pro-death signaling, Bcl-2 and Bcl-XL 
can inhibit both pro-apoptotic Ca2+ release from the IP3R and the Ca2+ uptake into the mitochondria via VDAC. Finally, abolishing ER to mitochondrial Ca2+ transfers 
by either blocking IP3Rs or knocking down the mitochondrial Ca2+ uniporter (MCU) induces autophagy. When this is coupled to decreased cell proliferation (healthy 
cells), this increase in autophagy may rescue the cell. However, when proliferation is not halted (cancer cells) this results in cell death.
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members also regulate other members of the Ca2+ toolkit at differ-
ent locations in the cell [extensively reviewed in Ref. (33)]. Mcl-1, 
located at the inner mitochondrial membrane, was also shown to 
be crucial for normal mitochondrial bioenergetics by regulating 
the assembly of the F0F1 ATP synthase oligomers (58). Finally, 
the F0F1 ATP synthase emerged as a target for anti-apoptotic Bcl-
XL, allowing the direct regulation of ATP production (59, 60). 
In this review, we will focus on recent insights into the dynamic 
regulation of ER–mitochondrial Ca2+ fluxes, the involvement 
of anti-apoptotic Bcl-2-family members and how this impacts 
cell survival, cell death, and mitochondrial energy production 
(Figure 2), three important aspects of cancer development.

eR SiDe OF THe MAMs

ER Ca2+ release is an important determinant for cell survival 
by regulating mitochondrial bioenergetics and for cell death 
via promoting mPTP opening. In most cells, including cancer 
cells, the IP3R is an important intracellular Ca2+-release chan-
nel responsible for Ca2+ release from the ER. Cancer cells have 
developed several ways to modulate IP3R-mediated Ca2+ release, 
among which Bcl-2-dependent regulation.

iP3R
A continuous Ca2+ flux from the ER to the mitochondria is 
necessary in order to maintain normal energy production. At 
the ER, the IP3R is responsible for the Ca2+ release and is present 
at the MAMs (Figure 1). Inhibition of the IP3R and thus of the 
continuous Ca2+ transfer to the mitochondria was already shown 
to result in the induction of autophagy, thereby managing the 
decrease in mitochondrial energy production (22). New findings 
emerged, showing that cancer cells are addicted to constitutive 
IP3R-driven Ca2+ transfer to the mitochondria (61, 62). Similar 
to normal/non-tumorigenic cells, cancer cells increase their 
autophagic flux upon IP3R inhibition in order to cope with the 
loss of Ca2+ influx into the mitochondria and subsequent reduc-
tion in energy production. However, in normal cells, the increased 
autophagy is accompanied by a decrease in the proliferation rate 
at the G1/S checkpoint (63), addressing the decreased avail-
ability of mitochondrial substrates for biosynthetic pathways of  
nucleosides and other cellular building blocks. In this way, cells 
may survive until normal Ca2+ transfer to the mitochondria is 
restored. In cancer cells, this increase in autophagy is not accom-
panied by a reduction in cell proliferation, likely due to a loss 
of the link between the monitoring of the mitochondrial health 

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


4

Vervliet et al. Bcl-2 and Ca2+-Signaling at MAMs

Frontiers in Oncology | www.frontiersin.org May 2017 | Volume 7 | Article 75

and the G1/S checkpoint. As such, these malignant cells proceed 
through the cell cycle without the necessary pool of nucleosides, 
resulting in a mitotic catastrophe and necrotic cell death.

Anti-apoptotic Bcl-2-family members have been shown 
to regulate the IP3R. Both inhibitory (50–52) and stimulatory 
(47, 49) effects, largely dependent on the Bcl-2-family member 
involved (64, 65) and the strength of IP3R activation (25, 53), have 
been described. As such, it was reported that in T-cell models, 
Bcl-2 suppresses IP3R-mediated Ca2+ release generated by strong 
T-cell receptor stimulation, thereby preventing excessive Ca2+ 
transfer into the mitochondria. This interaction occurs via Bcl-
2’s BH4 domain and a stretch of 20 amino acids in the central 
coupling domain of the IP3R (52, 64). Peptides derived from this 
amino acid stretch were able to disrupt IP3R/Bcl-2 complexes in 
several cell types and models, thereby augmenting cell death in 
response to apoptotic triggers that act through Ca2+ signaling  
(25, 66). The efficient IP3R inhibition by anti-apoptotic Bcl-2 
critically depended on the presence of Bcl-2’s C-terminal 
transmembrane domain, which interacted with the C-terminal 
domain of the IP3R channel (67). Bcl-2 lacking its transmem-
brane domain failed to inhibit IP3R-mediated Ca2+ release and 
to suppress Ca2+-dependent apoptosis in an in cellulo context. 
In contrast, the hydrophobic cleft of Bcl-2, responsible for scaf-
folding pro-apoptotic family members, was dispensable for IP3R 
binding and inhibition.

Bcl-2, Bcl-XL and Mcl-1 were reported to sensitize the IP3R 
to low levels of IP3 in order to promote pro-survival Ca2+ oscil-
lations, thereby feeding Ca2+ into the mitochondria to maintain 
adequate mitochondrial bioenergetics (47–49). The interaction 
of Bcl-2-family members with the C-terminus of the IP3R has 
been proposed as the underlying molecular mechanism for 
generating these Ca2+ oscillations (68). Recently, the mechanism 
underlying IP3R sensitization by Bcl-XL has been identified with 
a prominent role for its hydrophobic cleft (53). Two BH3-like 
domains were identified in the C-terminus of IP3Rs. Indeed, in 
contrast to Bcl-2, for which its hydrophobic cleft was shown to 
be dispensable for IP3R modulation, Bcl-XL via its hydropho-
bic cleft could target, with different affinities, both BH3-like 
domains present in the C-terminal region of the IP3R. At low 
concentrations, Bcl-XL increased the open probability of the IP3R 
in response to low levels of IP3 by simultaneous binding to both 
BH3-like domains. Similar to Bcl-2, high Bcl-XL concentrations 
were able to inhibit IP3R-mediated Ca2+ release in response to 
strong IP3R stimulation. The “dual” interaction with the BH3-like 
domain which conferred the highest affinity toward Bcl-XL as 
well as the region in the coupling domain of the IP3R targeted 
by Bcl-2’s BH4 domain, was important for IP3R inhibition by 
Bcl-XL. Binding of Bcl-XL to the coupling domain appeared with 
much lower affinity than the binding to the C-terminal tail, 
which is in line with our previous study that focused on the bind-
ing efficiency of Bcl-2 versus Bcl-XL for both IP3R domains (48). 
This may indicate that moderate levels of Bcl-XL will most likely 
operate in IP3R-sensitizing modus and thus will promote Ca2+ 
oscillations, whereas high levels of Bcl-XL will be needed to oper-
ate in IP3R-inhibiting modus. Finally, binding of Bcl-XL to both 
BH3-like domains is involved in maintaining cell viability and 
in protecting cells from stress inducers. These molecular results 

substantiate the previously observed sensitization of the IP3R 
by Bcl-XL (68), resulting in pro-survival Ca2+ oscillations, and 
underscore the importance of this interaction for cell viability.

The role of Bcl-XL in modulating IP3R-mediated Ca2+ release 
in order to promote mitochondrial bioenergetics was recently 
further highlighted (69). The authors showed that Bcl-XL interacts 
with IP3R3 at the MAMs, where it increased Ca2+ transfer into the 
mitochondria, thereby enhancing TCA cycling. Upon ER-stress 
induction, Bcl-XL translocated more to the MAMs, where the 
subsequent facilitation of Ca2+ transfer to the mitochondria and 
thus increased energy production helped the cells cope with the 
induced ER stress. This further highlights that Bcl-XL exerts its 
protective effects against stress inducers in large part via modu-
lating Ca2+ signaling.

MiTOCHOnDRiAL SiDe OF THe MAMs

Cancer cells are highly dependent on the mitochondria for 
their energy production. For sustaining this energy production, 
adequate control of mitochondrial Ca2+ levels is important. Anti-
apoptotic Bcl-2 proteins are known regulators of this mitochon-
drial Ca2+ influx, thereby regulating mitochondrial bioenergetics. 
In addition, the F0F1 ATP synthase has also been identified as a 
target for anti-apoptotic Bcl-2-family members, thereby directly 
linking them to the production of ATP (58–60).

vDAC
The large conductance channel VDAC, of which three isoforms are 
known to exist, is located at the outer mitochondrial membranes 
(30). At the MAMs, VDAC is physically linked to the IP3R via 
molecular tethers like the chaperone protein, glucose-regulated 
protein 75, allowing efficient Ca2+ transfer from the ER into 
the mitochondria (70). Close regulation of mitochondrial Ca2+ 
uptake via VDAC is critical for maintaining mitochondrial energy 
production. Anti-apoptotic Bcl-2-family members are known to 
modulate this mitochondrial Ca2+ transfer through interactions 
with VDAC. Both Bcl-2 and Bcl-XL have been reported to inhibit 
VDAC1-mediated Ca2+ uptake into the mitochondria, thereby 
protecting cells from Ca2+-induced MOMP (45, 54, 55, 71). The 
BH4 domain of Bcl-XL, but not the one of Bcl-2, was sufficient to 
bind to VDAC1 and to directly inhibit VDAC1 single-channel 
activity (45). Although different regions of Bcl-2 and Bcl-XL 
seem to be involved in this interaction, both anti-apoptotic 
proteins target the N-terminus of VDAC1. Introducing VDAC1’s 
N-terminal into cells was shown to inhibit both Bcl-2’s and Bcl-
XL’s anti-apoptotic function, illustrating that VDAC1 could be 
a target for anti-cancer drugs (54, 71–73). However, at the level 
of the BH4 domains, the N-terminal peptide of VDAC1 could 
only counteract the inhibitory action of Bcl-XL’s, but not that of 
Bcl-2’s BH4 domain. The BH4 domain of Bcl-2 also suppressed 
agonist-induced mitochondrial Ca2+ uptake and staurosporine-
induced cell death, but acted through inhibition of IP3Rs, since 
IP3R-derived peptides were able to alleviate the inhibitory effects 
of Bcl-2’s, but not those of Bcl-XL’s BH4 domain (45).

Although the interaction of Bcl-XL with VDAC1 is well estab-
lished, the impact of Bcl-XL on VDAC1’s functional properties 
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may be dichotomous. Besides inhibiting VDAC1 (45, 54), Bcl-XL 
has been reported to enhance VDAC1 activity. Bcl-XL knockout 
MEF cells displayed a reduced VDAC1-mediated Ca2+ uptake in 
the mitochondria compared with the wild-type MEF cells (56). 
Similarly, N-terminal peptides derived from VDAC1 that disrupt 
Bcl-XL binding to VDAC1 could also antagonize mitochondrial 
Ca2+ uptake in wild-type MEF cells, while these peptides lacked 
any effect in Bcl-XL-deficient MEF cells. While differences in 
experimental conditions may underlie the seemingly contrast-
ing observations, these results indicate that Bcl-XL might have 
a dual impact on VDAC1’s Ca2+-flux properties dependent on 
VDAC1’s function as a pro-survival or pro-death protein. Hence, 
Bcl-XL could stimulate basal pro-survival and inhibit excessive 
pro-apoptotic VDAC1-mediated mitochondrial Ca2+ transfer, 
thereby fine-tuning mitochondrial Ca2+ handling according to 
cellular needs, with respect to cell fate decisions. The molecular 
basis for these opposite effects of Bcl-XL on VDAC1 remains 
poorly understood.

Mcl-1 has also been shown to positively regulate VDAC in 
non-small cell lung carcinoma cells (57). In these cancer cells, 
Mcl-1 interacted with VDAC, with a pronounced role for its 
N-terminus, thereby increasing mitochondrial Ca2+ uptake, 
resulting in increased ROS production and cell migration. 
Disrupting the Mcl-1/VDAC interaction utilizing N-terminal 
VDAC-derived peptides could inhibit ROS production and 
cell migration. The importance of Mcl-1 at the mitochondria 
was further underscored by a recent study concerning different 
Mcl-1 splice variants (74). In this study, the increased expression 
of the short pro-apoptotic Mcl-1 isoform resulted in increased 
mitochondrial fusion via a reduced Mcl-1-dependent recruit-
ment of dynamin-related protein 1 to the mitochondria. This 
was accompanied by hyperpolarization of the mitochondrial 
potential and increased mitochondrial Ca2+ uptake, thereby 
increasing susceptibility to apoptotic stimuli. Whether this 
increase in mitochondrial Ca2+ uptake was also mediated through 
the interaction with VDAC was not evaluated. Nevertheless, it 
would be interesting to assess whether the short pro-apoptotic 
Mcl-1 isoform would shift VDAC-mediated mitochondrial Ca2+ 
uptake toward more pro-apoptotic levels in comparison to the 
long pro-survival Mcl-1 isoform.

F0F1 ATP Synthase
In cultured hippocampal neurons, Bcl-XL was shown to be present 
at the inner mitochondrial membranes, where it directly targets 
the β-subunit of the F0F1 ATP synthase (59, 60). The interaction 
stabilized the mitochondrial membrane potential via the closure 
of a membrane leak pathway. This increased the enzymatic activ-
ity of the F0F1 ATP synthase, thereby promoting ATP production 
during neural activity. In addition, the interaction seems to occur 
via Bcl-XL’s hydrophobic cleft, since ABT-737 could reverse the 
effects of Bcl-XL on the F0F1 ATP synthase. Recently, this process 
was further explored and was shown to be important for neuronal 
survival (75). In response to excitotoxic stimuli, cyclin B1 and 
cyclin-dependent kinase 1 (CdK1) accumulated in the mito-
chondria. There, the cyclin B1-Cdk1 complex phosphorylated 
Bcl-XL, leading to its dissociation from the ATP-synthase. This 
led to decreased ATP synthesis and production of ROS species, 

resulting in the inhibition of respiratory chain complex I, mito-
chondrial dysfunction, and potentially neuronal death.

POTenTiAL THeRAPeUTiC 
OPPORTUniTieS

Promoting eR–Mitochondrial Ca2+ Transfer
Many chemotherapeutics trigger intracellular Ca2+ release from 
the ER, causing, or at least contributing to, mitochondrial Ca2+ 
overload. This Ca2+ release is often considered as a nonspecific 
side effect of the drug, but in many cases, it contributes to obtain 
maximal therapeutic effects (76). Moreover, recent studies have 
unraveled the molecular mechanisms underlying the impact 
of chemotherapeutics and photodynamic therapy on intracel-
lular Ca2+ homeostasis (18, 77, 78). These anti-cancer regimens 
caused the accumulation of the tumor suppressor p53 at the ER 
membranes, where it enhanced sarco/endoplasmic reticulum 
Ca2+-ATPase (SERCA) 2b activity. The effects were independent 
of the transcriptional roles of p53. Recruitment of p53 at the ER 
augmented the Ca2+ filling state of the ER stores, increasing the 
susceptibility to apoptotic stimuli and the likelihood for mito-
chondrial Ca2+ overload. Cells deficient in p53 did not display this 
effect and were resistant to chemotherapy. This resistance could 
be overcome by SERCA and/or MCU overexpression.

inhibiting eR–Mitochondrial Ca2+ Transfer
The therapeutic potential of dampening Ca2+ transfer from ER 
to mitochondria has recently been proposed as an anti-cancer 
strategy (9, 61). It was shown that dysregulation of the ER to 
mitochondrial Ca2+ transfer via inhibition of IP3Rs, results in the 
induction of autophagy in both cancer and normal cells. However, 
when this increase in autophagy is not accompanied by a halt in 
proliferation, the cancer cells will die mainly through necrosis. 
This could prove to be a very specific way of eliminating cancer 
cells by effectively turning the increased proliferative capacity of 
cancer cells against themselves, whereas healthy cells can cope with 
this loss of Ca2+ transfer to the mitochondria. A major challenge 
will be to selectively target the Ca2+ transfer into the mitochondria 
without affecting global Ca2+ signaling and to mainly limit the 
effect of IP3R-inhibiting drugs to the malignant cells.

Antagonizing Anti-apoptotic Bcl-2 
Proteins
Major efforts have been dedicated towards the development of 
BH3-mimetic drugs, which target the hydrophobic cleft of anti-
apoptotic Bcl-2-family members. The first generation of BH3 
mimetics (ABT-737 and ABT-263) inhibited both Bcl-2 and 
Bcl-XL, resulting in severe side effects related to thrombocytope-
nia due to the dependence of thrombocytes on Bcl-XL for their 
survival (41, 79). More recently, a Bcl-2-selective BH3-mimetic 
inhibitor was developed, namely ABT-199/venetoclax, which is a 
very promising anti-cancer drug that has been approved for the 
treatment of chronic lymphocytic leukemia (80). Whether these 
BH3-mimetic drugs also influence the ability of anti-apoptotic 
Bcl-2-family members to modulate intracellular Ca2+ release 
is less well understood, although some recent studies aimed to 
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address this. With the identification of the two BH3-like domains 
at the C-terminus of the IP3R, the ABT-737 compound was shown 
to disrupt the binding of Bcl-XL to the C-terminus of the IP3R, 
thereby abolishing both the stimulatory and inhibitory effects of 
Bcl-XL on IP3R-mediated Ca2+ release (53). However, the contri-
bution of Ca2+ signaling to ABT-737-induced cell death requires 
further investigation, since ABT-737 could cause cell death in 
primary chronic lymphocytic leukemia cells without inducing 
elevations in intracellular [Ca2+] (81).

Besides a direct impact on IP3R/Bcl-XL complexes, ABT-737 
has also been proposed to modulate the sensitivity of cancer cells 
to chemotherapy via a mechanism that involves remodeling of 
ER–mitochondrial contact sites (82). As such, cisplatin-resistant 
ovarian cancer cells could be re-sensitized to cisplatin by ABT-
737. This drug increased ER–mitochondrial contact sites, thereby 
increasing cisplatin-induced elevations in mitochondrial Ca2+. 
When co-applied with cisplatin in cholangiocarcinoma cells, 
ABT-737 has been shown to induce mitochondrial fragmentation 
and mitophagy, resulting in cell death, whereas cisplatin alone 
induced mitochondrial hyperfusion, potentially underlying cell-
death resistance (83). The combined ABT-737/cisplatin treat-
ment led to a decreased Mcl-1 and an increased Bax expression. 
Interestingly, Mcl-1 has recently been shown to be implicated in 
controlling mitochondrial dynamics (74).

Consistent with the lack of contribution of Bcl-2’s hydropho-
bic cleft to the interaction with and regulation of IP3R, IP3R/
Bcl-2-protein complexes and IP3R inhibition by Bcl-2 were 
resistant to ABT199/venetoclax treatment (67). Acute addition 
of ABT199/venetoclax to a variety of permeabilized and intact 
cell systems did neither trigger Ca2+ release by itself nor directly 
affected ER-located Ca2+-uptake and -release systems. Related to 
this, ABT199/venetoclax-induced apoptosis in Bcl-2-dependent 
cancer cells appeared to occur independently of intracellular 
Ca2+ overload (67, 84). However, the inhibition of Bcl-2 by 
BH3-mimetics has been reported to result in a rapid impairment 
of mitochondrial oxidative phosphorylation (85). This may 
underlie the increased sensitivity of Bcl-2-dependent cancer cells 
to ABT199/venetoclax in the presence of the intracellular Ca2+ 
buffer, BAPTA-AM (67, 84).

Over the years, it has become clear that Bcl-2 inhibition via 
targeting its BH4 domain has potential as an effective anti-cancer 
treatment (38, 86–88). Targeting Bcl-2/IP3R complex with Bcl-2/
IP3 receptor disrupter-2 (BIRD-2), a stabilized TAT-linked peptide 
containing the 20 amino acids that represent the Bcl-2 interaction 
motif of IP3Rs, triggers intracellular Ca2+ overload and apoptotic 
cell death in a variety of cancer cell models, including chronic 
lymphocytic leukemia (81), diffuse large B-cell lymphoma (89), 
multiple myeloma, follicular lymphoma (90), and small-cell lung 
carcinoma (91). The cell death could be suppressed by buffer-
ing intracellular Ca2+ and by inhibiting IP3R activity (81, 89). 
Very recently, a small molecule (BDA-366) that targets the BH4 
domain of Bcl-2 has been developed and shown to be effective 
in lung cancers and multiple myeloma (92, 93). The mechanism 
involved a conformational switch in Bcl-2 that turned it from a 
pro-survival to a pro-death protein by exposing its BH3 domain. 
A decrease in Bcl-2 phosphorylation may contribute to this pro-
apoptotic switch induced by BDA-366. BDA-366 also impaired 

IP3R/Bcl-2 complex formation and raised cytosolic Ca2+ levels, 
although further work is needed to determine the contribution 
of Ca2+ signaling to BDA-366-induced cell death in cancer cells.

Mcl-1 gene amplifications are frequently found in many 
types of cancer (94). Very recently, an Mcl-1 inhibitor (S63845) 
targeting Mcl-1’s hydrophobic cleft has been developed (95). This 
compound was shown to be very specific for Mcl-1, well-tolerated 
by animal models and efficient at triggering cell death in Mcl-
1-dependent tumor cells. As the regulation of VDAC1 by Mcl-1 
also stimulates cancer cell migration (57), Mcl-1 inhibitors may 
not only be useful to eliminate Mcl-1-dependent cancers by pro-
voking cell death but also by counteracting metastasis. However, 
at this point, it is not clear whether these Mcl-1 inhibitors can 
disrupt VDAC1/Mcl-1 complex formation.

COnCLUSiOnS

Ca2+ transfer from ER to mitochondria is important for maintain-
ing proper energy production and balance between cell survival 
and cell death. The anti-apoptotic Bcl-2-family members regulate 
these Ca2+ transfers at the level of the ER as well as of the mito-
chondria by directly targeting Ca2+-transport systems located at 
the ER and mitochondria. Moreover, the molecular determinants 
underlying the complex formation between the Bcl-2 proteins 
and these systems are emerging as a hot topic, which allows the 
development of strategies and tools to interfere with the Bcl-2 
protein-mediated control of Ca2+-signaling. These mechanisms 
also appear to be exploited by cancer cells to promote survival and 
mitochondrial bioenergetics, to contribute to cell-death resist-
ance and control metastasis. Thus, targeting the Ca2+-modulating 
abilities of Bcl-2 proteins may offer novel anti-cancer strategies. 
In addition to this, Ca2+ signaling might contribute to the cell-
death properties of recently developed Bcl-2 inhibitors, including 
BH3-mimetics and BH4-domain antagonists.
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